1
|
Ponsonby-Thomas E, Pham AC, Huang S, Salim M, Klein LD, Offersen SM, Thymann T, Boyd BJ. Human milk improves the oral bioavailability of the poorly water-soluble drug clofazimine. Eur J Pharm Biopharm 2025; 207:114604. [PMID: 39675684 DOI: 10.1016/j.ejpb.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Clofazimine is an emerging drug for the treatment of cryptosporidiosis in infants. As a poorly water-soluble drug, the formulation of clofazimine in age-appropriate vehicles is challenging and often results in the use of off-label formulations. Milk-based vehicles such as human milk and bovine milk have been investigated as age-appropriate formulations and shown to increase the solubilisation of poorly water-soluble drugs via enhanced solubility in lipid digestion products in vitro. We hypothesised that administration of clofazimine within a milk-based vehicle would enhance bioavailability for infant patients. Towards this objective, suspensions of clofazimine in human and bovine milk were orally administered separately to piglets and rats and the subsequent plasma concentrations were compared to those after administration of an aqueous drug suspension. Initial investigations with a rodent model showed a significant increase (258%) in the oral bioavailability of clofazimine when administered with human milk. Similarly, the oral bioavailability of clofazimine was significantly higher when administered in both human (154%) and bovine milk (175%) using a neonatal piglet model, suggesting comparable enhancement in oral bioavailability could be achieved with human or bovine milk. These findings demonstrate the potential of human milk in particular to provide an effective administration vehicle for clofazimine administration to infants without the need for additional excipients.
Collapse
Affiliation(s)
- Ellie Ponsonby-Thomas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna C Pham
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Shouyuan Huang
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Laura D Klein
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Strategy and Growth, Australian Red Cross Lifeblood, 17 O'Riordan St, Alexandria, NSW 2015, Australia
| | - Simone Margaard Offersen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, DK-1870 Frederiksberg, Denmark
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, DK-1870 Frederiksberg, Denmark
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
He V, Seibt S, Cadarso VJ, Neild A, Boyd BJ. Compartmentalised enzyme-induced phase transformations in self-assembling lipid systems. J Colloid Interface Sci 2024; 672:256-265. [PMID: 38838633 DOI: 10.1016/j.jcis.2024.05.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
HYPOTHESIS Understanding the digestion of lipid-based pharmaceutical formulations and food systems is necessary for optimising drug and nutrient delivery and has been extensively studied in bulk emulsion systems using the pH-stat method [1]. However, this approach is not suitable for investigation of individual lipid droplets, in particular the interface where the lipase acts. Microfluidic approaches to study digestion at lipid-water interfaces using droplet trapping have been proposed, however the aqueous phase in that case washes over the interface presenting uncertainty over the stoichiometry of interactions [2]. The internal interface of a Janus-like droplet, containing distinct aqueous and lipid compartments, mimics the interface of a lipid droplet in aqueous solution with controlled stoichiometry [3]. Hence, it was hypothesised that the internal interface of Janus droplets can offer a precise way to study the enzymatic digestion of lipids formulations. EXPERIMENTS Using microfluidic methods, Janus-like droplets were formed by coalescing emulsion droplets containing lipid formulation and pancreatic lipase. Polarised light microscopy (PLM) and in-situ small-angle X-ray scattering (SAXS) were used to investigate the droplets. FINDINGS PLM revealed the growth of an aligned inverse hexagonal phase (H2), and with SAXS showed that this phase transformation and alignment resulted from enzymatic digestion. A subsequent partial transformation from H2 to inverse bicontinuous cubic phase occurred when simulated intestinal fluid was used instead of Tris buffer. Suggesting that phospholipids and bile salts could diffuse across the internal interface to locally affect their surroundings.
Collapse
Affiliation(s)
- Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Susanne Seibt
- SAXS/WAXS Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, VIC 3150, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Klope M, Tapia Cardona JA, Chen J, Gonciarz RL, Cheng K, Jaishankar P, Kim J, Legac J, Rosenthal PJ, Renslo AR. Synthesis and In Vivo Profiling of Desymmetrized Antimalarial Trioxolanes with Diverse Carbamate Side Chains. ACS Med Chem Lett 2024; 15:1764-1770. [PMID: 39411530 PMCID: PMC11472393 DOI: 10.1021/acsmedchemlett.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The recent withdrawal of artefenomel from clinical development leaves no endoperoxide-class agents in the antimalarial pipeline. Synthetic endoperoxides with a desymmetrized structure have demonstrated promising physiochemical and in vivo properties. Here we expand on our initial investigation of trans-3″ carbamate substitution with a diverse array of amine-, alcohol-, and sulfinyl-terminated analogues prepared in (S,S) and (R,R) configurations. In general, this chemotype combines low-nM antiplasmodial activity with excellent aqueous solubility but widely varying human liver microsome (HLM) stability. We evaluated 20 novel analogues in the P. berghei mouse malaria model, identifying new analogues such as RLA-4767 (9a) and RLA-5489 (9d), with HLM stability and pharmacokinetic profiles superior to analogues from our initial report (e.g., RLA-4776, 8a). These new leads approach or equal the efficacy of artefenomel after two daily oral doses of 10 mg/kg, thus revealing a promising chemotype with the potential to deliver development candidates.
Collapse
Affiliation(s)
- Matthew
T. Klope
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Juan A. Tapia Cardona
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
- Department
of Medicine, San Francisco General Hospital, University of California, San
Francisco, California 94143, United States
| | - Jun Chen
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Ryan L. Gonciarz
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Ke Cheng
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Julie Kim
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Jenny Legac
- Department
of Medicine, San Francisco General Hospital, University of California, San
Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department
of Medicine, San Francisco General Hospital, University of California, San
Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Ponsonby-Thomas E, Salim M, Klein LD, Clulow AJ, Seibt S, Boyd BJ. Evaluating human milk as a drug delivery vehicle for clofazimine to premature infants. J Control Release 2023; 362:257-267. [PMID: 37619865 DOI: 10.1016/j.jconrel.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Human milk is proposed as a drug delivery vehicle suitable for use in neonatal patients. Clofazimine, traditionally used for the treatment of leprosy and tuberculosis, is emerging as a treatment for cryptosporidiosis in infants, however its poor aqueous solubility has led to its commercial formulation as a waxy lipid formulation in a capsule, a format that is not suitable for infants. In this study, the evaluation of pasteurised human milk for the delivery of clofazimine was investigated using an in vitro lipolysis model to simulate gastric and intestinal digestion. The total lipid composition of the human milk was characterised alongside the liberated fatty acid species following digestion for comparison to alternative lipid-based delivery systems. Small-angle X-ray scattering was used to measure the presence of crystalline clofazimine during digestion and hence the extent of drug solubilisation. High-performance liquid chromatography was used to quantify the mass of clofazimine solubilised per gram of human milk fat (drug-to-fat ratio) in digested and undigested human milk. The digestion process was essential for the solubilisation of clofazimine, with digested human milk solubilising a sufficient dose of clofazimine for treatment of a premature infant. Human milk solubilised the clofazimine to a greater extent than bovine milk and infant formula during digestion, most likely as a result of differing lipid composition and increased long-chain fatty acid concentrations. These findings show that human milk enhances the solubility of clofazimine as a model drug and may be a suitable drug delivery vehicle for infant populations requiring therapeutic treatment.
Collapse
Affiliation(s)
- Ellie Ponsonby-Thomas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Laura D Klein
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Strategy and Growth, Australian Red Cross Lifeblood, 17 O'Riordan St, Alexandria, NSW 2015, Australia
| | - Andrew J Clulow
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Susi Seibt
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Blank B, Gut J, Rosenthal PJ, Renslo AR. Artefenomel Regioisomer RLA-3107 Is a Promising Lead for the Discovery of Next-Generation Endoperoxide Antimalarials. ACS Med Chem Lett 2023; 14:493-498. [PMID: 37077383 PMCID: PMC10108391 DOI: 10.1021/acsmedchemlett.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
Clinical development of the antimalarial artefenomel was recently halted due to formulation challenges stemming from the drug's lipophilicity and low aqueous solubility. The symmetry of organic molecules is known to influence crystal packing energies and by extension solubility and dissolution rates. Here we evaluate RLA-3107, a desymmetrized, regioisomeric form of artefenomel in vitro and in vivo, finding that the regioisomer retains potent antiplasmodial activity while offering improved human microsome stability and aqueous solubility as compared to artefenomel. We also report in vivo efficacy data for artefenomel and its regioisomer across 12 different dosing regimens.
Collapse
Affiliation(s)
- Brian
R. Blank
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Jiri Gut
- Department
of Medicine, San Francisco General Hospital,
University of California, San Francisco, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department
of Medicine, San Francisco General Hospital,
University of California, San Francisco, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Salim M, Ramirez G, Clulow AJ, Hawley A, Boyd BJ. Implications of the Digestion of Milk-Based Formulations for the Solubilization of Lopinavir/Ritonavir in a Combination Therapy. Mol Pharm 2023; 20:2256-2265. [PMID: 36919249 PMCID: PMC10074382 DOI: 10.1021/acs.molpharmaceut.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of formulation approaches to coadminister lopinavir and ritonavir antiretroviral drugs to children is necessary to ensure optimal treatment of human immunodeficiency virus (HIV) infection. It was previously shown that milk-based lipid formulations show promise as vehicles to deliver antimalarial drugs by enhancing their solubilization during the digestion of the milk lipids under intestinal conditions. In this study, we investigate the role of digestion of milk and infant formula on the solubilization behavior of lopinavir and ritonavir to understand the fate of drugs in the gastrointestinal (GI) tract after oral administration. Small angle X-ray scattering (SAXS) was used to probe the presence of crystalline drugs in suspension during digestion. In particular, the impact of one drug on the solubilization of the other was elucidated to reveal potential drug-drug interactions in a drug combination therapy. Our results showed that lopinavir and ritonavir affected the solubilization of each other during digestion in lipid-based formulations. While addition of ritonavir to lopinavir improved the overall solubilization of lopinavir, the impact of lopinavir was to reduce ritonavir solubilization as digestion progressed. These findings highlight the importance of assessing the solubilization of individual drugs in a combined matrix in order to dictate the state of drugs available for subsequent absorption and metabolism. Enhancement in the solubilization of lopinavir and ritonavir in a drug combination setting in vitro also supported the potential for food effects on drug exposure.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Adrian Hawley
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
7
|
Khan NF, Salim M, Binte Abu Bakar SY, Ristroph K, Prud'homme RK, Hawley A, Boyd BJ, Clulow AJ. Small-volume in vitro lipid digestion measurements for assessing drug dissolution in lipid-based formulations using SAXS. Int J Pharm X 2022; 4:100113. [PMID: 35243327 PMCID: PMC8881665 DOI: 10.1016/j.ijpx.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid-based formulations improve the absorption capacity of poorly-water-soluble drugs and digestion of the formulation is a critical step in that absorption process. A recent approach to understanding the propensity for drug to dissolve in digesting lipid-based formulations couples an in vitro pH-stat lipolysis model to small-angle X-ray scattering (SAXS) by means of a flow-through capillary. However, the conventional pH-stat apparatus used to measure the extent of lipid digestion during such experiments requires digest volumes of 15–30 mL and drug doses of 50–200 mg, which is problematic for scarce compounds and can require excessive amounts of formulation reagents. This manuscript describes an approach to reduce the amount of material required for in vitro lipolysis experiments coupled to SAXS, for use in instances where the amount of drug or formulation medium is limited. Importantly, this was achieved while maintaining the pH stat conditions, which is critical for maintaining biorelevance and driving digestion to completion. The digestibility of infant formula with the poorly-water-soluble drugs halofantrine and clofazimine dispersed into it was measured as an exemplar paediatric-friendly lipid formulation. Halofantrine was incorporated in its powdered free base form and clofazimine was incorporated both as unformulated drug powder and as drug in nanoparticulate form prepared using Flash NanoPrecipitation. The fraction of triglyceride digested was found to be independent of vessel size and the incorporation of drug. The dissolution of the two forms of clofazimine during the digestion of infant formula were then measured using synchrotron SAXS, which revealed complete and partial solubilisation over 30 min of digestion for the powdered drug and nanoparticle formulations, respectively. The main challenge in reducing the volume of the measurements was in ensuring that thorough mixing was occurring in the smaller digestion vessel to provide uniform sampling of the dispersion medium.
Collapse
|
8
|
Revisiting the Dissolution of Praziquantel in Biorelevant Media and the Impact of Digestion of Milk on Drug Dissolution. Pharmaceutics 2022; 14:pharmaceutics14102228. [PMID: 36297662 PMCID: PMC9609124 DOI: 10.3390/pharmaceutics14102228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Praziquantel is a poorly water-soluble drug used to treat parasitic infections. Previous studies have suggested that its rate and extent of dissolution in milk and biorelevant media are slow and limited compared to dissolution in the pharmacopoeial-recommended medium, despite being reported as displaying a positive food effect upon administration. This study aimed to revisit the dissolution of praziquantel in biorelevant media and milk to better understand this apparent dichotomy. The context of digestion was introduced to better understand drug solubilisation under more relevant gastrointestinal conditions. The amount of praziquantel solubilised in the various media during digestion was quantified using high performance liquid chromatography (HPLC) and the kinetics of dissolution were confirmed by tracking the disappearance of solid crystalline drug using in situ small angle X-ray scattering (SAXS). For the dissolution media, where sodium lauryl sulfate (SLS) is typically included as a wetting agent, a prominent effect of SLS on drug dissolution was also apparent where >2.5 fold more drug was solubilised in SLS-containing dissolution medium compared to that without (0.1 M HCl only). In milk, significant dissolution of praziquantel was observed only during digestion and not during dispersion, hence suggesting that (1) milk can be potentially administered with praziquantel to improve oral bioavailability and (2) incorporating a digestion step into existing in vitro dissolution testing can better reflect the potential for a positive food effect when lipids are present.
Collapse
|
9
|
Salim M, Eason T, Boyd BJ. Opportunities for milk and milk-related systems as 'new' low-cost excipient drug delivery materials. Adv Drug Deliv Rev 2022; 183:114139. [PMID: 35143892 DOI: 10.1016/j.addr.2022.114139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022]
Abstract
Milk is well recognised as an amazing delivery system for essential lipids, poorly soluble nutrients, sugars, amino acids and delivery of critical biological molecules to sustain the infant and adult alike. It is also a safe and abundant resource with potential to act as a low-cost material for formulation of medicines, especially for paediatric patients and those in low economy settings. However, its use in low cost formulations has never developed beyond preclinical evaluation. Reasons for this are several-fold including variable composition and therefore regulatory challenges, as well as a lack of clear understanding around when milk or milk-related materials like infant formula could best be deployed by linking drug properties with excipient composition attributes, especially when taking digestion into account. This review collects the current understanding around these issues. It is apparent from the evolving understanding that while milk may be a bridge too far for translation as an excipient, infant formula is positioned to play a key role in the future because, as a powder-based excipient, it has the performance benefits of milk powder together with the controlled specifications during manufacture and versatility of application to function as a low cost lipid excipient to enable potential translation for the oral delivery of poorly water soluble drugs for key populations including paediatrics and low economy medicines.
Collapse
|
10
|
The effect of emulsifier type on the secondary crystallisation of monoacylglycerol and triacylglycerols in model dairy emulsions. J Colloid Interface Sci 2022; 608:2839-2848. [PMID: 34801239 DOI: 10.1016/j.jcis.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Dairy emulsions contain an intrinsically heterogeneous lipid phase, whose components undergo crystallisation in a manner that is critical to dairy product formulation, storage, and sensory perception. Further complexity is engendered by the diverse array of interfacially-active molecules naturally present within the serum of dairy systems, and those that are added for specific formulation purposes, all of which interact at the lipid-serum interface and modify the impact of lipid crystals on dairy emulsion stability. The work described in this article addresses this complexity, with a specific focus on the impact of temperature cycling and the effect of emulsifier type on the formation and persistence of lipid crystals at lipid-solution interfaces. Profile analysis tensiometry experiments were performed using single droplets of the low melting fraction of dairy lipids, in the presence and absence of emulsifiers (Tween 80 and whey protein isolate, WPI) and during the temperature cycling, to study the formation of monoacylglycerol (MAG) crystals at the lipid-solution interface. Companion experiments on the same lipid systems, and at the same cooling and heating rates, were undertaken with synchrotron small angle X-ray scattering, to specifically analyse the effect of emulsifier type on the formation of triacylglycerol (TAG) crystals at the lipid-solution interface of a model dairy emulsion. These two complementary techniques have revealed that Tween 80 molecules delay MAG and TAG crystal formation by lowering the temperature at which the crystallisation occurs during two cooling cycles. WPI molecules delay the crystallisation of MAGs and TAGs during the first cooling cycle, while MAG crystals form without delay during the second cooling cycle at the same temperature as MAG crystals in an emulsifier free system. The crystallisation of TAGs is inhibited during the second cooling cycle. The observed differences in crystallisation behaviour at the interface upon temperature cycling can provide further insight into the impact of emulsifiers on the long-term stability of emulsion-based dairy systems during storage.
Collapse
|
11
|
The influence of lipid digestion on the fate of orally administered drug delivery vehicles. Biochem Soc Trans 2021; 49:1749-1761. [PMID: 34431506 PMCID: PMC8421046 DOI: 10.1042/bst20210168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
This review will focus on orally administered lipid-based drug delivery vehicles and specifically the influence of lipid digestion on the structure of the carrier lipids and their entrained drug cargoes. Digestion of the formulation lipids, which are typically apolar triglycerides, generates amphiphilic monoglycerides and fatty acids that can self-assemble into a diverse array of liquid crystalline structures. Tracking the dynamic changes in self-assembly of the lipid digestion products during digestion has recently been made possible using synchrotron-based small angle X-ray scattering. The influence of lipid chain length and degree of unsaturation on the resulting lipid structuring will be described in the context of the critical packing parameter theory. The chemical and structural transformation of the formulation lipids can also have a dramatic impact on the physical state of drugs co-administered with the formulation. It is often assumed that the best strategy for drug development is to maximise drug solubility in the undigested formulation lipids and to incorporate additives to maintain drug solubility during digestion. However, it is possible to improve drug absorption using lipid digestion in cases where the solubility of the dosed drug or one of its polymorphic forms is greater in the digested lipids. Three different fates for drugs administered with digestible lipid-based formulations will be discussed: (1) where the drug is more soluble in the undigested formulation lipids; (2) where the drug undergoes a polymorphic transformation during lipid digestion; and (3) where the drug is more soluble in the digested formulation lipids.
Collapse
|
12
|
Woodley CM, Amado PSM, Cristiano MLS, O'Neill PM. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med Res Rev 2021; 41:3062-3095. [PMID: 34355414 DOI: 10.1002/med.21849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Artemisinin combination therapies (ACTs) have been used as the first-line treatments against Plasmodium falciparum malaria for decades. Recent advances in chemical proteomics have shed light on the complex mechanism of action of semi-synthetic artemisinin (ARTs), particularly their promiscuous alkylation of parasite proteins via previous heme-mediated bioactivation of the endoperoxide bond. Alarmingly, the rise of resistance to ART in South East Asia and the synthetic limitations of the ART scaffold have pushed the course for the necessity of fully synthetic endoperoxide-based antimalarials. Several classes of synthetic endoperoxide antimalarials have been described in literature utilizing various endoperoxide warheads including 1,2-dioxanes, 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes. Two of these classes, the 1,2,4-trioxolanes (arterolane and artefenomel) and the 1,2,4,5-tetraoxanes (N205 and E209) based antimalarials, have been explored extensively and are still in active development. In contrast, the most recent publication pertaining to the development of the 1,2-dioxane, Arteflene, and 1,2,4-trioxanes fenozan-50F, DU1301, and PA1103/SAR116242 was published in 2008. This review summarizes the synthesis, biological and clinical evaluation, and mechanistic studies of the most developed synthetic endoperoxide antimalarials, providing an update on those classes still in active development.
Collapse
Affiliation(s)
| | - Patrícia S M Amado
- Department of Chemistry, University of Liverpool, Liverpool, UK.,Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Woodley CM, Nixon GL, Basilico N, Parapini S, Hong WD, Ward SA, Biagini GA, Leung SC, Taramelli D, Onuma K, Hasebe T, O'Neill PM. Enantioselective Synthesis and Profiling of Potent, Nonlinear Analogues of Antimalarial Tetraoxanes E209 and N205. ACS Med Chem Lett 2021; 12:1077-1085. [PMID: 34267877 PMCID: PMC8274084 DOI: 10.1021/acsmedchemlett.1c00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023] Open
Abstract
Synthetic endoperoxide antimalarials, such as 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes, are promising successors for current front-line antimalarials, semisynthetic artemisinin derivatives. However, limited solubility of second-generation analogues in biological-relevant media represents a barrier in clinical development. We present methodology for the synthesis of nonlinear analogues of second-generation tetraoxane antimalarials E209 and N205 to investigate reduced molecular symmetry on in vitro antimalarial activity and physicochemical properties. While maintaining good antimalarial activity and metabolic stability, head-to-head comparison of linear and nonlinear counterparts showed up to 10-fold improvement in FaSSIF solubility for three of the four analogues studied. Pharmacokinetic studies in rats comparing a selected nonlinear analogue 14a and its parent N205 showed improvement on oral absorption and exposure in vivo with more than double the AUC and a significant increase in oral bioavailability (76% versus 41%). These findings provide support for further in vivo efficacy studies in preclinical animal species.
Collapse
Affiliation(s)
| | - Gemma L Nixon
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.,Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.,Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| | - Weiqian David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Stephen A Ward
- Centre for Drugs and Diagnostics. Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics. Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Suet C Leung
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.,Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| | - Keiko Onuma
- Eisai Co.,Ltd. Tsukuba Research Laboratories, 5-1-3 Tokodai, Tsukubashi, Ibaraki 300-2635, Japan
| | - Takashi Hasebe
- Eisai Co.,Ltd. Tsukuba Research Laboratories, 5-1-3 Tokodai, Tsukubashi, Ibaraki 300-2635, Japan
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
14
|
Clulow AJ, Binte Abu Bakar SY, Salim M, Nowell CJ, Hawley A, Boyd BJ. Emulsions containing optimum cow milk fat and canola oil mixtures replicate the lipid self-assembly of human breast milk during digestion. J Colloid Interface Sci 2020; 588:680-691. [PMID: 33309144 DOI: 10.1016/j.jcis.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The digestion of different milks and milk substitutes leads to the formation of a variety of self-assembled lipid structures, with the structuring of human milk being paramount for infant nutrition. It was hypothesised that mixing cow milk fat rich in medium/long-chain lipids with canola oil rich in long-chain unsaturated lipids would replicate the structuring of human milk by balancing lipid chain lengths and saturation levels. EXPERIMENTS Emulsions of cow milk fat/canola oil mixtures were prepared in two ways - by pre-mixing ghee and canola oil before dispersing them and by dispersing canola oil directly into commercial cow milk. Small angle X-ray scattering combined with titration of the fatty acids produced during digestion allowed for the correlation of dynamic lipid self-assembly with the extent of lipid digestion. Laser light scattering was used to show that the particle sizes in the digesting mixtures were similar and coherent anti-Stokes Raman spectroscopy (CARS) microscopy was used to confirm the mixing of canola oil into cow milk fat globules. FINDINGS As the amount of long-chain unsaturated canola oil lipids in the mixtures increased, the lipid self-assembly tended towards colloidal structures of greater interfacial curvature. When the ratio of cow milk fat to canola oil lipids was 1:1 (w/w), the digesting lipids assembled themselves into the same liquid crystalline structures as human breast milk. This observation was independent of the method used to mix the lipids, with CARS microscopy indicating uniform mixing of the canola oil into cow milk upon ultrasonication.
Collapse
Affiliation(s)
- Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release 2020; 327:444-455. [DOI: 10.1016/j.jconrel.2020.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
16
|
Blank BR, Gonciarz RL, Talukder P, Gut J, Legac J, Rosenthal PJ, Renslo AR. Antimalarial Trioxolanes with Superior Drug-Like Properties and In Vivo Efficacy. ACS Infect Dis 2020; 6:1827-1835. [PMID: 32369341 DOI: 10.1021/acsinfecdis.0c00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The emergence of artemisinin resistance, combined with certain suboptimal properties of ozonide agents arterolane and artefenomel, has necessitated the search for new drug candidates in the endoperoxide class. Our group has focused on trioxolane analogues with substitution patterns not previously explored. Here, we describe the enantioselective synthesis of analogues bearing a trans-3″ carbamate side chain and find these to be superior, both in vitro and in vivo, to the previously reported amides. We identified multiple analogues that surpass the oral efficacy of arterolane in the Plasmodium berghei model while exhibiting drug-like properties (logD, solubility, metabolic stability) similar or superior to next-generation clinical candidates like E209 and OZ609. While the preclinical assessment of new analogues is still underway, current data suggest the potential of this chemotype as a likely source of future drug candidates from the endoperoxide class.
Collapse
Affiliation(s)
- Brian R. Blank
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Poulami Talukder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94143, United States
| | - Jennifer Legac
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
17
|
Salim M, Ramirez G, Peng KY, Clulow AJ, Hawley A, Ramachandruni H, Beilles S, Boyd BJ. Lipid Compositions in Infant Formulas Affect the Solubilization of Antimalarial Drugs Artefenomel (OZ439) and Ferroquine during Digestion. Mol Pharm 2020; 17:2749-2759. [PMID: 32574056 PMCID: PMC7341521 DOI: 10.1021/acs.molpharmaceut.0c00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies have shown that the solubilization of two antimalarial drug candidates, artefenomel (OZ439) and ferroquine (FQ), designed to provide a single-dose combination therapy for uncomplicated malaria can be enhanced using milk as a lipid-based formulation. However, milk as an excipient faces significant quality and regulatory hurdles. We therefore have investigated infant formula as a potential alternative formulation approach. The significance of the lipid species present in a formula with different lipid compositions upon the solubilization of OZ439 and FQ during digestion has been investigated. Synchrotron small-angle X-ray scattering was used to measure the diffraction from a dispersed drug during digestion and thereby determine the extent of drug solubilization. High-performance liquid chromatography was used to quantify the amount of drug partitioned into the digested lipid phases. Our results show that both the lipid species and the amount of lipids administered were key determinants for the solubilization of OZ439, while the solubilization of FQ was independent of the lipid composition. Infant formulas could therefore be designed and used as milk substitutes to tailor the desired level of drug solubilization while circumventing the variability of components in naturally derived milk. The enhanced solubilization of OZ439 was achieved during the digestion of medium-chain triacylglycerols (MCT), indicating the potential applicability of MCT-fortified infant formula powder as a lipid-based formulation for the oral delivery of OZ439 and FQ.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3169, Australia
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, 20, Route de Pre'-Bois, Geneva 1215, Switzerland
| | - Stephane Beilles
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier 34080, France
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Salim M, Fraser-Miller SJ, Be Rziņš KR, Sutton JJ, Ramirez G, Clulow AJ, Hawley A, Beilles S, Gordon KC, Boyd BJ. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion. Mol Pharm 2020; 17:885-899. [PMID: 32011151 PMCID: PMC7054896 DOI: 10.1021/acs.molpharmaceut.9b01149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ka Rlis Be Rziņš
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Joshua J Sutton
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3169, Australia
| | | | - Keith C Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Charman SA, Andreu A, Barker H, Blundell S, Campbell A, Campbell M, Chen G, Chiu FCK, Crighton E, Katneni K, Morizzi J, Patil R, Pham T, Ryan E, Saunders J, Shackleford DM, White KL, Almond L, Dickins M, Smith DA, Moehrle JJ, Burrows JN, Abla N. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J 2020; 19:1. [PMID: 31898492 PMCID: PMC6941357 DOI: 10.1186/s12936-019-3075-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Background Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. Methods Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC–MS/MS. Results Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. Conclusions This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug–drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.
Collapse
Affiliation(s)
- Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Alice Andreu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Helena Barker
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Scott Blundell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Anna Campbell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael Campbell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Julia Morizzi
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Thao Pham
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Eileen Ryan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lisa Almond
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Maurice Dickins
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | | | - Joerg J Moehrle
- Medicines for Malaria Venture, PO Box 1826, 20 Route de Pré-Bois, CH-1215, Geneva 15, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture, PO Box 1826, 20 Route de Pré-Bois, CH-1215, Geneva 15, Switzerland
| | - Nada Abla
- Medicines for Malaria Venture, PO Box 1826, 20 Route de Pré-Bois, CH-1215, Geneva 15, Switzerland
| |
Collapse
|
20
|
Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria. Trends Parasitol 2019; 35:529-543. [PMID: 31176584 DOI: 10.1016/j.pt.2019.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
The ozonides are one of the most advanced drug classes in the antimalarial development pipeline and were designed to improve on limitations associated with current front-line artemisinin-based therapies. Like the artemisinins, the pharmacophoric peroxide bond of ozonides is essential for activity, and it appears that these antimalarials share a similar mode of action, raising the possibility of cross-resistance. Resistance to artemisinins is associated with Plasmodium falciparum mutations that allow resistant parasites to escape short-term artemisinin-mediated damage (elimination half-life ~1 h). Importantly, some ozonides (e.g., OZ439) have a sustained in vivo drug exposure profile, providing a major pharmacokinetic advantage over the artemisinin derivatives. Here, we describe recent progress made towards understanding ozonide antimalarial activity and discuss ozonide utility within the context of artemisinin resistance.
Collapse
|
21
|
Charalabidis A, Sfouni M, Bergström C, Macheras P. The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines. Int J Pharm 2019; 566:264-281. [PMID: 31108154 DOI: 10.1016/j.ijpharm.2019.05.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
The recent impact of the Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS) on relevant scientific advancements is discussed. The major advances associated with the BCS concern the extensive work on dissolution of poorly absorbed BCS class II drugs in nutritional liquids (e.g. milk, peanut oil) and biorelevant media for the accurate prediction of the rate and the extent of oral absorption. The use of physiologically based pharmacokinetic (PBPK) modeling as predictive tool for bioavailability is also presented. Since recent dissolution studies demonstrate that the two mechanisms (diffusion- and reaction-limited dissolution) take place simultaneously, the neglected reaction-limited dissolution models are discussed, regarding the biopharmaceutical classification of drugs. Solubility- and dissolution-enhancing formulation strategies based on the supersaturation principle to enhance the extent of drug absorption, along with the applications of the BDDCS to the understanding of disposition phenomena are reviewed. Finally, recent classification systems relevant either to the BCS or the BDDCS are presented. These include: i) a model independent approach based on %metabolism and the fulfilment (or not) of the current regulatory dissolution criteria, ii) the so called ΑΒΓ system, a continuous version of the BCS, and iii) the so-called Extended Clearance Classification System (ECCS). ECCS uses clearance concepts (physicochemical properties and membrane permeability) to classify compounds and differentiates from BDDCS by bypassing the measure of solubility (based on the assumption that since it inter-correlates with lipophilicity, it is not directly relevant to clearance mechanisms or elimination).
Collapse
Affiliation(s)
- Aggelos Charalabidis
- Laboratory of Pharmacognosy, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Maria Sfouni
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Christel Bergström
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden
| | - Panos Macheras
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Research Center ATHENA, Athens, Greece; Department of Pharmaceutical Sciences, State University of New York (SUNY), Buffalo, USA.
| |
Collapse
|
22
|
Salim M, Fraser-Miller SJ, Sutton JJ, Be̅rziņš K, Hawley A, Clulow AJ, Beilles S, Gordon KC, Boyd BJ. Application of Low-Frequency Raman Scattering Spectroscopy to Probe in Situ Drug Solubilization in Milk during Digestion. J Phys Chem Lett 2019; 10:2258-2263. [PMID: 31013099 PMCID: PMC6503463 DOI: 10.1021/acs.jpclett.9b00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have recently shown that real-time monitoring of drug solubilization and changes to solid state of the drug during digestion of milk can be achieved using synchrotron small-angle X-ray scattering. A complementary laboratory-based method to explore such changes is low-frequency Raman spectroscopy, which has been increasingly used to characterize crystalline drugs and their polymorphs in powders and suspensions. This study investigates the use of this technique to monitor in situ drug solubilization in milk during the process of digestion, using a lipolysis model/flow-through configuration identical to that used previously for in situ synchrotron small-angle X-ray scattering studies. An antimalarial drug, ferroquine (SSR97193), was used as the model drug for this study. The Raman spectra were processed using multivariate analysis to extract the drug signals from the milk digestion background. The results showed disappearance of the ferroquine peaks in the low-frequency Raman region (<200 cm-1) after approximately 15-20 min of digestion when milk fat was present in the system, which indicated drug solubilization and was in good agreement with the in situ small-angle X-ray scattering measurements. This proof-of-concept study therefore suggests that low-frequency Raman spectroscopy can be used to monitor drug solubilization in a complex digesting milk medium because of the unique vibrational modes of the drug crystal lattices.
Collapse
Affiliation(s)
- Malinda Salim
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sara J. Fraser-Miller
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Joshua J. Sutton
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ka̅rlis Be̅rziņš
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Adrian Hawley
- SAXS/WAXS
Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Andrew J. Clulow
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Stéphane Beilles
- Sanofi, 371, Rue du Pr. Blayac, 34181 Montpellier cedex04, France
| | - Keith C. Gordon
- Dodd-Walls
Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ben J. Boyd
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
- Monash
Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), 381 Royal Parade,
Parkville, VIC 3052, Australia. Tel.: +61 3 99039112. Fax: +61 3 99039583. E-mail:
| |
Collapse
|
23
|
Salim M, Ramirez G, Clulow AJ, Zhang Y, Ristroph KD, Feng J, McManus SA, Hawley A, Prud'homme RK, Boyd BJ. Solid-State Behavior and Solubilization of Flash Nanoprecipitated Clofazimine Particles during the Dispersion and Digestion of Milk-Based Formulations. Mol Pharm 2019; 16:2755-2765. [PMID: 31038976 PMCID: PMC6549212 DOI: 10.1021/acs.molpharmaceut.9b00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Clofazimine, a drug previously used
to treat leprosy, has recently
been identified as a potential new drug for the treatment for cryptosporidiosis:
a diarrheal disease that contributes to 500 000 infant deaths
a year in developing countries. Rapid dissolution and local availability
of the drug in the small intestine is considered key to the treatment
of the infection. However, the commercially available clofazimine
formulation (Lamprene) is not well-suited to pediatric use, and therefore
reformulation of clofazimine is desirable. Development of clofazimine
nanoparticles through the process of flash nanoprecipitation (FNP)
has been previously shown to provide fast and improved drug dissolution
rates compared to clofazimine crystals and Lamprene. In this study,
we investigate the effects of milk-based formulations (as possible
pediatric-friendly vehicles) on the in vitro solubilization of clofazimine
formulated as either lecithin- or zein/casein-stabilized nanoparticles.
Milk and infant formula were used as the lipid vehicles, and time-resolved
synchrotron X-ray scattering was used to monitor the presence of crystalline
clofazimine in suspension during in vitro lipolysis under intestinal
conditions. The study confirmed faster dissolution of clofazimine
from all the FNP formulations after the digestion of infant formula
was initiated, and a reduced quantity of fat was required to achieve
similar levels of drug solubilization compared to the reference drug
material and the commercial formulation. These attributes highlight
not only the potential benefits of the FNP approach to prepare drug
particles but also the fact that enhanced dissolution rates can be
complemented by considering the amount of co-administered fat in lipid-based
formulations to drive the solubilization of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | - Yingyue Zhang
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Kurt D Ristroph
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Jie Feng
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Simon A McManus
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO , 800 Blackburn Rd , Clayton , Victoria 3169 , Australia
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | | |
Collapse
|
24
|
Salim M, Khan J, Ramirez G, Murshed M, Clulow AJ, Hawley A, Ramachandruni H, Beilles S, Boyd BJ. Impact of Ferroquine on the Solubilization of Artefenomel (OZ439) during in Vitro Lipolysis in Milk and Implications for Oral Combination Therapy for Malaria. Mol Pharm 2019; 16:1658-1668. [PMID: 30830789 PMCID: PMC6448114 DOI: 10.1021/acs.molpharmaceut.8b01333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Milk is an attractive lipid-based formulation for the delivery of poorly water-soluble drugs to pediatric populations. We recently observed that solubilization of artefenomel (OZ439) during in vitro intestinal lipolysis was driven by digestion of triglycerides in full-cream bovine milk, reflecting the ability of milk to act as an enabling formulation in the clinic. However, when OZ439 was co-administered with a second antimalarial drug, ferroquine (FQ) the exposure of OZ439 was reduced. The current study therefore aimed to understand the impact of the presence of FQ on the solubilization of OZ439 in milk during in vitro intestinal digestion. Synchrotron small-angle X-ray scattering was used for in situ monitoring of drug solubilization (inferred via decreases in the intensity of drug diffraction peaks) and polymorphic transformations that occurred during the course of digestion. Quantification of the amount of each drug solubilized over time and analysis of their distributions across the separated phases of digested milk were determined using high-performance liquid chromatography. The results show that FQ reduced the solubilization of OZ439 during milk digestion, which may be due to competitive binding of FQ to the digested milk products. Interactions between the protonated FQ-H+ and ionized liberated free fatty acids resulted in the formation of amorphous salts, which removes the low-energy crystalline state as a barrier to dissolution of FQ, while inhibiting the solubilization of OZ439. We conclude that although milk could enhance the solubilization of poorly water-soluble OZ439 during in vitro digestion principally due to the formation of fatty acids, the solubilization efficiency was reduced by the presence of FQ by competition for the available fatty acids. Assessment of the solubilization of both drugs during digestion of fixed-dose combination lipid formulations (such as milk) is important and may rationalize changes in bioavailability when compared to that of the individual drugs in the same formulation.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Jamal Khan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Mubtasim Murshed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline , Australian Synchrotron , ANSTO, 800 Blackburn Road , Clayton , VIC 3169 , Australia
| | - Hanu Ramachandruni
- Medicines for Malaria Venture , 20, Route de Pré-Bois , 1215 Geneva 15 , Switzerland
| | - Stephane Beilles
- Sanofi R&D , 371 Rue du Professeur Blayac , 34080 Montpellier , France
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| |
Collapse
|
25
|
Binte Abu Bakar SY, Salim M, Clulow AJ, Hawley A, Boyd BJ. Revisiting dispersible milk-drug tablets as a solid lipid formulation in the context of digestion. Int J Pharm 2019; 554:179-189. [PMID: 30391337 PMCID: PMC6328708 DOI: 10.1016/j.ijpharm.2018.10.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022]
Abstract
Oral delivery of dispersible tablets is a preferred route of administration for paediatrics due to ease of administration and dose control. Milk has gained interest as a drug delivery system due to its ability to dissolve poorly water-soluble drugs. There are no reports of milk tablet formulations being assessed in the context of lipid digestion, which is critical in influencing orally administered drug solubility and bioavailability. Milk-drug tablets were formulated by blending freeze-dried bovine milk or infant formula with the poorly water-soluble drug cinnarizine, which were directly compressed. Tablet strength, friability and dispersibility were quantified and synchrotron X-ray scattering was used to determine the lipid liquid crystalline phases formed during in vitro digestion of dispersed tablets and their effects on drug solubilisation. Tableting had a significant impact on the self-assembly of lipids in redispersed milk tablets whereas no effect was seen for infant formula tablets. Incorporation of the disintegrant poly(vinylpolypyrrolidone) to reduce tablet dispersion times promoted the formation of hexagonal liquid crystalline phases upon digestion but had minimal effect on drug solubilisation. These findings show that similar to the use of liquid milk, the formulation of milk-drug tablets can be used to improve solubilisation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
26
|
Streck S, Hong L, Boyd BJ, McDowell A. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems. Pharm Nanotechnol 2019; 7:423-443. [PMID: 31629401 DOI: 10.2174/2211738507666191019154815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microfluidics is becoming increasingly of interest as a superior technique for the synthesis of nanoparticles, particularly for their use in nanomedicine. In microfluidics, small volumes of liquid reagents are rapidly mixed in a microchannel in a highly controlled manner to form nanoparticles with tunable and reproducible structure that can be tailored for drug delivery. Both polymer and lipid-based nanoparticles are utilized in nanomedicine and both are amenable to preparation by microfluidic approaches. AIM Therefore, the purpose of this review is to collect the current state of knowledge on the microfluidic preparation of polymeric and lipid nanoparticles for pharmaceutical applications, including descriptions of the main synthesis modalities. Of special interest are the mechanisms involved in nanoparticle formation and the options for surface functionalisation to enhance cellular interactions. CONCLUSION The review will conclude with the identification of key considerations for the production of polymeric and lipid nanoparticles using microfluidic approaches.
Collapse
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| | - Linda Hong
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Arlene McDowell
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| |
Collapse
|