1
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
2
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
3
|
Deng W, Yi C, Pan W, Liu J, Qi J, Chen J, Zhou Z, Duan Y, Ning X, Li J, Ye C, Chen Z, Xu H. Vascular Cell Adhesion Molecule-1 (VCAM-1) contributes to macular fibrosis in neovascular age-related macular degeneration through modulating macrophage functions. Immun Ageing 2023; 20:65. [PMID: 37985993 PMCID: PMC10659061 DOI: 10.1186/s12979-023-00389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD) is a major cause of blindness in the elderly. The disease is due to the growth of abnormal blood vessels into the macula, leading to the loss of central vision. Intravitreal injection of vascular endothelial growth factor (VEGF) inhibitors (e.g., anti-VEGF) is the standard of care for nAMD. However, nearly 50% of patients do not respond or respond poorly to the therapy. More importantly, up to 70% of nAMD patients develop macular fibrosis after 10 years of anti-VEGF therapy. The underlying mechanism of nAMD-mediated macular fibrosis is unknown although inflammation is known to play an important role in the development of abnormal macular blood vessels and its progression to fibro-vascular membrane. In this study, we measured the intraocular levels of adhesion molecule VCAM-1, ICAM-1, CD44, CD62L, and CD62P in nAMD patients with and without macular fibrosis and investigated the link between the levels of adhesion molecule and clinical features (e.g., visual improvement, retinal thickness, etc.). We further investigated the effect of VCAM-1 in macrophage function in vitro and the development of subretinal fibrosis in vivo using a two-stage laser-induced protocol. RESULTS The aqueous levels of ICAM-1, VCAM-1, CD44, and CD62L were significantly higher in nAMD patients compared to cataract controls. The aqueous level of VCAM-1 (but not other adhesion molecules) was significantly higher in patients with macular fibrosis than those without and the level correlated positively with the retinal thickness. VCAM-1 was highly expressed at the lesion site in the mouse model of subretinal fibrosis. Blocking VCAM-1 or its receptor VLA-4 significantly prevented macrophage infiltration and reduced subretinal fibrosis in vivo. VCAM-1 induced macrophage migration and upregulated the expression of Arg-1, Mmp12 and Il6 but down-regulated the expression of iNOS and Il1b in macrophages. CONCLUSIONS VCAM-1 may contribute to the development of macular fibrosis in nAMD patients by modulating macrophage functions, including migration and profibrotic polarization.
Collapse
Affiliation(s)
- Wen Deng
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Caijiao Yi
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Wei Pan
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Jian Liu
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Jinyan Qi
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Juan Chen
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Yiqin Duan
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Jun Li
- Changsha Aier Eye Hospital, Changsha, China
| | - Changhua Ye
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Zhongping Chen
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha, China.
- Aier Institute of Optometry and Vision Science, Changsha, China.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
4
|
Paguaga ME, Penn JS, Uddin MDI. A novel optical imaging probe for targeted visualization of NLRP3 inflammasomes in a mouse model of age-related macular degeneration. Front Med (Lausanne) 2023; 9:1047791. [PMID: 36703888 PMCID: PMC9871584 DOI: 10.3389/fmed.2022.1047791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose Wet form of age-related macular degeneration (wet AMD) is a progressive vascular disease that mainly affects older adults and causes severe and irreversible vision loss. A key complication of wet AMD is choroidal neovascularization (CNV), which may be driven in part by NLRP3 inflammasomes that are associated with macrophages migration to CNV lesions. Since activated NLRP3 is correlated with CNV, visualizing NLRP3 inflammasomes and their associated macrophages is of great interest to monitor wet AMD progression and develop effective therapies against it. However, to the best of our knowledge, current ophthalmic imaging systems do not permit such targeted imaging. Therefore, in this study, we developed InflammaProbe-1, an optical imaging probe for targeted visualization of NLRP3 inflammasomes in CNV lesions. Methods InflammaProbe-1 was synthesized by conjugating a clinically relevant fluorophore, Oregon Green® 488, to the selective NLRP3 inhibitor, CY-09. The ability of InflammaProbe-1 to target NLRP3 was assessed with an enzyme-linked immunosorbent assay by comparing its ability to inhibit NLRP3-mediated secretion of IL-1β to that of CY-09 in LPS-primed and nigericin-stimulated BMDMs. In vitro confocal imaging of NLRP3 was performed on InflammaProbe-1-stained BMDMs that had been induced to express NLRP3 with LPS. In vivo imaging of NLRP3 was conducted on mouse laser induced choroidal neovascularization (LCNV), a model of AMD, 6 h after an intraperitoneal injection of InflammaProbe-1 at 10 mg/kg on day 4 post-LCNV. Results InflammaProbe-1 was just as effective as CY-09 at inhibiting IL-1β secretion (p < 0.01 at 10 μM for both the InflammaProbe-1 and CY-09 groups relative to the control). InflammaProbe-1-stained BMDMs that had been induced to express NLRP3 showed significantly brighter fluorescence than untreated cells (p < 0.0001 for LPS treatment group and p < 0.001 for LPS and nigericin treatment group). Furthermore, in vivo molecular imaging of NLRP3 was achieved in mouse LCNV. Conclusion We propose that InflammaProbe-1 may be a useful molecular imaging probe to monitor the onset, progression, and therapeutic response of AMD and other NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Marcell E. Paguaga
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MD Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States,*Correspondence: MD Imam Uddin,
| |
Collapse
|
5
|
Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnology 2022; 20:496. [DOI: 10.1186/s12951-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractOcular diseases are increasingly influencing people’s quality of life. Complicated inflammatory mechanisms involved in the pathogenic process of ocular diseases make inflammation-targeting treatment a potential therapeutic approach. The limited efficacy of conventional anti-inflammatory therapeutic strategies, caused by various objective factors, such as complex ocular biological barriers, and subjective factors, such as poor compliance, are promoting the development of new therapeutic methods. With the advantages of considerable tissue permeability, a controllable drug release rate, and selective tissue targeting ability, nanoparticles have successfully captured researchers’ attention and have become a research hotspot in treating ocular diseases. This review will focus on the advantages of nanosystems over traditional therapy, the anti-inflammation mechanisms of nanoparticles, and the anti-inflammatory applications of nanoparticles in different ocular diseases (ocular surface diseases, vitreoretinopathy, uveal diseases, glaucoma, and visual pathway diseases). Furthermore, by analyzing the current situation of nanotherapy and the challenges encountered, we hope to inspire new ideas and incentives for designing nanoparticles more consistent with human physiological characteristics to make progress based on conventional treatments. Overall, some progress has been made in nanoparticles for the treatment of ocular diseases, and nanoparticles have rather broad future clinical translation prospects.
Collapse
|
6
|
|
7
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
8
|
Ko WC, Wang SJ, Hsiao CY, Hung CT, Hsu YJ, Chang DC, Hung CF. Pharmacological Role of Functionalized Gold Nanoparticles in Disease Applications. Molecules 2022; 27:1551. [PMID: 35268651 PMCID: PMC8911979 DOI: 10.3390/molecules27051551] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Gold has always been regarded as a symbol of nobility, and its shiny golden appearance has always attracted the attention of many people. Gold has good ductility, molecular recognition properties, and good biocompatibility. At present, gold is being used in many fields. When gold particles are as small as several nanometers, their physical and chemical properties vary with their size in nanometers. The surface area of a nano-sized gold surface has a special effect. Therefore, gold nanoparticles can, directly and indirectly, give rise to different biological activities. For example, if the surface of the gold is sulfided. Various substances have a strong chemical reactivity and are easy to combine with sulfhydryl groups; hence, nanogold is often used in biomedical testing, disease diagnosis, and gene detection. Nanogold is easy to bind to proteins, such as antibodies, enzymes, or cytokines. In fact, scientists use nanogold to bind special antibodies, as a tool for targeting cancer cells. Gold nanoparticles are also directly cytotoxic to cancer cells. For diseases caused by inflammation and oxidative damage, gold nanoparticles also have antioxidant and anti-inflammatory effects. Based on these unique properties, gold nanoparticles have become the most widely studied metal nanomaterials. Many recent studies have further demonstrated that gold nanoparticles are beneficial for humans, due to their functional pharmacological properties in a variety of diseases. The content of this review will be the application of gold nanoparticles in treating or diagnosing pressing diseases, such as cancers, retinopathy, neurological diseases, skin disorders, bowel diseases, bone cartilage disorders, cardiovascular diseases, infections, and metabolic syndrome. Gold nanoparticles have shown very obvious therapeutic and application potential.
Collapse
Affiliation(s)
- Wen-Chin Ko
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
- Division of Cardiac Electrophysiology, Department of Cardiovascular Center, Cathay General Hospital, Taipei 10630, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology, Taoyuan 33303, Taiwan;
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Chen-Ting Hung
- Graduate Institute and Department of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan;
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Ren H, Song L, Zhang W, Xu L. Synthesis, Stability, and Anti-Tumour Activity of a New Category of "Stapled" Antisense Oligonucleotides with Stimuli-Responsive Feature. J Pharm Sci 2021; 110:3166-3170. [PMID: 34102202 DOI: 10.1016/j.xphs.2021.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The development of nucleic acid drugs with unique structures and mechanisms has stimulated great research interest. Herein, we report a general strategy to construct "stapled" structures of single-stranded antisense oligonucleotides (ASONs) with a stimuli-responsive feature. "Stapled" cyclic structures can be synthesized with reactive bifunctional handles that react with thiol groups of phosphorothioate (PS)-modified ASONs, and can be alternatively adjusted depending on the desired PS sites in the ASON strand. The disulphide group in the stapled handle can be cleaved in the reducing microenvironment of tumour cells. Thus, "stapled" ASONs may be transformed back to a linear conformation to facilitate binding to target mRNAs. Stapling conferred protection against degradation, and enhanced anti-tumour activity compared to linear counterparts. This study provides a new, effective, and convenient strategy for designing ASONs with "stapled" structures, and also adds a further contribution to facilitate the stability and biological efficacy of novel nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Liya Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
10
|
Mukaida A, Adachi R, Akiyama Y, Kamimura M. Facile Preparation of a Hairpin DNA-Gold Nanoparticle Monoconjugate with a Single-Dye Molecule and Lactobionic Acid as Targeting Ligand. ANAL SCI 2021; 37:785-788. [PMID: 33678725 DOI: 10.2116/analsci.20scn07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We established a new design for a single molecular beacon-conjugated gold nanoparticle, named monoMB-GNP, which showed enhanced fluorescence emission only in the presence of the complementary DNA sequence. MonoMB-GNP also showed no apparent toxicity to NIH/3T3 cells at 1 nM, as determined by the water-soluble tetrazolium assay. Importantly, the lactobionic acid was successfully modified on the surface of monoMB-GNP. The proposed nanoparticle has prospects for use in several applications for targetable molecular beacon strategies.
Collapse
Affiliation(s)
- Akane Mukaida
- Department of Materials Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| | - Rihito Adachi
- Department of Materials Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| | - Yoshitsugu Akiyama
- Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Masao Kamimura
- Department of Materials Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| |
Collapse
|
11
|
Uddin MI, Kilburn TC, Duvall CL, Penn JS. Visualizing HIF-1α mRNA in a Subpopulation of Bone Marrow-Derived Cells to Predict Retinal Neovascularization. ACS Chem Biol 2020; 15:3004-3012. [PMID: 33080135 DOI: 10.1021/acschembio.0c00662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone marrow-derived progenitor cells and macrophages are known to migrate into the retina in response to inflammation and neovascularization. These migratory cells might play important regulatory roles in the pathogenesis of neovascularization, a common complication observed in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. Hypoxia-inducible factor 1α (HIF-1α) has been shown to contribute to the pathogenesis of retinal inflammation and neovascularization. However, contributions of monocyte-derived macrophages to neovascularization are largely unknown. We hypothesized that selective visualization of these microglia/macrophages could be a powerful method for predicting the onset of neovascularization and its progression at the molecular level. In this report, we describe the synthesis of a new hybrid nanoparticle to visualize HIF-1α mRNA selectively in microglia/macrophages in a mouse model of neovascularization. HIF-1α expression was confirmed in MRC-1 positive monocytes/macrophages as well as in CD4 positive T-cells and CD19 positive B-cells using single-cell RNA sequencing data analysis. The imaging probes (AS- or NS-shRNA-lipid) were synthesized by conjugating diacyl-lipids to short hairpin RNA with an antisense sequence complementary to HIF-1α mRNA and a fluorophore that is quenched by a black hole quencher. We believe that imaging mRNA selectively in tissue specific microglia/macrophages could be a powerful method for predicting the onset of neovascularization, its progression, and its response to therapy.
Collapse
Affiliation(s)
- Md. Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Tyler C. Kilburn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, United States
| |
Collapse
|
12
|
Wang Z, Dong J, Zhao Q, Ying Y, Zhang L, Zou J, Zhao S, Wang J, Zhao Y, Jiang S. Gold nanoparticle‑mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review). Mol Med Rep 2020; 22:4475-4484. [PMID: 33173972 PMCID: PMC7646735 DOI: 10.3892/mmr.2020.11580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel is a potent antineoplastic agent, but poor solubility and resistance have limited its use. Gold nanoparticles (AuNPs) are widely studied as drug carriers because they can be engineered to prevent drug insolubility, carry nucleic acid payloads for gene therapy, target specific tumor cell lines, modulate drug release and amplify photothermal therapy. Consequently, the conjugation of paclitaxel with AuNPs to improve antiproliferative and pro‑apoptotic potency may enable improved clinical outcomes. There are currently a number of different AuNPs under development, including simple drug or nucleic acid carriers and targeted AuNPs that are designed to deliver therapeutic payloads to specific cells. The current study reviewed previous research on AuNPs and the development of AuNP‑based paclitaxel delivery.
Collapse
Affiliation(s)
- Zhiguang Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jianyu Dong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiaojiajie Zhao
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Lijie Zhang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Junrong Zou
- Institute of Urology, The First Affiliated Hospital of Gan'nan Medical University, Ganzhou, Jiangxi 341001, P.R. China
| | - Shuqi Zhao
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jiuju Wang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Yuan Zhao
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|