1
|
Saccullo E, Patamia V, Tomarchio EG, Zagni C, Floresta G, Rescifina A. Unveiling the chemistry of antibody conjugation for enhanced PET imaging: Current trends and future directions. Bioorg Chem 2025; 155:108115. [PMID: 39756200 DOI: 10.1016/j.bioorg.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Positron Emission Tomography (PET) has emerged as a powerful imaging technique in molecular medicine, enabling the non-invasive visualisation and quantification of biological processes at the molecular level. Antibody-based PET imaging has recently gained prominence, offering specific targeting capabilities for various diseases. This scientific article delves into the intricate chemistry underlying antibody conjugation strategies for PET, providing a comprehensive understanding of the key principles and advancements in this rapidly evolving field. The article begins with a detailed exploration of various antibody conjugation methodologies, encompassing both covalent and non-covalent approaches. The chemical intricacies of bioconjugation reactions, such as amine and thiol chemistry, click chemistry, and bioorthogonal chemistry, are thoroughly discussed in the context of antibody modification. Additionally, the article critically analyses recent advancements in radiolabeling strategies for PET, including using radionuclides with favourable decay characteristics. This discussion covers both traditional radioisotopes and emerging alternatives, demonstrating their potential to raise the effectiveness of PET imaging agents based on antibodies. Ultimately, this article aims to contribute to the ongoing efforts to advance the field toward more effective diagnostic tools for personalized medicine.
Collapse
Affiliation(s)
- Erika Saccullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Elisabetta Grazia Tomarchio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Toàn NM. Novel Molecular Classification of Breast Cancer with PET Imaging. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2099. [PMID: 39768978 PMCID: PMC11678748 DOI: 10.3390/medicina60122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer.
Collapse
Affiliation(s)
- Ngô Minh Toàn
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
4
|
Dillemuth P, Lövdahl P, Karskela T, Ayo A, Ponkamo J, Liljenbäck H, Paunonen S, Kunnas J, Rajander J, Tynninen O, Rosenholm JM, Roivainen A, Laakkonen P, Airaksinen AJ, Li XG. Switching the Chemoselectivity in the Preparation of [ 18F]FNA- N-CooP, a Free Thiol-Containing Peptide for Targeted Positron Emission Tomography Imaging of Fatty Acid Binding Protein 3. Mol Pharm 2024; 21:4147-4156. [PMID: 39008899 DOI: 10.1021/acs.molpharmaceut.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Fatty acid binding protein 3 (FABP3) is expressed both in tumor cells and in the tumor vasculature, making it a potential target for medical imaging and therapy. In this study, we aimed to radiolabel a CooP peptide with a free amino and thiol group, and evaluate the radiolabeled product [18F]FNA-N-CooP for imaging FABP3 expression in breast cancer brain metastases by positron emission tomography. [18F]FNA-N-CooP was prepared by highly chemoselective N-acylation and characterized using different chemical approaches. We validated its binding to the target using in vitro tissue section autoradiography and performed stability tests in vitro and in vivo. [18F]FNA-N-CooP was successfully synthesized in 16.8% decay-corrected radiochemical yield with high radiochemical purity (98.5%). It exhibited heterogeneous binding on brain metastasis tissue sections from a patient with breast cancer, with foci of radioactivity binding corresponding to FABP3 positivity. Furthermore, the tracer binding was reduced by 55% in the presence of nonradioactive FNA-N-CooP a blocker, indicating specific tracer binding and that FABP3 is a viable target for [18F]FNA-N-CooP. Favorably, the tracer did not bind to necrotic tumor tissue. However, [18F]FNA-N-CooP displayed limited stability both in vitro in mouse plasma or human serum and in vivo in mouse, therefore further studies are needed to improve the stability [18F]FNA-N-CooP to be used for in vivo applications.
Collapse
Affiliation(s)
- Pyry Dillemuth
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Petter Lövdahl
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, Turku FI-20520, Finland
| | - Tuomas Karskela
- Turku Centre for Chemical and Molecular Analytics, Åbo Akademi University and University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
| | - Jesse Ponkamo
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
| | - Sami Paunonen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jonne Kunnas
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, Turku FI-20520, Finland
| | - Johan Rajander
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Accelerator Laboratory, Åbo Akademi University, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, Turku FI-20520, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- InFLAMES Research Flagship, University of Turku, Tykistökatu 6, Turku FI-20520, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
- Laboratory Animal Centre, HiLIFE University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
- iCAN Flagship Program, University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
| | - Anu J Airaksinen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
- InFLAMES Research Flagship, University of Turku, Tykistökatu 6, Turku FI-20520, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
| |
Collapse
|
5
|
Tian R, Kong J, He Y, Xu G, Chen T, Han J. Radiosynthesis and preclinical evaluations of [ 18F]AlF-RESCA-5F7 as a novel molecular probe for HER2 tumor imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:175-181. [PMID: 39027646 PMCID: PMC11253080 DOI: 10.62347/bvpk1360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
HER2 overexpression is associated with various tumor types and prompted the development of targeted therapies. Previously, iso-[211At]SGMAB-5F7 was developed as a HER2-targeted alpha therapy agent, demonstrating promising therapeutic efficacy in the preclinical stage. Aiming for an 18F-labeled tracer for companion diagnostics in clinical translation, we employed the Al18F-RESCA strategy in our current work and investigated whether [18F]AlF-RESCA-5F7 could visualize HER2 expression in vivo. [18F]AlF-RESCA-5F7 was attained with high radiochemical purity (> 99%) and molar activity in the range of 16.5 ± 8.8 GBq/μmol (n = 8). Compared to previously reported radiotracers that contained 5F7 as the HER2-targeting carrier and fluorine-18 as the positron-emitting isotope, the radiosynthesis was simplified to one single step within 30 min. The dissociation constant of [18F]AlF-RESCA-5F7 was determined as 3.3 nM via saturation binding assay using SKOV3 ovarian carcinoma cells. Tumor uptake of the novel tracer in Balb/c nude mice bearing SKOV3 xenografts was 4.69 ± 1.51, 3.34 ± 0.82 and 3.77 ± 0.99 %ID/g at 1, 2, and 4 h post-injection. Even though high retention of radioactivity was seen in the kidneys, micro-PET/CT imaging of [18F]AlF-RESCA-5F7 delineated the tumor up to 4 h post-injection with minimal activity in the gallbladder, intestines, and bone. This study suggests that [18F]AlF-RESCA-5F7 is a promising HER2 PET radiotracer with an eased radiolabeling method. Whether [18F]AlF-RESCA-5F7 could work as a companion diagnostic agent to assist in patient stratification and treatment monitoring of iso-[211At]SGMAB-5F7 warrants further investigation.
Collapse
Affiliation(s)
- Ruhua Tian
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Jinping Kong
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Yingfang He
- Institute of Radiation Medicine, Fudan UniversityNo. 2094 Xietu Road, Shanghai 200032, China
| | - Guoqiang Xu
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Junbin Han
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
- Institute of Radiation Medicine, Fudan UniversityNo. 2094 Xietu Road, Shanghai 200032, China
| |
Collapse
|
6
|
Dillemuth P, Karskela T, Ayo A, Ponkamo J, Kunnas J, Rajander J, Tynninen O, Roivainen A, Laakkonen P, Airaksinen AJ, Li XG. Radiosynthesis, structural identification and in vitro tissue binding study of [ 18F]FNA-S-ACooP, a novel radiopeptide for targeted PET imaging of fatty acid binding protein 3. EJNMMI Radiopharm Chem 2024; 9:16. [PMID: 38393497 PMCID: PMC10891031 DOI: 10.1186/s41181-024-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Fatty acid binding protein 3 (FABP3) is a target with clinical relevance and the peptide ligand ACooP has been identified for FABP3 targeting. ACooP is a linear decapeptide containing a free amino and thiol group, which provides opportunities for conjugation. This work is to develop methods for radiolabeling of ACooP with fluorine-18 (18F) for positron emission tomography (PET) applications, and evaluate the binding of the radiolabeled ACooP in human tumor tissue sections with high FABP3 expression. RESULTS The prosthetic compound 6-[18F]fluoronicotinic acid 4-nitrophenyl ester was conveniently prepared with an on-resin 18F-fluorination in 29.9% radiochemical yield and 96.6% radiochemical purity. Interestingly, 6-[18F]fluoronicotinic acid 4-nitrophenyl ester conjugated to ACooP exclusively by S-acylation instead of the expected N-acylation, and the chemical identity of the product [18F]FNA-S-ACooP was confirmed. In the in vitro binding experiments, [18F]FNA-S-ACooP exhibited heterogeneous and high focal binding in malignant tissue sections, where we also observed abundant FABP3 positivity by immunofluorescence staining. Blocking study further confirmed the [18F]FNA-S-ACooP binding specificity. CONCLUSIONS FABP3 targeted ACooP peptide was successfully radiolabeled by S-acylation using 6-[18F]fluoronicotinic acid 4-nitrophenyl ester as the prosthetic compound. The tissue binding and blocking studies together with anti-FABP3 immunostaining confirmed [18F]FNA-S-ACooP binding specificity. Further preclinical studies of [18F]FNA-S-ACooP are warranted.
Collapse
Affiliation(s)
- Pyry Dillemuth
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Tuomas Karskela
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jesse Ponkamo
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Jonne Kunnas
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, HiLIFE University of Helsinki, Helsinki, Finland
- iCAN Flagship Program, University of Helsinki, Helsinki, Finland
| | - Anu J Airaksinen
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland.
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
8
|
Hurley K, Cao M, Huang H, Wang Y. Targeted Alpha Therapy (TAT) with Single-Domain Antibodies (Nanobodies). Cancers (Basel) 2023; 15:3493. [PMID: 37444603 DOI: 10.3390/cancers15133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The persistent threat of cancer necessitates the development of improved and more efficient therapeutic strategies that limit damage to healthy tissues. Targeted alpha therapy (TαT), a novel form of radioimmuno-therapy (RIT), utilizes a targeting vehicle, commonly antibodies, to deliver high-energy, but short-range, alpha-emitting particles specifically to cancer cells, thereby reducing toxicity to surrounding normal tissues. Although full-length antibodies are often employed as targeting vehicles for TαT, their high molecular weight and the presence of an Fc-region lead to a long blood half-life, increased bone marrow toxicity, and accumulation in other tissues such as the kidney, liver, and spleen. The discovery of single-domain antibodies (sdAbs), or nanobodies, naturally occurring in camelids and sharks, has introduced a novel antigen-specific vehicle for molecular imaging and TαT. Given that nanobodies are the smallest naturally occurring antigen-binding fragments, they exhibit shorter relative blood half-lives, enhanced tumor uptake, and equivalent or superior binding affinity and specificity. Nanobody technology could provide a viable solution for the off-target toxicity observed with full-length antibody-based TαT. Notably, the pharmacokinetic properties of nanobodies align better with the decay characteristics of many short-lived α-emitting radionuclides. This review aims to encapsulate recent advancements in the use of nanobodies as a vehicle for TαT.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Meiyun Cao
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Haiming Huang
- Research Center, Forlong Biotechnology Inc., Suzhou 215004, China
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
9
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
10
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
11
|
Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today 2022; 27:1622-1638. [PMID: 35331925 DOI: 10.1016/j.drudis.2022.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
In recent years, nanobodies have emerged as ideal imaging agents for molecular imaging. Molecular nanobody imaging combines the specificity of nanobodies with the sensitivity of state-of-the-art molecular imaging modalities, such as positron emission tomography (PET). Given that modifications of nanobodies alter their pharmacokinetics (PK), the engineering strategies that combine nanobodies with radionuclides determine the effectiveness, reliability, and safety of the molecular imaging probes. In this review, we introduce conjugation strategies that have been applied to nanobodies, including random conjugation, 99mTc tricarbonyl chemistry, sortase A-mediated site-specific conjugation, maleimide-cysteine chemistry, and click chemistries. We also summarize the latest advances in nanobody tracers, emphasizing their preclinical and clinical use. In addition, we elaborate on nanobody-based near-infrared fluorescence (NIRF) imaging and image-guided surgery.
Collapse
Affiliation(s)
- Erpeng Yang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
12
|
Feng Y, Meshaw R, McDougald D, Zhou Z, Zhao XG, Jannetti SA, Reiman RE, Pippen E, Marjoram R, Schaal JL, Vaidyanathan G, Zalutsky MR. Evaluation of an 131I-labeled HER2-specific single domain antibody fragment for the radiopharmaceutical therapy of HER2-expressing cancers. Sci Rep 2022; 12:3020. [PMID: 35194100 PMCID: PMC8864007 DOI: 10.1038/s41598-022-07006-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC, USA.,Cereius Inc, Durham, NC, USA
| | - Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Xiao-Guang Zhao
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Stephen A Jannetti
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Robert E Reiman
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Zhou Z, Meshaw R, Zalutsky MR, Vaidyanathan G. Site-Specific and Residualizing Linker for 18F Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med 2021; 62:1624-1630. [PMID: 33637584 PMCID: PMC8612331 DOI: 10.2967/jnumed.120.261446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Single-domain antibody fragments (sdAbs) are promising vectors for immuno-PET; however, better methods for labeling sdAbs with 18F are needed. Herein, we evaluate a site-specific strategy using an 18F residualizing motif and the anti-epidermal growth factor receptor 2 (HER2) sdAb 5F7 bearing an engineered C-terminal GGC tail (5F7GGC). Methods: 5F7GGC was site-specifically attached with a tetrazine-bearing agent via thiol-maleimide reaction. The resultant conjugate was labeled with 18F by inverse electron demand Diels-Alder cycloaddition with a trans-cyclooctene attached to 6-18F-fluoronicotinoyl moiety via a renal brush border enzyme-cleavable linker and a PEG4 chain (18F-5F7GGC). For comparisons, 5F7 sdAb was labeled using the prototypical residualizing agent, N-succinimidyl 3-(guanidinomethyl)-5-125I-iodobenzoate (iso-125I-SGMIB). The 2 labeled sdAbs were compared in paired-label studies performed in the HER2-expressing BT474M1 breast carcinoma cell line and athymic mice bearing BT474M1 subcutaneous xenografts. Small-animal PET/CT imaging after administration of 18F-5F7GGC in the above mouse model was also performed. Results:18F-5F7GGC was synthesized in an overall radiochemical yield of 8.9% ± 3.2% with retention of HER2 binding affinity and immunoreactivity. The total cell-associated and intracellular activity for 18F-5F7GGC was similar to that for coincubated iso-125I-SGMIB-5F7. Likewise, the uptake of 18F-5F7GGC in BT474M1 xenografts in mice was similar to that for iso-125I-SGMIB-5F7; however, 18F-5F7GGC exhibited significantly more rapid clearance from the kidney. Small-animal PET/CT imaging confirmed high uptake and retention in the tumor with very little background activity at 3 h except in the bladder. Conclusion: This site-specific and residualizing 18F-labeling strategy could facilitate clinical translation of 5F7 anti-HER2 sdAb as well as other sdAbs for immuno-PET.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
14
|
Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021; 26:molecules26216482. [PMID: 34770887 PMCID: PMC8588233 DOI: 10.3390/molecules26216482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.
Collapse
|
15
|
Hrynchak I, Santos L, Falcão A, Gomes CM, Abrunhosa AJ. Nanobody-Based Theranostic Agents for HER2-Positive Breast Cancer: Radiolabeling Strategies. Int J Mol Sci 2021; 22:ijms221910745. [PMID: 34639086 PMCID: PMC8509594 DOI: 10.3390/ijms221910745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
The overexpression of human epidermal growth factor 2 (HER2) in breast cancer (BC) has been associated with a more aggressive tumor subtype, poorer prognosis and shorter overall survival. In this context, the development of HER2-targeted radiotracers is crucial to provide a non-invasive assessment of HER2 expression to select patients for HER2-targeted therapies, monitor response and identify those who become resistant. Antibodies represent ideal candidates for this purpose, as they provide high contrast images for diagnosis and low toxicity in the therapeutic setting. Of those, nanobodies (Nb) are of particular interest considering their favorable kinetics, crossing of relevant biological membranes and intratumoral distribution. The purpose of this review is to highlight the unique characteristics and advantages of Nb-based radiotracers in BC imaging and therapy. Additionally, radiolabeling methods for Nb including direct labeling, indirect labeling via prosthetic group and indirect labeling via complexation will be discussed, reporting advantages and drawbacks. Furthermore, the preclinical to clinical translation of radiolabeled Nbs as promising theranostic agents will be reported.
Collapse
Affiliation(s)
- Ivanna Hrynchak
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Liliana Santos
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Amílcar Falcão
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Célia M. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Antero J. Abrunhosa
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence:
| |
Collapse
|
16
|
Zhou Z, McDougald D, Meshaw R, Balyasnikova I, Zalutsky MR, Vaidyanathan G. Labeling single domain antibody fragments with 18F using a novel residualizing prosthetic agent - N-succinimidyl 3-(1-(2-(2-(2-(2-[ 18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate. Nucl Med Biol 2021; 100-101:24-35. [PMID: 34146837 PMCID: PMC8448961 DOI: 10.1016/j.nucmedbio.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Labeling single domain antibody fragments (sdAbs) with 18F is an attractive strategy for immunoPET. Earlier, we developed a residualizing label, N-succinimidyl 3-((4-(4-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]RL-I), synthesized via a click reaction for labeling sdAbs with 18F, that has attractive features but suffered from modest radiochemical yields and suboptimal hydrophobicity. Herein, we have evaluated the potential utility of an analogous agent, N-succinimidyl 3-(1-(2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate ([18F]SFETGMB; [18F]RL-III) designed to address these limitations. METHODS [18F]RL-III was synthesized by the click reaction between 3-((2,3-bis(tert-butoxycarbonyl)guanidino)methyl)-5-ethynylbenzoate and 1-azido-2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethane and subsequent deprotection. The anti-HER2 sdAbs 5F7 and 2Rs15d were labeled by conjugation with [18F]RL-III and compared in a paired-label fashion to the sdAbs labeled using N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) or N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB). The 18F-labeled sdAbs were evaluated in vitro using HER2-expressing breast and ovarian carcinoma cells (BT474/BT474M1 and SKOV-3) and in vivo in athymic mice bearing subcutaneous SKOV-3 or BT474 xenografts. PET imaging of athymic mice bearing either subcutaneous BT474 or intracranial BT474M1Br-Fluc xenografts after administration of [18F]RL-III-5F7 also was performed. RESULTS Radiochemical yields for the synthesis of Boc2-[18F]RL-III (21.5 ± 3.4%) were significantly higher than reported for Boc2-[18F]RL-I. The overall radiochemical yields for the synthesis of [18F]RL-III-2Rs15d and [18F]RL-III-5F7 from aqueous [18F]fluoride were 1.7 ± 0.7% and 3.8 ± 2.3%, respectively. Both sdAbs, labeled using [18F]RL-III, retained affinity and immunoreactivity to HER2. Uptake and internalization of [18F]RL-III-5F7 in HER2-expressing cells was higher than that seen for [18F]RL-III-2Rs15d. Although different xenograft models were used, [18F]RL-III-2Rs15d showed relatively high uptake in a number of normal tissues, while uptake of [18F]RL-III-5F7 was mainly in tumor and kidneys with minimal background activity. Concordant with the necropsy experiments, microPET imaging with [18F]RL-III-5F7 in the BT474 subcutaneous model demonstrated clear delineation of the tumor (12.2 ± 5.1% ID/g) with minimal background activity except in kidneys. A tumor uptake (max) of 0.98%ID/g and a tumor-to-normal brain ratio of 9.8:1 were observed for [18F]RL-III-5F7 in the intracranial model. CONCLUSIONS Although higher radiochemical yields than that reported for [18F]RL-I were obtained, considerable improvements are needed for this method to be of practical utility. Despite clear tumor delineation with [18F]RL-III-5F7 as early as 1 h, high activity levels in the kidneys remain a concern.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Irina Balyasnikova
- The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
17
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
18
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Piramoon M, Khodadust F, Hosseinimehr SJ. Radiolabeled nanobodies for tumor targeting: From bioengineering to imaging and therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188529. [PMID: 33647388 DOI: 10.1016/j.bbcan.2021.188529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
So far, numerous molecules and biomolecules have been evaluated for tumor targeting purposes for radionuclide-based imaging and therapy modalities. Due to the high affinity and specificity against tumor antigens, monoclonal antibodies are appropriate candidates for tumor targeting. However, their large size prevents their comprehensive application in radionuclide-based tumor imaging or therapy, since it leads to their low tumor penetration, low blood clearance, and thus inappropriate tumor-to-background ratio. Nowadays, the variable domain of heavy-chain antibodies from the Camelidae family, known as nanobodies (Nbs), turn into exciting candidates for medical research. Considering several innate advantages of these new tumor-targeting agents, including excellent affinity and specificity toward antigen, high solubility, high stability, fast washout from blood, convenient production, ease of selection, and low immunogenicity, it assumes that they may overcome generic problems of monoclonal antibodies, their fragments, and other vectors used for tumor imaging/therapy. After three decades of Nbs discovery, the increasing number of their preclinical and clinical investigations, which have led to outstanding results, confirm their application for tumor targeting purposes. This review describes Nbs characteristics, the diagnostic and therapeutic application of their radioconjugates, and their recent advances.
Collapse
Affiliation(s)
- Majid Piramoon
- Department of Medicinal Chemistry and Radiopharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
20
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Feng Y, Zhou Z, McDougald D, Meshaw RL, Vaidyanathan G, Zalutsky MR. Site-specific radioiodination of an anti-HER2 single domain antibody fragment with a residualizing prosthetic agent. Nucl Med Biol 2021; 92:171-183. [PMID: 32448731 PMCID: PMC7657985 DOI: 10.1016/j.nucmedbio.2020.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION As a consequence of their small size, high stability and high affinity, single domain antibody fragments (sdAbs) are appealing targeting vectors for radiopharmaceutical development. With sdAbs binding to internalizing receptors like HER2, residualizing prosthetic agents can enhance tumor retention of radioiodine, which until now has been done with random labeling approaches. Herein we evaluate a site-specific strategy utilizing a radioiodinated, residualizing maleimido moiety and the anti-HER2 sdAb 5F7 bearing a GGC tail for conjugation. METHODS Maleimidoethyl 3-(guanidinomethyl)-5-iodobenzoate ([131I]MEGMB) and its N-succinimidyl ester analogue, iso-[125I]SGMIB, were labeled by halodestannylation and conjugated with 5F7GGC and 5F7, respectively. Radiochemical purity, immunoreactivity and binding affinity were determined. Paired-label experiments directly compared iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC with regard to internalization/residualization and affinity on HER2-expressing SKOV-3 ovarian carcinoma cells as well as biodistribution and metabolite distribution in athymic mice with subcutaneous SKOV-3 xenografts. RESULTS [131I]MEGMIB-5F7GGC had an immunoreactivity of 81.3% and Kd = 0.94 ± 0.27 nM. Internalization assays demonstrated high intracellular trapping for both conjugates, For example, at 1 h, intracellular retention was 50.30 ± 3.36% for [131I]MEGMIB-5F7GGC and 55.95 ± 3.27% for iso-[125I]SGMIB-5F7, while higher retention was seen for iso-[125I]SGMIB-5F7 at later time points. Peak tumor uptake was similar for both conjugates (8.35 ± 2.66%ID/g and 8.43 ± 2.84%ID/g for iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC at 1 h, respectively); however, more rapid normal tissue clearance was seen for [131I]MEGMIB-5F7GGC, with a 2-fold higher tumor-to-kidney ratio and a 3-fold higher tumor-to-liver ratio compared with co-injected iso-[125I]SGMIB-5F7. Consisted with this, generation of labeled catabolites in the kidneys was higher for [131I]MEGMIB-5F7GGC. CONCLUSION [131I]MEGMIB-5F7GGC offers similar tumor targeting as iso-[125I]SGMIB-5F7 but with generally lower normal tissue uptake. ADVANCES IN KNOWLEDGE AND IMPLICATION FOR PATIENT CARE The site specific nature of the [131I]MEGMIB reagent may facilitate clinical translation, particularly for sdAb with compromised affinity after random labeling.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca L Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Zhou Z, Zalutsky MR, Vaidyanathan G. Labeling a TCO-functionalized single domain antibody fragment with 18F via inverse electron demand Diels Alder cycloaddition using a fluoronicotinyl moiety-bearing tetrazine derivative. Bioorg Med Chem 2020; 28:115634. [PMID: 32773089 DOI: 10.1016/j.bmc.2020.115634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Single domain antibody fragments (sdAbs) exhibit a rapid tumor uptake and fast blood clearance amenable for labeling with 18F (t½ = 110 min) but suffer from high kidney accumulation. Previously, we developed a method for 18F-labeling of sdAbs via trans-cyclooctene (TCO)-tetrazine (Tz) inverse electron demand Diel's Alder cycloaddition reaction (IEDDAR) that incorporated a renal brush border enzyme (RBBE)-cleavable linker. Although >15 fold reduction in kidney activity levels was achieved, tumor uptake was compromised. Here we investigate whether replacing the [18F]AlF-NOTA moiety with [18F]fluoronicotinyl would rectify this problem. Anti-HER2 sdAb 5F7 was first derivatized with a TCO-containing agent that included the RBBE-cleavable linker GlyLys (GK) and a PEG chain, and then subjected to IEDDAR with 6-[18F]fluoronicotinyl-PEG4-methyltetrazine to provide [18F]FN-PEG4-Tz-TCO-GK-PEG4-5F7 ([18F]FN-GK-5F7). For comparisons, a control lacking GK linker and 5F7 labeled using residualizing N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB) also were synthesized. Radiochemical purity, affinity (KD) and immunoreactive fraction of [18F]FN-GK-5F7 were 99%, 5.4 ± 0.7 nM and 72.5 ± 4.3%, respectively. Tumor uptake of [18F]FN-GK-5F7 in athymic mice bearing subcutaneous SKOV3 xenografts (3.7 ± 1.2% ID/g and 3.4 ± 1.0% ID/g at 1 h and 3 h, respectively) was 2- to 3-fold lower than for co-injected iso-[125I]SGMIB-5F7 (6.9 ± 1.9 %ID/g and 8.7 ± 3.0 %ID/g). However, due to its 6-fold lower kidney activity levels, tumor-to-kidney ratios for [18F]FN-GK-5F7 were 3-4 times higher than those for co-injected iso-[125I]SGMIB-5F7 as well as those observed for the 18F conjugate lacking the RBBE-cleavable linker. Micro-PET/CT imaging of [18F]FN-GK-5F7 in mice with SKOV-3 subcutaneous xenografts clearly delineated tumor as early as 1 h with minimal activity in the kidneys; however, there was considerable activity in gallbladder and intestines. Although the tumor uptake of [18F]FN-GK-5F7 was unexpectedly disappointing, incorporating an alternative RBBE-cleavable linker into this labeling strategy may ameliorate this problem.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
23
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
24
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
25
|
Zhao X, Ning Q, Mo Z, Tang S. A promising cancer diagnosis and treatment strategy: targeted cancer therapy and imaging based on antibody fragment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3621-3630. [PMID: 31468992 DOI: 10.1080/21691401.2019.1657875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the arrival of the precision medicine and personalized treatment era, targeted therapy that improves efficacy and reduces side effects has become the mainstream approach of cancer treatment. Antibody fragments that further enhance penetration and retain the most critical antigen-specific binding functions are considered the focus of research targeting cancer imaging and therapy. Thanks to the superior penetration and rapid blood clearance of antibody fragments, antibody fragment-based imaging agents enable efficient and sensitive imaging of tumour sites. In tumour-targeted therapy, antibody fragments can directly inhibit tumour proliferation and growth, serve as an ideal carrier for delivery of anti-tumour drugs, or manipulate the immune system to eliminate tumour cells. In this review, the excellent physicochemical properties and the basic structure of antibody fragments are expressly depicted depicted, the progress of antibody fragments in cancer therapy and imaging are thoroughly summarized, and the future development of antibody fragments is predicted.
Collapse
Affiliation(s)
- Xuhong Zhao
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China , Hengyang , China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| |
Collapse
|
26
|
Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019; 8:E12. [PMID: 31544818 PMCID: PMC6640687 DOI: 10.3390/antib8010012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging is paving the way towards noninvasive detection, staging, and treatment follow-up of diseases such as cancer and inflammation-related conditions. Monoclonal antibodies have long been one of the staples of molecular imaging tracer design, although their long blood circulation and high nonspecific background limits their applicability. Nanobodies, unique antibody-binding fragments derived from camelid heavy-chain antibodies, have excellent properties for molecular imaging as they are able to specifically find their target early after injection, with little to no nonspecific background. Nanobody-based tracers using either nuclear or fluorescent labels have been heavily investigated preclinically and are currently making their way into the clinic. In this review, we will discuss different important factors in nanobody-tracer design, as well as the current state of the art regarding their application for nuclear and fluorescent imaging purposes. Furthermore, we will discuss how nanobodies can also be exploited for molecular therapy applications such as targeted radionuclide therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Nick Devoogdt
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|