1
|
Yadavalli HC, Park S, Kim Y, Nagda R, Kim TH, Han MK, Jung IL, Bhang YJ, Yang WH, Dalgaard LT, Yang SW, Shah P. Tailed-Hoogsteen Triplex DNA Silver Nanoclusters Emit Red Fluorescence upon Target miRNA Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306793. [PMID: 37967352 DOI: 10.1002/smll.202306793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Indexed: 11/17/2023]
Abstract
MicroRNAs (miRNAs) are small RNA molecules, typically 21‒22 nucleotides in size, which play a crucial role in regulating gene expression in most eukaryotes. Their significance in various biological processes and disease pathogenesis has led to considerable interest in their potential as biomarkers for diagnosis and therapeutic applications. In this study, a novel method for sensing target miRNAs using Tailed-Hoogsteen triplex DNA-encapsulated Silver Nanoclusters (DNA/AgNCs) is introduced. Upon hybridization of a miRNA with the tail, the Tailed-Hoogsteen triplex DNA/AgNCs exhibit a pronounced red fluorescence, effectively turning on the signal. It is successfully demonstrated that this miRNA sensor not only recognized target miRNAs in total RNA extracted from cells but also visualized target miRNAs when introduced into live cells, highlighting the advantages of the turn-on mechanism. Furthermore, through gel-fluorescence assays and small-angle X-ray scattering (SAXS) analysis, the turn-on mechanism is elucidated, revealing that the Tailed-Hoogsteen triplex DNA/AgNCs undergo a structural transition from a monomer to a dimer upon sensing the target miRNA. Overall, the findings suggest that Tailed-Hoogsteen triplex DNA/AgNCs hold great promise as practical sensors for small RNAs in both in vitro and cell imaging applications.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min Kyun Han
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Current therapeutic strategies to mitigate heart failure progression after myocardial infarction involve support of endogenous repair through molecular targets. The capacity for repair varies greatly between individuals. In this review, we will assess how cardiac PET/CT enables precise characterization of early pathogenetic processes which govern ventricle remodeling and progression to heart failure. RECENT FINDINGS Inflammation in the first days after myocardial infarction predicts subsequent functional decline and can influence therapy decisions. The expansion of anti-inflammatory approaches to improve outcomes after myocardial infarction may benefit from noninvasive characterization using imaging. Novel probes also allow visualization of fibroblast transdifferentiation and activation, as a precursor to ventricle remodeling. The expanding arsenal of molecular imaging agents in parallel with new treatment options provides opportunity to harmonize diagnostic imaging with precision therapy.
Collapse
Affiliation(s)
- James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Neuberg-Str. 1, D-30625, Hannover, Germany.
| |
Collapse
|
3
|
Gulumkar V, Äärelä A, Moisio O, Rahkila J, Tähtinen V, Leimu L, Korsoff N, Korhonen H, Poijärvi-Virta P, Mikkola S, Nesati V, Vuorimaa-Laukkanen E, Viitala T, Yliperttula M, Roivainen A, Virta P. Controlled Monofunctionalization of Molecular Spherical Nucleic Acids on a Buckminster Fullerene Core. Bioconjug Chem 2021; 32:1130-1138. [PMID: 33998229 PMCID: PMC8382215 DOI: 10.1021/acs.bioconjchem.1c00187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
An azide-functionalized
12-armed Buckminster fullerene has been
monosubstituted in organic media with a substoichiometric amount of
cyclooctyne-modified oligonucleotides. Exposing the intermediate products
then to the same reaction (i.e., strain-promoted alkyne–azide
cycloaddition, SPAAC) with an excess of slightly different oligonucleotide
constituents in an aqueous medium yields molecularly defined monofunctionalized
spherical nucleic acids (SNAs). This procedure offers a controlled
synthesis scheme in which one oligonucleotide arm can be functionalized
with labels or other conjugate groups (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid, DOTA, and Alexa-488 demonstrated), whereas the rest of the 11
arms can be left unmodified or modified by other conjugate groups
in order to decorate the SNAs’ outer sphere. Extra attention
has been paid to the homogeneity and authenticity of the C60-azide scaffold used for the assembly of full-armed SNAs.
Collapse
Affiliation(s)
- Vijay Gulumkar
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Olli Moisio
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Jani Rahkila
- Instrument Centre, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Åbo, Finland
| | - Ville Tähtinen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Laura Leimu
- Department of Biologics, Orion Pharma, 20101 Turku, Finland
| | - Niko Korsoff
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Heidi Korhonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | | | - Satu Mikkola
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Victor Nesati
- Department of Biologics, Orion Pharma, 20101 Turku, Finland
| | | | - Tapani Viitala
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland.,Department of Biologics, Orion Pharma, 20101 Turku, Finland
| |
Collapse
|
4
|
Siddika T, Heinemann IU. Bringing MicroRNAs to Light: Methods for MicroRNA Quantification and Visualization in Live Cells. Front Bioeng Biotechnol 2021; 8:619583. [PMID: 33537295 PMCID: PMC7848212 DOI: 10.3389/fbioe.2020.619583] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are small non-coding RNAs that interact with their target mRNAs for posttranscriptional gene regulation. Finely controlled miRNA biogenesis, target recognition and degradation indicate that maintaining miRNA homeostasis is essential for regulating cell proliferation, growth, differentiation and apoptosis. Increasingly, miRNAs have been recognized as a potential biomarker for disease diagnosis. MiRNAs can be found in blood, plasma, and tissues, and miRNA expression and activity differ in developmental stages, tissues and in response to external stimuli. MiRNA transcripts are matured from pri-miRNA over pre-miRNA to mature miRNA, a process that includes multiple steps and enzymes. Many tools are available to identify and quantify specific miRNAs, ranging from measuring total miRNA, specific miRNA activity, miRNA arrays and miRNA localization. The various miRNA assays differ in accuracy, cost, efficiency and convenience of monitoring miRNA dynamics. To acknowledge the significance and increasing research interest in miRNAs, we summarize the traditional as well as novel methods of miRNA quantification with strengths and limitations of various techniques in biochemical and medical research.
Collapse
Affiliation(s)
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide Image-Guided Repair of the Heart. JACC Cardiovasc Imaging 2020; 13:2415-2429. [DOI: 10.1016/j.jcmg.2019.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023]
|
6
|
Song Y, Xu Z, Wang F. Genetically Encoded Reporter Genes for MicroRNA Imaging in Living Cells and Animals. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:555-567. [PMID: 32721876 PMCID: PMC7390858 DOI: 10.1016/j.omtn.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by base paring with the complementary sequences of the target mRNAs, and then exert their function through degrading mRNA or inhibiting protein translation. They play a significant role as a regulatory factor in biological processes of organism development, cell proliferation, differentiation, and cell death. Some of the traditional methods for studying miRNAs, such as northern blot, real-time PCR, or microarray, have been extensively used to investigate the biological properties and expression patterns of miRNAs. However, these methods often require considerable time, cell samples, and the design of effective primers or specific probes. Therefore, in order to gain a deeper understanding of the role of miRNAs in biological processes and accelerate the clinical application of miRNAs in the field of disease treatment, non-invasive, sensitive, and efficient imaging methods are needed to visualize the dynamic expression of miRNAs in living cells and animals. In this study, we reviewed the recent progress in the genetically encoded reporter genes for miRNA imaging.
Collapse
Affiliation(s)
- Yingzhuang Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhijing Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Fu Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|