1
|
Ponsonby-Thomas E, Pham AC, Huang S, Salim M, Klein LD, Offersen SM, Thymann T, Boyd BJ. Human milk improves the oral bioavailability of the poorly water-soluble drug clofazimine. Eur J Pharm Biopharm 2025; 207:114604. [PMID: 39675684 DOI: 10.1016/j.ejpb.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Clofazimine is an emerging drug for the treatment of cryptosporidiosis in infants. As a poorly water-soluble drug, the formulation of clofazimine in age-appropriate vehicles is challenging and often results in the use of off-label formulations. Milk-based vehicles such as human milk and bovine milk have been investigated as age-appropriate formulations and shown to increase the solubilisation of poorly water-soluble drugs via enhanced solubility in lipid digestion products in vitro. We hypothesised that administration of clofazimine within a milk-based vehicle would enhance bioavailability for infant patients. Towards this objective, suspensions of clofazimine in human and bovine milk were orally administered separately to piglets and rats and the subsequent plasma concentrations were compared to those after administration of an aqueous drug suspension. Initial investigations with a rodent model showed a significant increase (258%) in the oral bioavailability of clofazimine when administered with human milk. Similarly, the oral bioavailability of clofazimine was significantly higher when administered in both human (154%) and bovine milk (175%) using a neonatal piglet model, suggesting comparable enhancement in oral bioavailability could be achieved with human or bovine milk. These findings demonstrate the potential of human milk in particular to provide an effective administration vehicle for clofazimine administration to infants without the need for additional excipients.
Collapse
Affiliation(s)
- Ellie Ponsonby-Thomas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna C Pham
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Shouyuan Huang
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Laura D Klein
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Strategy and Growth, Australian Red Cross Lifeblood, 17 O'Riordan St, Alexandria, NSW 2015, Australia
| | - Simone Margaard Offersen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, DK-1870 Frederiksberg, Denmark
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, DK-1870 Frederiksberg, Denmark
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. BIOMATERIALS ADVANCES 2023; 154:213594. [PMID: 37657277 DOI: 10.1016/j.bioadv.2023.213594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 μm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 μg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 μg and ∼ 600 μg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 μg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Neleesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India.
| |
Collapse
|
3
|
Ponsonby-Thomas E, Salim M, Klein LD, Clulow AJ, Seibt S, Boyd BJ. Evaluating human milk as a drug delivery vehicle for clofazimine to premature infants. J Control Release 2023; 362:257-267. [PMID: 37619865 DOI: 10.1016/j.jconrel.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Human milk is proposed as a drug delivery vehicle suitable for use in neonatal patients. Clofazimine, traditionally used for the treatment of leprosy and tuberculosis, is emerging as a treatment for cryptosporidiosis in infants, however its poor aqueous solubility has led to its commercial formulation as a waxy lipid formulation in a capsule, a format that is not suitable for infants. In this study, the evaluation of pasteurised human milk for the delivery of clofazimine was investigated using an in vitro lipolysis model to simulate gastric and intestinal digestion. The total lipid composition of the human milk was characterised alongside the liberated fatty acid species following digestion for comparison to alternative lipid-based delivery systems. Small-angle X-ray scattering was used to measure the presence of crystalline clofazimine during digestion and hence the extent of drug solubilisation. High-performance liquid chromatography was used to quantify the mass of clofazimine solubilised per gram of human milk fat (drug-to-fat ratio) in digested and undigested human milk. The digestion process was essential for the solubilisation of clofazimine, with digested human milk solubilising a sufficient dose of clofazimine for treatment of a premature infant. Human milk solubilised the clofazimine to a greater extent than bovine milk and infant formula during digestion, most likely as a result of differing lipid composition and increased long-chain fatty acid concentrations. These findings show that human milk enhances the solubility of clofazimine as a model drug and may be a suitable drug delivery vehicle for infant populations requiring therapeutic treatment.
Collapse
Affiliation(s)
- Ellie Ponsonby-Thomas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Laura D Klein
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Strategy and Growth, Australian Red Cross Lifeblood, 17 O'Riordan St, Alexandria, NSW 2015, Australia
| | - Andrew J Clulow
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Susi Seibt
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Salim M, Ramirez G, Clulow AJ, Hawley A, Boyd BJ. Implications of the Digestion of Milk-Based Formulations for the Solubilization of Lopinavir/Ritonavir in a Combination Therapy. Mol Pharm 2023; 20:2256-2265. [PMID: 36919249 PMCID: PMC10074382 DOI: 10.1021/acs.molpharmaceut.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of formulation approaches to coadminister lopinavir and ritonavir antiretroviral drugs to children is necessary to ensure optimal treatment of human immunodeficiency virus (HIV) infection. It was previously shown that milk-based lipid formulations show promise as vehicles to deliver antimalarial drugs by enhancing their solubilization during the digestion of the milk lipids under intestinal conditions. In this study, we investigate the role of digestion of milk and infant formula on the solubilization behavior of lopinavir and ritonavir to understand the fate of drugs in the gastrointestinal (GI) tract after oral administration. Small angle X-ray scattering (SAXS) was used to probe the presence of crystalline drugs in suspension during digestion. In particular, the impact of one drug on the solubilization of the other was elucidated to reveal potential drug-drug interactions in a drug combination therapy. Our results showed that lopinavir and ritonavir affected the solubilization of each other during digestion in lipid-based formulations. While addition of ritonavir to lopinavir improved the overall solubilization of lopinavir, the impact of lopinavir was to reduce ritonavir solubilization as digestion progressed. These findings highlight the importance of assessing the solubilization of individual drugs in a combined matrix in order to dictate the state of drugs available for subsequent absorption and metabolism. Enhancement in the solubilization of lopinavir and ritonavir in a drug combination setting in vitro also supported the potential for food effects on drug exposure.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Adrian Hawley
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
5
|
Taneja R, Nahata MC, Scarim J, Pande PG, Scarim A, Hoddinott G, Fourie CL, Jew RK, Schaaf HS, Hesseling AC, Garcia-Prats AJ. Extemporaneously compounded liquid formulations of clofazimine. Int J Tuberc Lung Dis 2023; 27:106-112. [PMID: 36853102 PMCID: PMC9904399 DOI: 10.5588/ijtld.22.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND: Clofazimine (CFZ) is routinely used worldwide for the treatment of leprosy and TB. However, no liquid or dispersible tablet formulations of CFZ are currently available commercially for patients with challenges ingesting soft gelatin capsules or solid formulations. The aim of this research was to develop stable extemporaneous liquid formulations of CFZ that can be stored at room temperature for several weeks to enable practical dosing in the field.METHODS: Two formulations were prepared in syrup and sugar-free vehicles with CFZ tablets using a simple method that can be used in a routine pharmacy. Suspensions were stored at room temperature and at 30°C for 30 days. Formulation aliquots were tested on Days 0, 15 and 30 for appearance, pH, potency and microbial counts.RESULTS: Appearance remained unchanged during storage. The pH of both formulations was between 4.0 and 6.0. Potency was between 90% and 110% for 30 days in the syrup formulation and for 15 days in the sugar-free formulation. Microbial counts met United States Pharmacopeia <1111> limits for oral aqueous liquids and specific organisms were absent.CONCLUSIONS: A simple field-friendly method was successfully developed for the preparation of CFZ liquid formulations using commonly available ingredients. This will permit practical dosing and titration for children and other patients with swallowing challenges.
Collapse
Affiliation(s)
- R Taneja
- Global Alliance for TB drug Development (TB Alliance), New York, NY, USA
| | - M C Nahata
- Institute of Therapeutic Innovations and Outcomes, Colleges of Pharmacy and Medicine, The Ohio State University, Columbus, OH, USA
| | - J Scarim
- JSAS Services Inc, Tucson, AZ, USA
| | - P G Pande
- Global Alliance for TB drug Development (TB Alliance), New York, NY, USA
| | - A Scarim
- JSAS Services Inc, Tucson, AZ, USA
| | - G Hoddinott
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C L Fourie
- Metro TB Complex, Department of Health, Pretoria, South Africa
| | - R K Jew
- Institute for Safe Medication Practices, Plymouth Meeting, PA, USA
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
6
|
Khan NF, Salim M, Binte Abu Bakar SY, Ristroph K, Prud'homme RK, Hawley A, Boyd BJ, Clulow AJ. Small-volume in vitro lipid digestion measurements for assessing drug dissolution in lipid-based formulations using SAXS. Int J Pharm X 2022; 4:100113. [PMID: 35243327 PMCID: PMC8881665 DOI: 10.1016/j.ijpx.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid-based formulations improve the absorption capacity of poorly-water-soluble drugs and digestion of the formulation is a critical step in that absorption process. A recent approach to understanding the propensity for drug to dissolve in digesting lipid-based formulations couples an in vitro pH-stat lipolysis model to small-angle X-ray scattering (SAXS) by means of a flow-through capillary. However, the conventional pH-stat apparatus used to measure the extent of lipid digestion during such experiments requires digest volumes of 15–30 mL and drug doses of 50–200 mg, which is problematic for scarce compounds and can require excessive amounts of formulation reagents. This manuscript describes an approach to reduce the amount of material required for in vitro lipolysis experiments coupled to SAXS, for use in instances where the amount of drug or formulation medium is limited. Importantly, this was achieved while maintaining the pH stat conditions, which is critical for maintaining biorelevance and driving digestion to completion. The digestibility of infant formula with the poorly-water-soluble drugs halofantrine and clofazimine dispersed into it was measured as an exemplar paediatric-friendly lipid formulation. Halofantrine was incorporated in its powdered free base form and clofazimine was incorporated both as unformulated drug powder and as drug in nanoparticulate form prepared using Flash NanoPrecipitation. The fraction of triglyceride digested was found to be independent of vessel size and the incorporation of drug. The dissolution of the two forms of clofazimine during the digestion of infant formula were then measured using synchrotron SAXS, which revealed complete and partial solubilisation over 30 min of digestion for the powdered drug and nanoparticle formulations, respectively. The main challenge in reducing the volume of the measurements was in ensuring that thorough mixing was occurring in the smaller digestion vessel to provide uniform sampling of the dispersion medium.
Collapse
|
7
|
Revisiting the Dissolution of Praziquantel in Biorelevant Media and the Impact of Digestion of Milk on Drug Dissolution. Pharmaceutics 2022; 14:pharmaceutics14102228. [PMID: 36297662 PMCID: PMC9609124 DOI: 10.3390/pharmaceutics14102228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Praziquantel is a poorly water-soluble drug used to treat parasitic infections. Previous studies have suggested that its rate and extent of dissolution in milk and biorelevant media are slow and limited compared to dissolution in the pharmacopoeial-recommended medium, despite being reported as displaying a positive food effect upon administration. This study aimed to revisit the dissolution of praziquantel in biorelevant media and milk to better understand this apparent dichotomy. The context of digestion was introduced to better understand drug solubilisation under more relevant gastrointestinal conditions. The amount of praziquantel solubilised in the various media during digestion was quantified using high performance liquid chromatography (HPLC) and the kinetics of dissolution were confirmed by tracking the disappearance of solid crystalline drug using in situ small angle X-ray scattering (SAXS). For the dissolution media, where sodium lauryl sulfate (SLS) is typically included as a wetting agent, a prominent effect of SLS on drug dissolution was also apparent where >2.5 fold more drug was solubilised in SLS-containing dissolution medium compared to that without (0.1 M HCl only). In milk, significant dissolution of praziquantel was observed only during digestion and not during dispersion, hence suggesting that (1) milk can be potentially administered with praziquantel to improve oral bioavailability and (2) incorporating a digestion step into existing in vitro dissolution testing can better reflect the potential for a positive food effect when lipids are present.
Collapse
|
8
|
da Rocha NP, Barbosa EJ, Barros de Araujo GL, Bou-Chacra NA. Innovative drug delivery systems for leprosy treatment. Indian J Dermatol Venereol Leprol 2022; 88:1-6. [PMID: 35434984 DOI: 10.25259/ijdvl_1119_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Salim M, Eason T, Boyd BJ. Opportunities for milk and milk-related systems as 'new' low-cost excipient drug delivery materials. Adv Drug Deliv Rev 2022; 183:114139. [PMID: 35143892 DOI: 10.1016/j.addr.2022.114139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022]
Abstract
Milk is well recognised as an amazing delivery system for essential lipids, poorly soluble nutrients, sugars, amino acids and delivery of critical biological molecules to sustain the infant and adult alike. It is also a safe and abundant resource with potential to act as a low-cost material for formulation of medicines, especially for paediatric patients and those in low economy settings. However, its use in low cost formulations has never developed beyond preclinical evaluation. Reasons for this are several-fold including variable composition and therefore regulatory challenges, as well as a lack of clear understanding around when milk or milk-related materials like infant formula could best be deployed by linking drug properties with excipient composition attributes, especially when taking digestion into account. This review collects the current understanding around these issues. It is apparent from the evolving understanding that while milk may be a bridge too far for translation as an excipient, infant formula is positioned to play a key role in the future because, as a powder-based excipient, it has the performance benefits of milk powder together with the controlled specifications during manufacture and versatility of application to function as a low cost lipid excipient to enable potential translation for the oral delivery of poorly water soluble drugs for key populations including paediatrics and low economy medicines.
Collapse
|
10
|
Barber BW, Dumont C, Caisse P, Simon GP, Boyd BJ. A 3D-Printed Polymer-Lipid-Hybrid Tablet towards the Development of Bespoke SMEDDS Formulations. Pharmaceutics 2021; 13:pharmaceutics13122107. [PMID: 34959390 PMCID: PMC8707116 DOI: 10.3390/pharmaceutics13122107] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
3D printing is a rapidly growing area of interest within pharmaceutical science thanks to its versatility in creating different dose form geometries and drug doses to enable the personalisation of medicines. Research in this area has been dominated by polymer-based materials; however, for poorly water-soluble lipophilic drugs, lipid formulations present advantages in improving bioavailability. This study progresses the area of 3D-printed solid lipid formulations by providing a 3D-printed dissolvable polymer scaffold to compartmentalise solid lipid formulations within a single dosage form. This allows the versatility of different drugs in different lipid formulations, loaded into different compartments to generate wide versatility in drug release, and specific control over release geometry to tune release rates. Application to a range of drug molecules was demonstrated by incorporating the model lipophilic drugs; halofantrine, lumefantrine and clofazimine into the multicompartmental scaffolded tablets. Fenofibrate was used as the model drug in the single compartment scaffolded tablets for comparison with previous studies. The formulation-laden scaffolds were characterised using X-ray CT and dispersion of the formulation was studied using nephelometry, while release of a range of poorly water-soluble drugs into different gastrointestinal media was studied using HPLC. The studies show that dispersion and drug release are predictably dependent on the exposed surface area-to-volume ratio (SA:V) and independent of the drug. At the extremes of SA:V studied here, within 20 min of dissolution time, formulations with an SA:V of 0.8 had dispersed to between 90 and 110%, and completely released the drug, where as an SA:V of 0 yielded 0% dispersion and drug release. Therefore, this study presents opportunities to develop new dose forms with advantages in a polypharmacy context.
Collapse
Affiliation(s)
- Bryce W. Barber
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, Melbourne 3052, Australia;
| | - Camille Dumont
- Gattefossé SAS, 36 Chemin de Genas, CEDEX, 69804 Saint-Priest, France; (C.D.); (P.C.)
| | - Philippe Caisse
- Gattefossé SAS, 36 Chemin de Genas, CEDEX, 69804 Saint-Priest, France; (C.D.); (P.C.)
| | - George P. Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Melbourne 3800, Australia;
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, Melbourne 3052, Australia;
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
11
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|
12
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
13
|
|
14
|
Clulow AJ, Binte Abu Bakar SY, Salim M, Nowell CJ, Hawley A, Boyd BJ. Emulsions containing optimum cow milk fat and canola oil mixtures replicate the lipid self-assembly of human breast milk during digestion. J Colloid Interface Sci 2020; 588:680-691. [PMID: 33309144 DOI: 10.1016/j.jcis.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The digestion of different milks and milk substitutes leads to the formation of a variety of self-assembled lipid structures, with the structuring of human milk being paramount for infant nutrition. It was hypothesised that mixing cow milk fat rich in medium/long-chain lipids with canola oil rich in long-chain unsaturated lipids would replicate the structuring of human milk by balancing lipid chain lengths and saturation levels. EXPERIMENTS Emulsions of cow milk fat/canola oil mixtures were prepared in two ways - by pre-mixing ghee and canola oil before dispersing them and by dispersing canola oil directly into commercial cow milk. Small angle X-ray scattering combined with titration of the fatty acids produced during digestion allowed for the correlation of dynamic lipid self-assembly with the extent of lipid digestion. Laser light scattering was used to show that the particle sizes in the digesting mixtures were similar and coherent anti-Stokes Raman spectroscopy (CARS) microscopy was used to confirm the mixing of canola oil into cow milk fat globules. FINDINGS As the amount of long-chain unsaturated canola oil lipids in the mixtures increased, the lipid self-assembly tended towards colloidal structures of greater interfacial curvature. When the ratio of cow milk fat to canola oil lipids was 1:1 (w/w), the digesting lipids assembled themselves into the same liquid crystalline structures as human breast milk. This observation was independent of the method used to mix the lipids, with CARS microscopy indicating uniform mixing of the canola oil into cow milk upon ultrasonication.
Collapse
Affiliation(s)
- Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release 2020; 327:444-455. [DOI: 10.1016/j.jconrel.2020.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
16
|
Salim M, Ramirez G, Peng KY, Clulow AJ, Hawley A, Ramachandruni H, Beilles S, Boyd BJ. Lipid Compositions in Infant Formulas Affect the Solubilization of Antimalarial Drugs Artefenomel (OZ439) and Ferroquine during Digestion. Mol Pharm 2020; 17:2749-2759. [PMID: 32574056 PMCID: PMC7341521 DOI: 10.1021/acs.molpharmaceut.0c00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies have shown that the solubilization of two antimalarial drug candidates, artefenomel (OZ439) and ferroquine (FQ), designed to provide a single-dose combination therapy for uncomplicated malaria can be enhanced using milk as a lipid-based formulation. However, milk as an excipient faces significant quality and regulatory hurdles. We therefore have investigated infant formula as a potential alternative formulation approach. The significance of the lipid species present in a formula with different lipid compositions upon the solubilization of OZ439 and FQ during digestion has been investigated. Synchrotron small-angle X-ray scattering was used to measure the diffraction from a dispersed drug during digestion and thereby determine the extent of drug solubilization. High-performance liquid chromatography was used to quantify the amount of drug partitioned into the digested lipid phases. Our results show that both the lipid species and the amount of lipids administered were key determinants for the solubilization of OZ439, while the solubilization of FQ was independent of the lipid composition. Infant formulas could therefore be designed and used as milk substitutes to tailor the desired level of drug solubilization while circumventing the variability of components in naturally derived milk. The enhanced solubilization of OZ439 was achieved during the digestion of medium-chain triacylglycerols (MCT), indicating the potential applicability of MCT-fortified infant formula powder as a lipid-based formulation for the oral delivery of OZ439 and FQ.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3169, Australia
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, 20, Route de Pre'-Bois, Geneva 1215, Switzerland
| | - Stephane Beilles
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier 34080, France
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Valinetz E, Stankiewicz Karita H, Pottinger PS, Jain R. Novel Administration of Clofazimine for the Treatment of Mycobacterium avium Infection. Open Forum Infect Dis 2020; 7:ofaa183. [PMID: 32548205 PMCID: PMC7284009 DOI: 10.1093/ofid/ofaa183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
Clofazimine has demonstrated in vitro activity against many nontuberculous mycobacteria. We present the case of a woman with cystic fibrosis who developed disseminated macrolide-resistant Mycobacterium avium infection following lung transplantation treated in part with clofazimine. We describe the novel administration of clofazimine via gastrostomy tube.
Collapse
Affiliation(s)
- Ethan Valinetz
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Helen Stankiewicz Karita
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Paul S Pottinger
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rupali Jain
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Salim M, Fraser-Miller SJ, Be Rziņš KR, Sutton JJ, Ramirez G, Clulow AJ, Hawley A, Beilles S, Gordon KC, Boyd BJ. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion. Mol Pharm 2020; 17:885-899. [PMID: 32011151 PMCID: PMC7054896 DOI: 10.1021/acs.molpharmaceut.9b01149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ka Rlis Be Rziņš
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Joshua J Sutton
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3169, Australia
| | | | - Keith C Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Nowak E, Livney YD, Niu Z, Singh H. Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|