1
|
Kang C, Kim J, Jeong Y, Yoo JW, Jung Y. Colon-Targeted Poly(ADP-ribose) Polymerase Inhibitors Synergize Therapeutic Effects of Mesalazine Against Rat Colitis Induced by 2,4-Dinitrobenzenesulfonic Acid. Pharmaceutics 2024; 16:1546. [PMID: 39771525 PMCID: PMC11728683 DOI: 10.3390/pharmaceutics16121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: In addition to oncological applications, poly(ADP-ribose) polymerase (PARP) inhibitors have potential as anti-inflammatory agents. Colon-targeted delivery of PARP inhibitors has been evaluated as a pharmaceutical strategy to enhance their safety and therapeutic efficacy against gut inflammation. Methods: Colon-targeted PARP inhibitors 5-aminoisoquinoline (5-AIQ) and 3-aminobenzamide (3-AB) were designed and synthesized by azo coupling with salicylic acid (SA), yielding 5-AIQ azo-linked with SA (AQSA) and 3-AB azo-linked with SA (ABSA). Additional conjugation of AQSA with acidic amino acids yielded glutamic acid-conjugated AQSA (AQSA-Glu) and aspartic acid-conjugated AQSA, which further increased the hydrophilicity of AQSA. Results: The distribution coefficients of PARP inhibitors were lowered by chemical modifications, which correlated well with drug permeability via the Caco-2 cell monolayer. All derivatives were effectively converted to their corresponding PARP inhibitors in the cecal contents. Compared with observations in the oral administration of PARP inhibitors, AQSA-Glu and ABSA resulted in the accumulation of much greater amounts of each PARP inhibitor in the cecum. ABSA accumulated mesalazine (5-ASA) in the cecum to a similar extent as sulfasalazine (SSZ), a colon-targeted 5-ASA prodrug. In the DNBS-induced rat colitis model, AQSA-Glu enhanced the anticolitic potency of 5-AIQ. Furthermore, ABSA was more effective against rat colitis than SSZ or AQSA-Glu, and the anticolitic effects of AQSA-Glu were augmented by combined treatment with a colon-targeted 5-ASA prodrug. In addition, the colon-targeted delivery of PARP inhibitors substantially reduced their systemic absorption. Conclusions: Colon-targeted PARP inhibitors may improve the therapeutic and toxicological properties of inhibitors and synergize the anticolitic effects of 5-ASA.
Collapse
Affiliation(s)
| | | | | | | | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (C.K.); (J.K.); (Y.J.); (J.-W.Y.)
| |
Collapse
|
2
|
Tang S, Wang W, Wang Y, Gao Y, Dai K, Zhang W, Wu X, Yuan X, Jin C, Zan X, Zhu L, Geng W. Sustained release of 5-aminosalicylic acid from azoreductase-responsive polymeric prodrugs for prolonged colon-targeted colitis therapy. J Nanobiotechnology 2024; 22:468. [PMID: 39103846 PMCID: PMC11302195 DOI: 10.1186/s12951-024-02724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
Ulcerative colitis (UC) is a challenging inflammatory gastrointestinal disorder, whose therapies encounter limitations in overcoming insufficient colonic retention and rapid systemic clearance. In this study, we report an innovative polymeric prodrug nanoformulation for targeted UC treatment through sustained 5-aminosalicylic acid (5-ASA) delivery. Amphiphilic polymer-based 13.5 nm micelles were engineered to incorporate azo-linked 5-ASA prodrug motifs, enabling cleavage via colonic azoreductases. In vitro, micelles exhibited excellent stability under gastric/intestinal conditions while demonstrating controlled 5-ASA release over 24 h in colonic fluids. Orally administered micelles revealed prolonged 24-h retention and a high accumulation within inflamed murine colonic tissue. At an approximately 60% dose reduction from those most advanced recent studies, the platform halted DSS colitis progression and outperformed standard 5-ASA therapy through a 77-97% suppression of inflammatory markers. Histological analysis confirmed intact colon morphology and restored barrier protein expression. This integrated prodrug nanoformulation addresses limitations in colon-targeted UC therapy through localized bioactivation and tailored pharmacokinetics, suggesting the potential of nanotechnology-guided precision delivery to transform disease management.
Collapse
Affiliation(s)
- Sicheng Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China.
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yijian Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Gao
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325001, Zhejiang, China
| | - Keke Dai
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenjing Zhang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xudong Wu
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaodie Yuan
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
| | - Chaofan Jin
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
| | - Xingjie Zan
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
| | - Limeng Zhu
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China.
| | - Wujun Geng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
3
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
4
|
Kang C, Kim J, Ju S, Cho H, Kim HY, Yoon IS, Yoo JW, Jung Y. Colon-Targeted Trans-Cinnamic Acid Ameliorates Rat Colitis by Activating GPR109A. Pharmaceutics 2022; 15:pharmaceutics15010041. [PMID: 36678670 PMCID: PMC9865397 DOI: 10.3390/pharmaceutics15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
We designed colon-targeted trans-cinnamic acid (tCA) and synthesized its conjugates with glutamic acid (tCA-GA) and aspartic acid (tCA-AA). We evaluated the anti-colitic activity of colon-targeted tCA using a dinitrobenzenesulfonic acid-induced rat colitis model. The conjugates lowered the distribution coefficient and Caco-2 cell permeability of tCA and converted to tCA in the cecum, with higher rates and percentages with tCA-GA than with tCA-AA. Following oral gavage, tCA-GA delivered a higher amount of tCA to the cecum and exhibited better anti-colitic effects than tCA and sulfasalazine (SSZ), which is the current treatment for inflammatory bowel disease. In the cellular assay, tCA acted as a full agonist of GPR109A (EC50: 530 µM). The anti-colitic effects of tCA-GA were significantly compromised by the co-administration of the GPR109A antagonist, mepenzolate. Collectively, colon-targeted tCA potentiated the anti-colitic activity of tCA by effectively activating GPR109A in the inflamed colon, enabling tCA to elicit therapeutic superiority over SSZ.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Heeyeong Cho
- Biotechnology & Therapeutic Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry, Korea University of Science and Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Hyun Young Kim
- Biotechnology & Therapeutic Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2527; Fax: +82-51-513-6754
| |
Collapse
|
5
|
Park S, Kang C, Kim J, Ju S, Yoo JW, Yoon IS, Kim MS, Lee J, Jung Y. A Colon-Targeted Prodrug of Riluzole Improves Therapeutic Effectiveness and Safety upon Drug Repositioning of Riluzole to an Anti-Colitic Drug. Mol Pharm 2022; 19:3784-3794. [PMID: 36043999 DOI: 10.1021/acs.molpharmaceut.2c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Riluzole (RLZ) is a neuroprotective drug indicated for amyotrophic lateral sclerosis. To examine the feasibility of RLZ for repositioning as an anti-inflammatory bowel disease (IBD) drug, RLZ (2, 5, and 10 mg/kg) was administered orally to rats with colitis induced by 2,4-dinitrobenzenesulfonic acid. Oral RLZ was effective against rat colitis in a dose-dependent manner, which was statistically significant at doses over 5 mg/kg. To address safety issues upon repositioning and further improve anti-colitic effectiveness, RLZ was coupled with salicylic acid (SA) via an azo-bond to yield RLZ-azo-SA (RAS) for the targeted colonic delivery of RLZ. Upon oral gavage, RAS (oral RAS) was efficiently delivered to and activated to RLZ in the large intestine, and systemic absorption of RLZ was substantially reduced. Oral RAS ameliorated colonic damage and inflammation in rat colitis and was more effective than oral RLZ and sulfasalazine, a current anti-IBD drug. Moreover, oral RAS potently inhibited glycogen synthase kinase 3β (GSK3β) in the inflamed distal colon, leading to the suppression of NFκB activity and an increase in the level of the anti-inflammatory cytokine interleukin-10. Taken together, RAS, which enables RLZ to be delivered to and inhibit GSK3β in the inflamed colon, may facilitate repositioning of RLZ as an anti-IBD drug.
Collapse
Affiliation(s)
- Sohee Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Changyu Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Huang L, Zheng J, Sun G, Yang H, Sun X, Yao X, Lin A, Liu H. 5-Aminosalicylic acid ameliorates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota and bile acid metabolism. Cell Mol Life Sci 2022; 79:460. [PMID: 35913641 PMCID: PMC11071811 DOI: 10.1007/s00018-022-04471-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Colitis develops via the convergence of environmental, microbial, immunological, and genetic factors. The medicine 5-aminosalicylic acid (5-ASA) is widely used in clinical practice for colitis (especially ulcerative colitis) treatment. However, the significance of gut microbiota in the protective effect of 5-ASA on colitis has not been explored. Using a dextran sulfate sodium (DSS)-induced colitis mouse model, we found that 5-ASA ameliorated colitis symptoms in DSS-treated mice, accompanied by increased body weight gain and colon length, and a decrease in disease activity index (DAI) score and spleen index. Also, 5-ASA alleviated DSS-induced damage to colonic tissues, as indicated by suppressed inflammation and decreased tight junction, mucin, and water-sodium transport protein levels. Moreover, the 16S rDNA gene sequencing results illustrated that 5-ASA reshaped the disordered gut microbiota community structure in DSS-treated mice by promoting the abundance of Bifidobacterium, Lachnoclostridium, and Anaerotruncus, and reducing the content of Alloprevotella and Desulfovibrio. Furthermore, 5-ASA improved the abnormal metabolism of bile acids (BAs) by regulating the Farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5) signaling pathways in DSS-treated mice. In contrast, 5-ASA did not prevent the occurrence of colitis in mice with gut microbiota depletion, confirming the essential role of gut microbiota in colitis treatment by 5-ASA. In conclusion, 5-ASA can ameliorate DSS-induced colitis in mice by modulating gut microbiota and bile acid metabolism. These findings documented the new therapeutic mechanisms of 5-ASA in clinical colitis treatment.
Collapse
Affiliation(s)
- Ling Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
- China Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, People's Republic of China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guangjun Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Huabing Yang
- China Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, People's Republic of China
| | - Xiongjie Sun
- China Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, People's Republic of China
| | - Xiaowei Yao
- China Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, People's Republic of China
| | - Aizhen Lin
- China Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, People's Republic of China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
7
|
Zhao J, Zhang B, Mao Q, Ping K, Zhang P, Lin F, Liu D, Feng Y, Sun M, Zhang Y, Li QH, Zhang T, Mou Y, Wang S. Discovery of a Colon-Targeted Azo Prodrug of Tofacitinib through the Establishment of Colon-Specific Delivery Systems Constructed by 5-ASA-PABA-MAC and 5-ASA-PABA-Diamine for the Treatment of Ulcerative Colitis. J Med Chem 2022; 65:4926-4948. [PMID: 35275619 DOI: 10.1021/acs.jmedchem.1c02166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To mitigate the systemic adverse effects of tofacitinib, 5-ASA-PABA-MAC and 5-ASA-PABA-diamine colon-specific delivery systems were constructed, and tofacitinib azo prodrugs 9 and 20a-20g were synthesized accordingly. The release studies suggested that these systems could effectively release tofacitinib in vitro, and the 5-ASA-PABA-diamine system could successfully realize the colon targeting of tofacitinib in vivo. Specifically, compound 20g displayed a 3.67-fold decrease of plasma AUC(tofacitinib, 0-∞) and a 9.61-fold increase of colonic AUC(tofacitinib, 0-12h), compared with tofacitinib at a molar equivalent oral dose. Moreover, mouse models suggested that compound 20g (1.5 mg/kg) could achieve roughly the same efficacy against ulcerative colitis compared with tofacitinib (10 mg/kg) and did not impair natural killer cells. These results demonstrated the feasibility of compound 20g as an effective alternative to mitigate the systemic adverse effects of tofacitinib, and 5-ASA-PABA-MAC and 5-ASA-PABA-diamine systems were proven to be effective for colon-specific drug delivery.
Collapse
Affiliation(s)
- Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Dan Liu
- Shenyang Hinewy Pharmaceutical Technology Co., Ltd., 41 Liutang Road, Shenhe District, Shenyang 110016, China
| | - Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Ming Sun
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qiu Hua Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Tingjian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
8
|
Liu P, Wang F, Song Y, Wang M, Zhang X. Current situation and progress of drugs for reducing intraocular pressure. Ther Adv Chronic Dis 2022; 13:20406223221140392. [PMID: 36479139 PMCID: PMC9720821 DOI: 10.1177/20406223221140392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, the most common cause of irreversible blindness worldwide, usually causes characteristic optic nerve damage. Pathological intraocular pressure (IOP) elevation is a major risk factor. Drug reduction of IOP is the preferred treatment for clinicians because it can delay the progression of disease. However, the traditional IOP-lowering drugs currently used by patients may be poorly tolerated. Therefore, in recent years, some new drugs have been put into clinical application or in clinical phase I–III studies. They have a better IOP-lowering effect and fewer adverse reactions. Because glaucoma is a chronic disease, drugs need to be administered continuously for a long time. For patients, good compliance and high drug bioavailability have a positive effect on the prognosis of the disease. Therefore, clinicians and scientists have developed drug delivery systems to solve this complex problem. In addition, natural compounds and dietary supplements have a good effect of reducing IOP, and they can also protect the optic nerve through antioxidant action. We summarize the current traditional drugs, new drugs, sustained-release drug delivery systems, and complementary drugs and outline the mechanism of action and clinical effects of these drugs on glaucoma and their recent advances.
Collapse
Affiliation(s)
- Peiyu Liu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuning Song
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Menghui Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang 330006, China
| |
Collapse
|
9
|
Fraix A, Parisi C, Seggio M, Sortino S. Nitric Oxide Photoreleasers with Fluorescent Reporting. Chemistry 2021; 27:12714-12725. [PMID: 34143909 DOI: 10.1002/chem.202101662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) plays a multifaceted role in human physiology and pathophysiology, and its controlled delivery has great prospects in therapeutic applications. The light-activated uncaging of NO from NO caging compounds allows this free radical to be released with accurate control of site and dosage, which strictly determine its biological effects. Molecular constructs able to activate fluorescence concomitantly to NO release offer the important advantage of easy and real-time tracking of the amount of NO uncaged in a non-invasive fashion even in the cell environment. This contribution provides an overview of the advances in photoactivatable NO releasers bearing fluorescent reporting functionalities achieved in our and other laboratories, highlighting the rationale design and their potential therapeutic applications.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
10
|
Theivendran S, Yu C. Nanochemistry Modulates Intracellular Decomposition Routes of S-Nitrosothiol Modified Silica-Based Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007671. [PMID: 33860647 DOI: 10.1002/smll.202007671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Cellular delivery of nitric oxide (NO) using NO donor moieties such as S-nitrosothiol (SNO) is of great interest for various applications. However, understandings of the intracellular decomposition routes of SNO toward either NO or ammonia (NH3 ) production are surprisingly scarce. Herein, the first report of SNO modified mesoporous organosilica nanoparticles with tetrasulfide bonds for enhanced intracellular NO delivery, ≈10 times higher than a commercial NO donor, is presented. The tetrasulfide chemistry modulates the SNO decomposition by shifting from NH3 to NO production in glutathione rich cancer cells. This study provides a new strategy to control the NO level in biological systems.
Collapse
Affiliation(s)
- Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
11
|
Lee H, Park S, Ju S, Kim S, Yoo JW, Yoon IS, Min DS, Jung Y. Preparation and Evaluation of Colon-Targeted Prodrugs of the Microbial Metabolite 3-Indolepropionic Acid as an Anticolitic Agent. Mol Pharm 2021; 18:1730-1741. [PMID: 33661643 DOI: 10.1021/acs.molpharmaceut.0c01228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial metabolites play a critical role in mucosal homeostasis by mediating physiological communication between the host and colonic microbes, whose perturbation may lead to gut inflammation. The microbial metabolite 3-indolepropionic acid (3-IPA) is one such communication mediator with potent antioxidative and anti-inflammatory activity. To apply the metabolite for the treatment of colitis, 3-IPA was coupled with acidic amino acids to yield colon-targeted 3-IPA, 3-IPA-aspartic acid (IPA-AA) and 3-IPA-glutamic acid (IPA-GA). Both conjugates were activated to 3-IPA in the cecal contents, which occurred faster for IPA-AA. Oral gavage of IPA-AA (oral IPA-AA) delivered a millimolar concentration of IPA-AA to the cecum, liberating 3-IPA. In a 2,4-dinitrobenzene sulfonic acid (DNBS)-induced rat colitis model, oral IPA-AA ameliorated rat colitis and was less effective than sulfasalazine (SSZ), a current anti-inflammatory bowel disease drug. To enhance the anticolitic activity of 3-IPA, it was azo-linked with the GPR109 agonist 5-aminonicotinic acid (5-ANA) to yield IPA-azo-ANA, expecting a mutual anticolitic action. IPA-azo-ANA (activated to 5-ANA and 2-amino-3-IPA) exhibited colon specificity in in vitro and in vivo experiments. Oral IPA-azo-ANA mitigated colonic damage and inflammation and was more effective than SSZ. These results suggest that colon-targeted 3-IPA ameliorated rat colitis and its anticolitic activity could be enhanced by codelivery of the GPR109A agonist 5-ANA.
Collapse
Affiliation(s)
- Hanju Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sohee Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soojin Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
5-[(3-Carboxy-4-hydroxyphenyl)diazenyl] nicotinic acid, an azo-linked mesalazine-nicotinic acid conjugate, is a colon-targeted mutual prodrug against dextran sulfate sodium-induced colitis in mice. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00517-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Seggio M, Payamifar S, Fraix A, Kalydi E, Kasal P, Catanzano O, Conte C, Quaglia F, Sortino S. Visible light-activatable cyclodextrin-conjugates for the efficient delivery of nitric oxide with fluorescent reporter and their inclusion complexes with betaxolol. NEW J CHEM 2021. [DOI: 10.1039/d1nj00039j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water-soluble β-CD conjugates release NO with high performances with blue and green light, liberate a fluorescent co-products useful for the real-time monitoring of the NO concentration and encapsulate additional guests within the hydrophobic cavity.
Collapse
Affiliation(s)
- Mimimorena Seggio
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| | - Sara Payamifar
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| | - Aurore Fraix
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| | - Eszter Kalydi
- CycloLab Ltd
- H-1097 Budapest
- Hungary
- Department of Pharmacognosy
- Semmelweis University
| | - Petr Kasal
- Department of Organic Chemistry
- Charles University in Prague
- Prague 2
- Czech Republic
| | - Ovidio Catanzano
- Institute for Polymers
- Composites and Biomaterials, CNR
- 80078 Pozzuoli
- Italy
| | - Claudia Conte
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Salvatore Sortino
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| |
Collapse
|
14
|
Jabbehdari S, Chen JL, Vajaranant TS. Effect of dietary modification and antioxidant supplementation on intraocular pressure and open-angle glaucoma. Eur J Ophthalmol 2020; 31:1588-1605. [PMID: 33008269 DOI: 10.1177/1120672120960337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary open-angle glaucoma (POAG) is an age-dependent, intraocular pressure (IOP)-related degeneration of the retinal ganglion cells (RGC). At present, IOP is the only modifiable factor that has been identified to prevent glaucomatous vision loss. Though the pathogenesis of glaucomatous optic neuropathy is still not well understood, increasing evidence suggests oxidative stress may contribute to the induction and progression of glaucoma. Furthermore, antioxidant use may be protective against glaucoma through various mechanisms, including reducing IOP, preserving vascular health, and preventing ganglion cell loss. This article provides a comprehensive review of the effect of oxidative stress, diet, and antioxidant therapy on IOP and open-angle glaucoma.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Judy L Chen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|