1
|
Lei Y, Chen T, Du Q, Yu W. Research trends of nanomaterials in Helicobacter pylori: a bibliometric analysis from 2003 to 2023. Front Pharmacol 2025; 16:1546395. [PMID: 40223931 PMCID: PMC11986359 DOI: 10.3389/fphar.2025.1546395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Background H. pylori infects approximately half of the global population and is associated with numerous diseases, posing a significant public health challenge. Recently, there has been increasing focus on researching nanomaterials for H. pylori. This study aims to visually evaluate the current status and trends of nanomaterials in H. pylori research by bibliometric analysis. Methods H. pylori-related nanomaterials publications were retrieved from WoSCC and articles meeting the criteria were included in the analysis. The data was analyzed by Microsoft Excel, CiteSpace, and VOS viewer. Results This bibliometric analysis included 177 publications on H. pylori and nanomaterials from 2003 to 2023. The study revealed a consistent increase in publications and citations. China leads in the number of publications, citation frequency, and maintains close relations with other countries. The International Journal of Biological Macromolecules and Biomaterials are the leading journals. Yu-hsin Lin is the most contributory scholar. Recent years have seen the special nanoparticles and targeted drug delivery remain a burgeoning research area. Conclusion We conducted a bibliometric analysis of H. pylori-related nanomaterials research and identified the current research direction and frontier in the application of nanomaterials for H. pylori.
Collapse
Affiliation(s)
- Yeqing Lei
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tao Chen
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qin Du
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihua Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Shah SAR, Mumtaz M, Sharif S, Mustafa I, Nayila I. Helicobacter pylori and gastric cancer: current insights and nanoparticle-based interventions. RSC Adv 2025; 15:5558-5570. [PMID: 39967885 PMCID: PMC11834156 DOI: 10.1039/d4ra07886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Background: H. pylori is recognized as one of the main causes of gastric cancer, and this type of cancer is considered as one of the leading diseases causing cancer deaths all over the world. Knowledge on the interactions between H. pylori and gastric carcinogenesis is important for designing preventive measures. Objective: the objective of this review is to summarize the available literature on H. pylori and gastric cancer, specifically regarding the molecular mechanisms, nanoparticle-based therapy and clinical developments. Methods: the databases including PubMed, Google Scholar and web of science were searched as well as papers from 2010 to 2024 were considered for review. Research literature on H. pylori, gastric cancer, nanoparticles, nanomedicine, and therapeutic interventions was summarized for current findings and possible treatments. Results: the presence of H. pylori in gastric mucosa causes chronic inflammation and several molecular alterations such as DNA alteration, epigenetic changes and activation of oncogenic signaling pathways which causes gastric carcinogenesis. Conventional antibiotic treatments have some issues because of the constantly rising levels of antibiotic resistance. Lipid based nanoformulations, polymeric and metallic nanoparticles have been delivered in treatment of H. pylori to improve drug delivery and alter immunological responses. Conclusion: nanoparticle based interventions have been widely explored as drug delivery systems by improving the treatment strategies against H. pylori induced gastric cancer. Further studies and clinical trials are required to bring these findings into a clinical setting in order to possibly alter the management of H. pylori related gastric malignancies.
Collapse
Affiliation(s)
- Syed Ali Raza Shah
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Maria Mumtaz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Imtiaz Mustafa
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Iffat Nayila
- Department of Pharmacy, The University of Lahore Sargodha Campus Sargodha Pakistan
| |
Collapse
|
3
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Fantatto RR, Gomes AR, Constantini JVC, Rodero CF, Chorilli M, Chagas ACDS, Melero A, Pietro RCLR. Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract. Gels 2024; 10:658. [PMID: 39451311 PMCID: PMC11508096 DOI: 10.3390/gels10100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The Rhipicephalus microplus tick causes enormous economic losses in livestock farming around the world. Despite several promising studies carried out with plant extracts such as Achyrocline satureioides against this ectoparasite, a major obstacle is related to pharmaceutical presentation forms. There is no study showing xantan gum-based hydrogel and polycaprolactone nanoparticles containing A. satureioides extract against R. microplus larvae. The objective of this study was to incorporate A. satureioides extract to develop a nanoformulation (AScn) and a hydrogel (ASlh) and evaluate them against R. microplus larvae with the purpose of increasing the contact time of the extract with the larvae and improve the effectiveness. The ethanolic extracts were incorporated in polycaprolactone nanoparticles and characterized via analysis of the mean hydrodinamic diameter and polidispersity index. The xanthan gum-based hydrogel formulation was prepared with crude extract of A. satureioides 40 mg/mL, 0.25% xanthan gum, and 8% poloxamer, to determine the bioadhesiveness of the formulation in bovine leather and the flow rate of the formulation in the animal. The results in larvae demonstrated that when evaluated in the form of a hydrogel (ASlh), mortality was higher, with 91.48% mortality at a concentration of 20 mg/mL presenting itself as an interesting alternative for controlling this ectoparasite.
Collapse
Affiliation(s)
- Rafaela Regina Fantatto
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - Annelize Rodrigues Gomes
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - João Vitor Carvalho Constantini
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - Camila Fernanda Rodero
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | | | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | | |
Collapse
|
6
|
Paes Dutra JA, Gonçalves Carvalho S, Soares de Oliveira A, Borges Monteiro JR, Rodrigues Pereira de Oliveira Borlot J, Tavares Luiz M, Bauab TM, Rezende Kitagawa R, Chorilli M. Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection. Crit Rev Microbiol 2024; 50:728-749. [PMID: 37897442 DOI: 10.1080/1040841x.2023.2274835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Tais Maria Bauab
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Garg A, Karhana S, Khan MA. Nanomedicine for the eradication of Helicobacter pylori: recent advances, challenges and future perspective. Future Microbiol 2024; 19:431-447. [PMID: 38381027 DOI: 10.2217/fmb-2023-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 02/22/2024] Open
Abstract
Helicobacter pylori infection is linked to gastritis, ulcers and gastric cancer. Nanomedicine offers a promising solution by utilizing nanoparticles for precise drug delivery, countering antibiotic resistance and delivery issues. Nanocarriers such as liposomes and nanoparticles enhance drug stability and circulation, targeting infection sites through gastric mucosa characteristics. Challenges include biocompatibility, stability, scalability and personalized therapies. Despite obstacles, nanomedicine's potential for reshaping H. pylori eradication is significant and showcased in this review focusing on benefits, limitations and future prospects of nanomedicine-based strategies.
Collapse
Affiliation(s)
- Aakriti Garg
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd A Khan
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
9
|
Lai Y, Wei W, Du Y, Gao J, Li Z. Biomaterials for Helicobacter pylori therapy: therapeutic potential and future perspectives. Gut Microbes 2022; 14:2120747. [PMID: 36070564 PMCID: PMC9467593 DOI: 10.1080/19490976.2022.2120747] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the main cause of gastric adenocarcinoma. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance and low efficacy; low drug delivery efficiency and difficulties in eradicating H. pylori that is present intracellularly or in biofilms cause further setbacks. Biomaterials that can protect drugs against stomach acid, target lesions, control drug release, destroy biofilms, and exhibit unique antibacterial mechanisms and excellent biocompatibility have emerged as attractive tools for H. pylori eradication, particularly for drug-resistant strains. Herein, we review the virulence mechanisms, current drug treatments, and antibiotic resistance of H. pylori strains. Furthermore, recent advances in the development of biomaterials, including nanoparticles (such as lipid-based nanoparticles, polymeric nanoparticles, and inorganic nanoparticles), microspheres, and hydrogels, for effective and precise therapy of H. pylori and different types of therapeutic mechanisms, as well as future perspectives, have also been summarized.
Collapse
Affiliation(s)
- Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Department of Gastroenterology, Ganzhou People’s Hospital Affiliated to Nanchang University, Ganzhou, China
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Jie Gao Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,CONTACT Zhaoshen Li Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
10
|
Varna D, Christodoulou E, Gounari E, Apostolidou CP, Landrou G, Papi R, Koliakos G, Coutsolelos AG, Bikiaris DN, Angaridis PA. Pegylated-polycaprolactone nano-sized drug delivery platforms loaded with biocompatible silver(i) complexes for anticancer therapeutics. RSC Med Chem 2022; 13:857-872. [PMID: 35923721 PMCID: PMC9298185 DOI: 10.1039/d2md00046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 09/02/2024] Open
Abstract
Cytotoxic potential of Ag(i) coordination compounds against cancer cells is widely recognized, but their frequently low water solubility and potential adverse interactions of Ag(i) ions in biological media require their incorporation into suitable platforms to ensure effective transport and delivery at target sites. Herein, we developed and evaluated the in vitro cytotoxic activity of a biodegradable copolymer-based nano-sized drug delivery system for three cytotoxically active and lipophillic Ag(i) compounds. In particular, polymer-based nanoparticles of the newly synthesized amphiphilic methoxy-poly(ethylene glycol)-poly(caprolactone) (mPEG-PCL) copolymer were prepared as carriers for [Ag(dmp2SH)(PPh3)2]NO3 (1), [Ag(dmp2SH)(xantphos)]NO3 (2) and [Ag(dmp2S)(xantphos)] (3) (dmP2SH = 4,6-dimethylpyrimidine-2-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) which exhibit high cytotoxicity against HeLa cancer cells, while they maintain low toxicity against HDFa normal cells. Taking advantage of the favorable donor-acceptor Lewis acid-base and electrostatic interactions between functional groups of 1-3 and mPEG-PCL copolymer, the formation of [X]@mPEG-PCL (X = 1,2,3) nanoparticles with nearly spherical shape was achieved. Satisfactory loading capacities and encapsulation efficiencies were obtained (13-15% and 80-88%, respectively). Differences in their mean size diameters were observed, revealing a dependence on the individual structural characteristics of the Ag(i) compounds. In vitro release profiles of the nanoparticles showed an initial burst stage, followed by a prolonged release stage extending over 15 days, with their release rates being determined by the mean size of the nanoparticles, as well as the type and crystallinity of the encapsulated Ag(i) compounds. In vitro cytotoxicity studies revealed an increased cytotoxic activity of compounds 1-3 after their encapsulation in mPEG-PCL copolymer against HeLa cells, with the actual concentrations of the loaded compounds responsible for the inhibition of cell viability being reduced by 8 times compared to the compounds in free form. Therefore, the current drug delivery system improves the pharmacokinetic properties of the three cytotoxic and biocompatible Ag(i) compounds, and may be beneficial for future in vivo anticancer treatment.
Collapse
Affiliation(s)
- Despoina Varna
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - Evi Christodoulou
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company Leoforos Georgikis Scholis 65 57001 Thessaloniki Greece
| | - Chrysanthi Pinelopi Apostolidou
- Department of Materials Science and Technology and Institute of Electronic Structure and Laser (I.E.S.L.), Foundation for Research and Technology - Hellas (FO.R.T.H.), University of Crete Vassilika Vouton 70013 Heraklion Greece
| | - Georgios Landrou
- Department of Chemistry, Voutes Campus, University of Crete 70013 Heraklion Greece
| | - Rigini Papi
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - George Koliakos
- Biohellenika Biotechnology Company Leoforos Georgikis Scholis 65 57001 Thessaloniki Greece
| | | | - Dimitrios N Bikiaris
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - Panagiotis A Angaridis
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| |
Collapse
|
11
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
12
|
Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071463. [PMID: 35890358 PMCID: PMC9318142 DOI: 10.3390/pharmaceutics14071463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and the most important single digestive pathogen responsible for the induction of gastroduodenal diseases such as gastritis, peptic ulcer, and, finally, gastric neoplasia. The recently reported high rates of antimicrobial drug resistance hamper the current therapies of H. pylori, with therapeutic failure reaching up to 40% of patients. In this context, new treatment options and strategies are urgently needed, but the successful development of these new therapeutic tools is conditioned by the understanding of the high adaptability of H. pylori to the gastric acidic environment and the complex pathogenic mechanism. Due to several advantages, including good antibacterial efficiency, possible targeted delivery, and long tissular persistence, silver nanoparticles (AgNPs) offer the opportunity of exploring new strategies to improve the H. pylori therapy. A new paradigm in the therapy of H. pylori gastric infections using AgNPs has the potential to overcome the current medical limitations imposed by the H. pylori drug resistance, which is reported for most of the current organic antibiotics employed in the classical therapies. This manuscript provides an extensive overview of the pathology of H. pylori-induced gastritis, gastric cancer, and extradigestive diseases and highlights the possible benefits and limitations of employing AgNPs in the therapeutic strategies against H. pylori infections.
Collapse
|
13
|
Dutra JAP, Luiz MT, Tavares Junior AG, Di Filippo LD, Carvalho SG, Chorilli M. Temozolomide: an Overview of Biological Properties, Drug Delivery Nanosystems, and Analytical Methods. Curr Pharm Des 2022; 28:2073-2088. [PMID: 35658888 DOI: 10.2174/1381612828666220603152918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical prop-erties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Because of this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dos-ing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the phys-icochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spec-trophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sen-sitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different ma-trices.
Collapse
Affiliation(s)
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Bra-zil
| | | | | | - Suzana Gonçalves Carvalho
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
14
|
Marena GD, Ramos MADS, Lima LC, Chorilli M, Bauab TM. Galleria mellonella for systemic assessment of anti-Candida auris using amphotericin B loaded in nanoemulsion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151023. [PMID: 34662607 DOI: 10.1016/j.scitotenv.2021.151023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Galleria mellonella is a model that uses adult larvae to assess the prophylactic, therapeutic, and acute toxic potential of substances. Given their benefits, G. mellonella models are being employed in investigations of systemic infections caused by highly resistant microorganisms. Among the multiresistant microorganisms, we highlight Candida auris, a yeast with high mortality potential and resistance. Among the potential drugs, amphotericin B (AmB) stands out; however, microbial resistance episodes and side effects caused by low selectivity have been observed. The incorporation of AmB into a nanoemulsion (NE) can contribute to the control of C. auris infections and resistance as well as decrease the side effects of this drug. This study aimed to develop AmB-loaded NE (NEA) and evaluate its antifungal action against C. auris in G. mellonella. NEs were obtained by using sunflower oil and cholesterol as the oily phase, polyoxyethylene 20 cetyl ether (Brij® 58) and soy phosphatidylcholine as the surfactant system, and PBS buffer as the aqueous phase. An alternative in vivo assay with G. mellonella for acute toxicity and infection was performed using adult stage larvae (200 mg to 400 mg). According to the obtained results, NE and NEA exhibited sizes of 43 and 48 nm, respectively. The PDI was 0.285 and 0.389 for NE and NEA, respectively. The ZP showed electronegativity for both systems, with -3.77 mV and -3.80 mV for NE and NEA, respectively. Acute toxicity showed that free AmB had greater acute toxicity potential than NEA. The survival assay showed high larval viability. NEA had a better antifungal profile against systemic infection in G. mellonella. It is concluded that the alternative model proved to be an efficient in vivo assay to determine the toxicity and evaluate the therapeutic property of free AmB and NEA in systemic infections caused by C. auris.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Laura Caminitti Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| |
Collapse
|
15
|
Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021; 20:407-424. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) has occupied a significant place among infectious pathogens and it has been documented as a leading challenge due to its higher resistance to the commonly used drugs, higher adaptability, and lower targeting specificity of the available drugs. AREAS COVERED New treatment strategies are urgently needed in order to improve the current advancement in modern medicine. Nanocarriers have gained an advantage of drug encapsulation and high retention time in the stomach with a prolonged drug release rate at the targeted site. This article aims to highlight the recent advances in nanotechnology with special emphasis on metallic, polymeric, lipid, membrane coated, and target-specific nanoparticles (NPs), as well as, natural products for treating H. pylori infection. We discussed a comprehensive approach to understand H. pylori infection and elicits to rethink about the increasing threat posed by H. pylori and its treatment strategies. EXPERT OPINION To address these issues, nanotechnology has got huge potential to combat H. pylori infection and has made great progress in the field of biomedicine. Moreover, combinatory studies of natural products and probiotics in conjugation with NPs have proven efficiency against H. pylori infection, with an advantage of lower cytotoxicity, minimal side effects, and stronger antibacterial potential.[Figure: see text].
Collapse
Affiliation(s)
- Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Egypt
| | | | | | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021; 604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
One of the challenges to the success of veterinary pharmacotherapy is the limited number of drugs and dosage forms available exclusively to this market, due to the interspecies variability of animals, such as anatomy, physiology, pharmacokinetics, and pharmacodynamics. For this reason, studies in this area have become a highlight, since they are still scarce in comparison with those on human drug use. To overcome many limitations related to the bioavailability, efficacy, and safety of pharmacotherapy in animals, especially livestock and domestic animals, polymers-based drug delivery systems are promising tools if they guarantee greater selectivity and less toxicity in dosage forms. In addition, these tools may be developed according to the great interspecies variability. To contribute to these discussions, this paper provides an updated review of the major polymer-based drug delivery systems projected for veterinary use. Traditional and innovative drug delivery systems based on polymers are presented, with an emphasis on films, microparticles, micelles, nanogels, nanoparticles, tablets, implants and hydrogel-based drug delivery systems. We discuss important concepts for the veterinarian about the mechanisms of drug release and, for the pharmacist, the advantages in the development of pharmaceutical forms for the animal population. Finally, challenges and opportunities are presented in the field of pharmaceutical dosage forms for veterinary use in response to the interests of the pharmaceutical industry.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Winner Duque Rodrigues
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Janaína Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil.
| |
Collapse
|
18
|
Dos Santos Ramos MA, de Toledo LG, Spósito L, Marena GD, de Lima LC, Fortunato GC, Araújo VHS, Bauab TM, Chorilli M. Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int J Pharm 2021; 603:120706. [PMID: 33991597 DOI: 10.1016/j.ijpharm.2021.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
The rate of infections caused by resistant bacteria to the antimicrobials available for human use grows exponentially every year, which generates major impacts on human health and the world economy. In the last two decades, human beings can witness the expressive increase in the Science and Technology worldwide, and areas such as Health Sciences have benefited from these advances in favor of human health, such as the advent of Pharmaceutical Nanotechnology as an important approach applied for bacterial infections treatment with resistance profile to available antibiotics. This review of the scientific literature brings the applicability of nanotechnology-based lipid systems as an innovative tool in the improvement of bacterial infections treatment. Important studies involving the use of liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions and lipid nanocapsules were verified in the period from 2000 to 2020, where important scientific results were found and will serve as a basis for the use of these systems to remain in constant updating. This manuscript shows the use of these drug delivery systems as potential vehicles for antibacterial compounds, which opens a new hope in the complement of the antibacterial therapeutic arsenal. Important studies developed in the last 20 years are present in this review, and thus guarantees an update on the use of these drug delivery systems for researchers from different areas of Health Sciences.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Larissa Spósito
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Gabriel Davi Marena
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Laura Caminitti de Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| |
Collapse
|
19
|
Spósito L, Fortunato GC, de Camargo BAF, Ramos MADS, Souza MPCD, Meneguin AB, Bauab TM, Chorilli M. Exploiting drug delivery systems for oral route in the peptic ulcer disease treatment. J Drug Target 2021; 29:1029-1047. [PMID: 33729081 DOI: 10.1080/1061186x.2021.1904249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptic ulcer disease (PUD) is a common condition that is induced by acid and pepsin causing lesions in the mucosa of the duodenum and stomach. The pathogenesis of PUD is a many-sided scenario, which involves an imbalance between protective factors, such as prostaglandins, blood flow, and cell renewal, and aggressive ones, like alcohol abuse, smoking, Helicobacter pylori colonisation, and the use of non-steroidal anti-inflammatory drugs. The standard oral treatment is well established; however, several problems can decrease the success of this therapy, such as drug degradation in the gastric environment, low oral bioavailability, and lack of vectorisation to the target site. In this way, the use of strategies to improve the effectiveness of these conventional drugs becomes interesting. Currently, the use of drug delivery systems is being explored as an option to improve the drug therapy limitations, such as antimicrobial resistance, low bioavailability, molecule degradation in an acid environment, and low concentration of the drug at the site of action. This article provides a review of oral drug delivery systems looking for improving the treatment of PUD.
Collapse
Affiliation(s)
- Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | | | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
20
|
de Souza MPC, de Camargo BAF, Spósito L, Fortunato GC, Carvalho GC, Marena GD, Meneguin AB, Bauab TM, Chorilli M. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit Rev Microbiol 2021; 47:435-460. [PMID: 33725462 DOI: 10.1080/1040841x.2021.1895721] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.
Collapse
Affiliation(s)
| | | | - Larissa Spósito
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | | | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| |
Collapse
|
21
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
22
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|