1
|
Lee Y, Herbig J, Arslan S, Ludescher D, Ubl M, Georg A, Hentschel M, Giessen H. Inorganic Electrochromic Metasurface in the Visible. NANO LETTERS 2025; 25:7553-7559. [PMID: 40272945 DOI: 10.1021/acs.nanolett.5c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Color printing based on metallic or dielectric nanostructures has revolutionized color science due to its unprecedented subwavelength resolution. Evidently, the evolution toward the active control of such structural colors with smart materials is in progress for real applications. Here we experimentally demonstrate a large color gamut with high intensity and purity, as well as switching on and off based solely on tungsten trioxide (WO3) cylindrical resonators. The strong resonances in the visible spectral range in these WO3 metasurfaces can be reversibly switched on and off due to its electrochromism by applying alternating voltages of +2.0 V and -0.3 V. Our approach opens up possibilities for the functional diversification of commercial smart windows, as well as the development of new display technologies in the future.
Collapse
Affiliation(s)
- Yohan Lee
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jonas Herbig
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Serkan Arslan
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Dominik Ludescher
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Monika Ubl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Georg
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße 2, 79110 Freiburg, Germany
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Tang X, Hu Z, Wang Z, Wu X, Wang Z, Su W, Cong S, Geng F, Zhao Z. Super-Wide Color Tunability from a Single Electrochromic Device through In Situ Reconstruction of Optical Cavity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417511. [PMID: 40277200 DOI: 10.1002/adma.202417511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Electrochromic (EC) displays, as non-emissive (passive) displays with low energy consumption, have garnered significant attention from both industry and academia in recent years. Nevertheless, traditional EC technology faces challenges in achieving full-color displays within a single device due to its limited color gamut, even though full-color capability is highly desirable for eliminating the need for complex RGB subpixel mosaics. Herein, a new strategy is proposed utilizing in situ, electrically driven reconstruction of optical cavities on an electrochromic electrode surface to fabricate EC devices with super-wide color tunability. The device fabricated by this approach can create a wide variety of colors from yellow, orange, red, violet, blue, and cyan to green in a single EC device that almost spans the entire visible region (Δhue approaches 360°). Apart from the super-wide color tunability, the devices also have small working voltage window (0.2-1.8 V), outstanding bistability (>8 h), extremely low power consumption (≈2.3 mW cm-2) and good cycling ability (≈4.3% decay rate after 1,000 cycles). Moreover, the super-wide color tunability of these EC devices has been demonstrated in diverse applications, including shifting rainbow flower images, color palettes, and information displays.
Collapse
Affiliation(s)
- Xueqing Tang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Zishou Hu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Zhenyong Wang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Xinzhou Wu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Zhen Wang
- Hainan Provincial Key Laboratory of Research on Utilization of Si Zr Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wenming Su
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Shan Cong
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Fengxia Geng
- College of Energy, Soochow University, Suzhou, 215006, China
| | - Zhigang Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| |
Collapse
|
3
|
Zhang T, Mu X, Li Y, Cong S, Zheng S, Huang R, Geng F, Zhao Z. Optical-Cavity-Incorporated Colorful All-Solid-State Electrochromic Devices for Dual Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402670. [PMID: 38663415 DOI: 10.1002/adma.202402670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Indexed: 05/03/2024]
Abstract
The fusion of electrochromic technology with optical resonant cavities presents an intriguing innovation in the electrochromic field. However, this fusion is mainly achieved in liquid electrolyte-based or sol-gel electrolyte-based electrochromic devices, but not in all-solid-state electrochromic devices, which have broader industrial applications. Here, a new all-solid-state electrochromic device is demonstrated with a metal-dielectric-metal (MDM) resonant cavity, which can achieve strong thin-film interference effects through resonance, enabling the device to achieve unique structural colors that have rarely appeared in reported all-solid-state electrochromic devices, such as yellow green, purple, and light red. The color gamut of the device can be further expanded due to the adjustable optical constants of the electrochromic layer. What is more, this device exhibits remarkable cycling stability (maintaining 84% modulation capability after 7200 cycles), rapid switching time (coloration in 2.6 s and bleaching in 2.8 s), and excellent optical memory effect (only increasing by 13.8% after almost 36 000 s). In addition, this exquisite structural design has dual-responsive anti-counterfeiting effects based on voltage and angle, further demonstrating the powerful color modulation capability of this device.
Collapse
Affiliation(s)
- Taoyang Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xinyang Mu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yaowu Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Shunan Zheng
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Rong Huang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Fengxia Geng
- College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
Kim G, Kim D, Ko S, Han JH, Kim J, Ko JH, Song YM, Jeong HH. Programmable directional color dynamics using plasmonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:22. [PMID: 38304019 PMCID: PMC10831043 DOI: 10.1038/s41378-023-00635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/03/2024]
Abstract
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices. However, the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs. Here, we present a multicolor nanofilter consisting of multilayered 'active' plasmonic nanocomposites, wherein metallic nanoparticles are embedded within a conductive polymer nanofilm. These nanocomposites are fabricated with a total thickness below 100 nm using a 'lithography-free' method at the wafer level, and they inherently exhibit three prominent optical modes, accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors. Here, a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed, encompassing the entire visible spectrum. Furthermore, this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum (3250 K-6250 K). This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun's elevation and prevailing weather conditions.
Collapse
Affiliation(s)
- Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Soeun Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
5
|
Tan P, Ren D, Han Y. Full-Color-Adjustable Nanophotonic Device Adopting Electrochromic Poly(3,4-ethylenedioxythiophene) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2614-2623. [PMID: 38178791 DOI: 10.1021/acsami.3c14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Intercalation-based organic polymers that shift their colors during ion insertion and extraction provide a significant basis for existing electrochromic technology. Nevertheless, the complexity of modifying the structure in the skeleton or combining several diverse polymers to produce a full-color range has restricted the practical applications of electrochromic materials. Herein, we demonstrate two configurations of the poly(3,4-ethylenedioxythiophene) (PEDOT) Fabry-Perot (F-P) nanocavity-type electrochromic devices fabricated by spray coating lossless PEDOT on the F-P metasurfaces (Cr/ITO/Ag/Cr), which allows full-color response by simply controlling the thickness of dielectric layer indium tin oxide (ITO). However, the reflected light from the PEDOT F-P nanocavity-type electrode can be modulated by electrically controllable optical absorption of PEDOT. Besides, the subtle brightness regulation could be obtained in our F-P nanocavity electrochromic devices via altering the PEDOT thickness. Overall, our results offer a novel perspective for versatile color control of PEDOT.
Collapse
Affiliation(s)
- Peiyu Tan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Dengfeng Ren
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yuge Han
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
6
|
Liu Y, Huang L, Cao S, Chen J, Zou B, Li H. Plasmonic-based electrochromic materials and devices. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:155-172. [PMID: 39635304 PMCID: PMC11501796 DOI: 10.1515/nanoph-2023-0832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/23/2023] [Indexed: 12/07/2024]
Abstract
The development of electrochromic (EC) materials has paved the way for a wide range of devices, such as smart windows, color displays, optical filters, wearable camouflages, among others. However, the advancement of electrochromism faces a significant hurdle due to its poor stability and limited color options. This lack of stability is primarily attributed to the substantial alteration in the dielectric properties of EC materials during cycling. Consequently, the design of advanced plasmonic materials is a key strategy to achieve a stable EC device. In this review, we provide an overview of the current state-of-the-art designs of plasmonic-based EC materials and devices. We discuss their working principles, techniques for structure/morphology engineering, doping methods, and crystal phase design. Furthermore, we explore the integration of plasmonic materials with other EC materials to create advanced EC devices. Finally, we outline the challenges that need to be addressed and present an outlook on the development of high-performance EC devices.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Lin Huang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404China
| | - Binsuo Zou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Haizeng Li
- Optics and Thermal Radiation Research Center, Institute of Frontier & Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
7
|
Ko B, Jeon N, Kim J, Kang H, Seong J, Yun S, Badloe T, Rho J. Hydrogels for active photonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:1. [PMID: 38169527 PMCID: PMC10757998 DOI: 10.1038/s41378-023-00609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
| |
Collapse
|
8
|
Li R, Liang Y, Wei H, Zhang H, Kurilkina S, Peng W. Dynamic Spectral Modulation Enabled by Conductive Polymer-Integrated Plasmonic Nanodisk-Hole Arrays. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047552 DOI: 10.1021/acsami.3c10853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The electrically driven optical performance modulation of the plasmonic nanostructure by conductive polymers provides a prospective technology for miniaturized and integrated active optoelectronic devices. These features of wafer-scale and flexible preparation, a wide spectrum adjustment range, and excellent electric cycling stability are critical to the practical applications of dynamic plasmonic components. Herein, we have demonstrated a large-scale and flexible active plasmonic nanostructure constructed by electrochemically synthesizing nanometric-thickness conductive polymer onto spatially mismatched Au nanodisk-hole (AuND-H) array on the poly(ethylene terephthalate) (PET) substrate, offering low-power electrically driven switching of reflective light in a wide wavelength range of 550-850 nm. The composite structure of the polymer/AuND-H array supports multiple plasmonic resonance modes with strong near-field enhancement and confinement, which provides an excellent dynamic spectral modulation platform. As a result, the PPy/AuND-H array achieves 18.4% reversible switching of spectral intensity at 780 nm and speedy response time, as well as maintains a stable dynamic modulation range at two-potential cycling between -0.6 and 0.1 V after 200 modulation cycles. Compared to the case of the PPy/AuND-H array, the PANI/AuND-H array obtains a more extensive intensity modulation of 25.1% at 750 nm, which is attributed to the significant differences in the extinction coefficient between the oxidized and reduced states of PANI, but its modulation range degrades apparently after 20 cycles driven at applied voltages between -0.1 and 0.8 V. Additionally, the cycling stability could be further improved by reducing the modulation voltage range. Our proposed electromodulated composite structure provides a promising technological proposal for dynamically plasmonic reconfigurable devices.
Collapse
Affiliation(s)
- Rui Li
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yuzhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Haonan Wei
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hui Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Svetlana Kurilkina
- Belarusian State University, Minsk 220030, Belarus
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
10
|
Park JE, Lee S, Kim Y, Albert SK, Lee Y, Hyun JK, Lee W, Park SJ. Multicolor Conjugated Polymer Thin Films with Tunable Responsivity to Oxidative and Reductive Environments. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903335 DOI: 10.1021/acsami.3c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Dynamic colors that respond to environmental changes are of great interest for diverse areas of science and technology ranging from chemical and biological sensors to smart information display. Here, we demonstrate a multitude of responsive colors from a conjugated polymer film arising from a thin-film interference. This mechanism provides an excellent control over the thin-film color by varying the film thickness, type of substrate, and degree of polaron population and is generally applicable to various conjugated polymers for further color variation. Furthermore, multiple sets of responsive colors are achieved from a single polymer layer by patterning the underlying substrate to spatially modify the interference conditions. Using this system, we demonstrate the reversible color changes induced by an oxidative or reductive environment with color responsivity controllable with the nature of the polaron state.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Soomin Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Korea
| | - Youngji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yumin Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jerome Kartham Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Wooyoung Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Jiang C, Ge R, Bian C, Chen L, Wang X, Zheng Y, Xu G, Cai G, Xiao X. Multicolored inorganic electrochromic materials: status, challenge, and prospects. NANOSCALE 2023; 15:15450-15471. [PMID: 37721398 DOI: 10.1039/d3nr03192f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Against the backdrop of advocacy for green and low-carbon development, electrochromism has attracted academic and industrial attention as an intelligent and energy-saving applied technology due to its optical switching behavior and its special principles of operation. Inorganic electrochromic materials, represented by transition metal oxides, are considered candidates for the next generation of large-scale electrochromic applied technologies due to their excellent stability. However, the limited color diversity and low color purity of these materials greatly restrict their development. Starting from the multicolor properties of inorganic electrochromic materials, this review systematically elaborates on recent progress in the aspects of the intrinsic multicolor of electrochromic materials, and structural multicolor based on the interaction between light and microstructure. Finally, the challenges and opportunities of inorganic electrochromic technology in the field of multicolor are discussed.
Collapse
Affiliation(s)
- Chengyu Jiang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Rui Ge
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chenchen Bian
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Lirong Chen
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xingru Wang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yang Zheng
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gang Xu
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guofa Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Xiudi Xiao
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Wilson NC, Shin E, Bangle RE, Nikodemski SB, Vella JH, Mikkelsen MH. Ultrathin Pyroelectric Photodetector with Integrated Polarization-Sensing Metasurface. NANO LETTERS 2023; 23:8547-8552. [PMID: 37671730 DOI: 10.1021/acs.nanolett.3c02341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
An abundance of metallic metasurfaces have been realized with miniscule, intricate features capable of tailored scattering, reflection, and absorption; however, high losses through heat limit their use in optoelectronics. Here, codesign of a detector and a polarization-sensing metasurface overcomes this challenge by utilizing the heat generation for integrated pyroelectric detection of the incoming light polarization. Using a nanogap metasurface with asymmetric metallic elements, polarization-sensitive photodetection exhibits high extinction ratios up to 19 for orthogonally polarized light and allows extraction of Stokes parameters with <12% deviation from theoretical values. This polarization-sensitive photodetector is ultrathin, consisting of active layers of only 290 nm, and exhibits fast response times of ∼2 ns. The structure is fully integrated, requiring no external cameras, detectors, or power sources, and points toward the creation of layered, multifunctional devices that utilize exotic metasurface properties for novel and compact sensing and imaging.
Collapse
Affiliation(s)
- Nathaniel C Wilson
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eunso Shin
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rachel E Bangle
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | | | - Jarrett H Vella
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
13
|
Li W, Zhang X, Yan D, Wang L, Sun W, Li Z, Deng J, Zhao J, Li Y. Rejuvenation of Electrochromic Devices. SMALL METHODS 2023:e2300850. [PMID: 37727054 DOI: 10.1002/smtd.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Indexed: 09/21/2023]
Abstract
Electrochromic devices (ECDs) are a hot pot due to their significant energy-saving effect in green buildings. However, the ECDs suffer from degradation induced by ion trapping during cycling, which restricts their further development. Here, it is demonstrated that the electrochromic performance of the degraded ECDs can be rejuvenated by heat treatment method The release mechanism of trapped ions in films is simulated and validated using three types of ECDs. The semi-solid-state ECD evinces a state of near-failure at low temperatures can regain its initial performance by heating. All-solid-state ECDs, including amorphous WO3 (a-WO3 ECD) and crystalline WO3 (c-WO3 ECD) as the electrochromic layer, can also release the trapped ions and regain the performance (97.3% and 95.5% of initial optical modulation) by annealing, regardless of the way of degradation. The research has extended the lifespan of multiple ECDs, providing significant practical value and promoting sustainable, and eco-friendly development.
Collapse
Affiliation(s)
- Wenjie Li
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, P. R. China
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiang Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dukang Yan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lebin Wang
- School of Materials, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenhai Sun
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zitong Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianbo Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Ran X, Ren J, Zhang S, Wu Y, Wu S. Multicolor Electrochromic Display and Patterned Device Based on Hollow-SiO 2-Supported WO 3 Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41763-41771. [PMID: 37608572 DOI: 10.1021/acsami.3c09956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Electrochromic photonic crystals (PCs) have been intensively studied in the field of display, sensors, and intelligent materials due to their tunable brilliant structural colors. The mostly studied electrochromic PCs are based on the tunable lattice parameter after electrifying; namely, the electrochromic process is caused by the structural change of PCs. Besides the lattice parameter, the refractive index is another key factor to determine the structural color of PCs. Here, a kind of hollow-SiO2-supported WO3 (H-SiO2/WO3) PCs is designed, where the refractive index of the WO3 portion is changeable under charging. Benefiting from the support effect and tunable thickness of H-SiO2, large-area PC samples with good surface morphology and bright multicolor output are prepared. The reflection peaks of these composite PCs can shift by 30-90 nm, and their corresponding colors changed obviously after the voltage was applied. After being pixelated by laser-marking, the H-SiO2/WO3 PCs can dynamically display different numeric and alphabetic patterns in an electric-driven writing and erasing process. Not only does this composite PC structure broaden the color change range of WO3-based materials but also avoids the structural change in the electrochromic process. This work provides more possibilities for electrochromic PCs in the field of color-changing pattern displays.
Collapse
Affiliation(s)
- Xiaoxu Ran
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Li Y, Sun P, Chen J, Zha X, Tang X, Chen Z, Zhang Y, Cong S, Geng F, Zhao Z. Colorful Electrochromic Displays with High Visual Quality Based on Porous Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300116. [PMID: 36921294 DOI: 10.1002/adma.202300116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Indexed: 06/09/2023]
Abstract
The introduction of metamaterials into electrochromic (EC) displays has recently inspired a great breakthrough in the EC field, as this can offer a variety of new attractive features, from a very wide gamut of colors to very fast switching times. However, such metamaterial-based EC displays still face significant constraints when developing from single electrodes to full devices, because other supportive components in devices, such as counter electrodes and electrolytes, significantly affect light propagation and the subsequent perceived color quality in metamaterial-based EC devices. Herein, a new, cost-effective device design structured around a new type of porous metamaterial is reported to circumvent the critical problem in metamaterial-based EC displays. Owing to its unique design, the metamaterial-based EC device achieves good color quality with no drop in brightness or shift in color chromaticity when compared with a single electrode. Moreover, the porous-metamaterial-based EC device can exhibit non-iridescence and be viewed from a wide range of angles (5°-85°) and has fast switching response (2.4 and 2.5 s for coloration and bleaching, respectively), excellent cycling performance (at least 2000 cycles), and extremely low power consumption (4.0 mW cm-2 ).
Collapse
Affiliation(s)
- Yaowu Li
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Peiyan Sun
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jian Chen
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xiuling Zha
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xueqing Tang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zhiwei Chen
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanan Zhang
- College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Shan Cong
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, P. R. China
| | - Fengxia Geng
- College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Zhigang Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| |
Collapse
|
16
|
Jiang H, Zhang Y, Tang R, Zhang X, Xia X, Wang B, Han L. Novel ultrasensitive Raman assay method based on enzyme mimetics for ultra trace of H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122456. [PMID: 36773420 DOI: 10.1016/j.saa.2023.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Enzyme mimetics have been widely applied on H2O2 assay, but it is still challenging and interesting to realize the sensitive detection for ultra-trace H2O2. Here, an ultrasensitive Raman assay method based on novel WO3@IP6-Fe3+ enzyme mimetics with peroxidase-like activity was established. WO3 microspheres (MSs) were found to have weak peroxidase-like activity, and the combination of IP6-Fe3+ and WO3 can produce stronger activity. WO3@IP6-Fe3+ MSs showed polyhedron-like structure, uniform size, and smooth surface. Although WO3@IP6-Fe3+ enzyme mimetics have low catalytic efficiency and high absorbance background, the proposed Raman method can bypass the above problems. In Raman method, high concentration of WO3@IP6-Fe3+ can be used to overcome low catalytic efficiency without high absorbance background. Moreover, 3,3',5,5'-tetramethylbenzidine oxide has prominent characteristic Raman peak at 1608 cm-1, greatly improving the sensitivity and eliminating interference of impurities. Due to the high sensitivity and low background, Raman assay showed the ultra-low limit of detection (5.49 × 10-15 M), which was 4-7 orders of magnitude lower than other detection methods. The ultrasensitive Raman assay not only provided the possibility for the enzyme mimetics-based detection of ultra-trace H2O2, but also enable the enzyme mimetics with low activity to be applied.
Collapse
Affiliation(s)
- Huan Jiang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Yucui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Ruyi Tang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Xia Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China.
| | - Xuemin Xia
- School of Materials Science and Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Baihui Wang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China.
| |
Collapse
|
17
|
Zhou X, Huang E, Zhang R, Xiang H, Zhong W, Xu B. Multicolor Tunable Electrochromic Materials Based on the Burstein-Moss Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101580. [PMID: 37241997 DOI: 10.3390/nano13101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Inorganic electrochromic (EC) materials, which can reversibly switch their optical properties by current or potential, are at the forefront of commercialization of displays and smart windows. However, most inorganic EC materials have challenges in achieving multicolor tunability. Here, we propose that the Burstein-Moss (BM) effect, which could widen the optical gap by carrier density, could be a potential mechanism to realize the multicolor tunable EC phenomenon. Degenerated semiconductors with suitable fundament band gaps and effective carrier masses could be potential candidates for multicolor tunable EC materials based on the BM effect. We select bulk Y2CF2 as an example to illustrate multicolor tunability based on the BM effect. In addition to multicolor tunability, the BM effect also could endow EC devices with the ability to selectively modulate the absorption for near infrared and visible light, but with a simpler device structure. Thus, we believe that this mechanism could be applied to design novel EC smart windows with unprecedented functions.
Collapse
Affiliation(s)
- Xia Zhou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Enhui Huang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Zhang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Xiang
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
| | - Wenying Zhong
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Xu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Huang K, Qiu H, Zhang X, Luo W, Chen Y, Zhang J, Chen Y, Wang G, Zheng K. Orthogonal Trichromatic Upconversion with High Color Purity in Core-Shell Nanoparticles for a Full-Color Display. Angew Chem Int Ed Engl 2023; 62:e202218491. [PMID: 36759322 DOI: 10.1002/anie.202218491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Materials with tunable emission colors has attracted increasing interest in both fundamental research and applications. As a key member of light-emitting materials family, lanthanide doped upconversion nanoparticles (UCNPs) have been intensively demonstrated to emit light in any color upon near-infrared excitation. However, realizing the trichromatic emission in UCNPs with a fixed composition remains a great challenge. Here, without excitation pulsed modulation and three different near-infrared pumping, we report an experimental design to fine-control emission in the full color gamut from core-shell-structured UCNPs by manipulating the energy migration through dual-channel pump scheme. We also demonstrate their potential application in full-color display. These findings may benefit the future development of convenient and versatile optical methos for multicolor tuning and open up the possibility of constructing full-color volumetric display systems with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kaofeng Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Haiyi Qiu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Xintong Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wang Luo
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Jiacheng Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yihang Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Guannan Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China.,School of Pharmacy, Shenyang Medical University, Shenyang, 110034, China
| | - Kezhi Zheng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Hopmann E, Zhang W, Li H, Elezzabi AY. Advances in electrochromic device technology through the exploitation of nanophotonic and nanoplasmonic effects. NANOPHOTONICS 2023; 12:637-657. [PMID: 36844468 PMCID: PMC9945060 DOI: 10.1515/nanoph-2022-0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Research regarding electrochromic (EC) materials, such materials that change their color upon application of an electrochemical stimulus, has been conducted for centuries. However, most recently, increasing efforts have been put into developing novel solutions to utilize these on-off switching materials in advanced nanoplasmonic and nanophotonic devices. Due to the significant change in dielectric properties of oxides such as WO3, NiO, Mn2O3 and conducting polymers like PEDOT:PSS and PANI, EC materials have transcended beyond simple smart window applications and are now found in plasmonic devices for full-color displays and enhanced modulation transmission and photonic devices with ultra-high on-off ratios and sensing abilities. Advancements in nanophotonic ECDs have further decreased EC switching speed by several orders of magnitude, allowing integration in real-time measurement and lab-on-chip applications. The EC nature of such nanoscale devices promises low energy consumption with low operating voltages paired with bistability and long lifetimes. We summarize these novel approaches to EC device design, lay out the current short comings and draw a path forward for future utilization.
Collapse
Affiliation(s)
- Eric Hopmann
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, ABT6G 2V4, Canada
| | - Wu Zhang
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, ABT6G 2V4, Canada
| | - Haizeng Li
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266273, China
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, ABT6G 2V4, Canada
| |
Collapse
|
20
|
Dai C, Wang Z, Shi Y, Li Z, Li Z. Scalable Hydrogel-Based Nanocavities for Switchable Meta-Holography with Dynamic Color Printing. NANO LETTERS 2022; 22:9990-9996. [PMID: 36490382 DOI: 10.1021/acs.nanolett.2c03570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Devices used for meta-optics display are currently undergoing a revolutionary transition from static to dynamic. Despite various tuning strategy demonstrations such as mechanical, electrical, optical, and thermal tunings, a longstanding challenge for their practical application has been the achievement of a conveniently accessible real-life tuning scheme for realizing versatile functionality dynamics outside the laboratory. In this study, we demonstrate a practical tuning strategy to realize a dynamic color printing with a switchable meta-holography exhibition based on hydrogel-based nanocavities. On the basis of the inflation sensitivity of a hydrogel to humidity alteration, its transmissive color was notably tuned from 450 to 750 nm. More intriguingly, by controlling the sample dry/immersed states in real time, we successfully enabled dual-channel switchable meta-holography. With the advantages of facile architecture, daily stimulus with large-area modulation, and high chromaticity, our proposed hydrogel-based nanocavities provide a promising path toward tunable display/encryption, optical sensors, and next-generation display technology.
Collapse
Affiliation(s)
- Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zejing Wang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| |
Collapse
|
21
|
Abdelraouf OAM, Wang Z, Liu H, Dong Z, Wang Q, Ye M, Wang XR, Wang QJ, Liu H. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS NANO 2022; 16:13339-13369. [PMID: 35976219 DOI: 10.1021/acsnano.2c04628] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metasurfaces, a two-dimensional (2D) form of metamaterials constituted by planar meta-atoms, exhibit exotic abilities to tailor electromagnetic (EM) waves freely. Over the past decade, tremendous efforts have been made to develop various active materials and incorporate them into functional devices for practical applications, pushing the research of tunable metasurfaces to the forefront of nanophotonics. Those active materials include phase change materials (PCMs), semiconductors, transparent conducting oxides (TCOs), ferroelectrics, liquid crystals (LCs), atomically thin material, etc., and enable intriguing performances such as fast switching speed, large modulation depth, ultracompactness, and significant contrast of optical properties under external stimuli. Integration of such materials offers substantial tunability to the conventional passive nanophotonic platforms. Tunable metasurfaces with multifunctionalities triggered by various external stimuli bring in rich degrees of freedom in terms of material choices and device designs to dynamically manipulate and control EM waves on demand. This field has recently flourished with the burgeoning development of physics and design methodologies, particularly those assisted by the emerging machine learning (ML) algorithms. This review outlines recent advances in tunable metasurfaces in terms of the active materials and tuning mechanisms, design methodologies, and practical applications. We conclude this review paper by providing future perspectives in this vibrant and fast-growing research field.
Collapse
Affiliation(s)
- Omar A M Abdelraouf
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ziyu Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ming Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Jie Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
22
|
Liu Q, Yang L, Ling W, Guo B, Chen L, Wang J, Zhang J, Wang W, Mo F. Organic electrochromic energy storage materials and device design. Front Chem 2022; 10:1001425. [PMID: 36212068 PMCID: PMC9538391 DOI: 10.3389/fchem.2022.1001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
While not affecting electrochemical performance of energy storage devices, integrating multi-functional properties such as electrochromic functions into energy storage devices can effectively promote the development of multifunctional devices. Compared with inorganic electrochromic materials, organic materials possess the significant advantages of facile preparation, low cost, and large color contrast. Specifically, most polymer materials show excellent electrochemical properties, which can be widely used in the design and development of energy storage devices. In this article, we focus on the application of organic electrochromic materials in energy storage devices. The working mechanisms, electrochemical performance of different types of organics as well as the shortcomings of organic electrochromic materials in related devices are discussed in detail.
Collapse
Affiliation(s)
- Qingjiang Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Liangliang Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Wei Ling
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Binbin Guo
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Lina Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaqi Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaolong Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| | - Wenhui Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| |
Collapse
|
23
|
Fan K, Averitt RD, Padilla WJ. Active and tunable nanophotonic metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3769-3803. [PMID: 39635159 PMCID: PMC11501849 DOI: 10.1515/nanoph-2022-0188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/07/2024]
Abstract
Metamaterials enable subwavelength tailoring of light-matter interactions, driving fundamental discoveries which fuel novel applications in areas ranging from compressed sensing to quantum engineering. Importantly, the metallic and dielectric resonators from which static metamaterials are comprised present an open architecture amenable to materials integration. Thus, incorporating responsive materials such as semiconductors, liquid crystals, phase-change materials, or quantum materials (e.g., superconductors, 2D materials, etc.) imbue metamaterials with dynamic properties, facilitating the development of active and tunable devices harboring enhanced or even entirely novel electromagnetic functionality. Ultimately, active control derives from the ability to craft the local electromagnetic fields; accomplished using a host of external stimuli to modify the electronic or optical properties of the responsive materials embedded into the active regions of the subwavelength resonators. We provide a broad overview of this frontier area of metamaterials research, introducing fundamental concepts and presenting control strategies that include electronic, optical, mechanical, thermal, and magnetic stimuli. The examples presented range from microwave to visible wavelengths, utilizing a wide range of materials to realize spatial light modulators, effective nonlinear media, on-demand optics, and polarimetric imaging as but a few examples. Often, active and tunable nanophotonic metamaterials yield an emergent electromagnetic response that is more than the sum of the parts, providing reconfigurable or real-time control of the amplitude, phase, wavevector, polarization, and frequency of light. The examples to date are impressive, setting the stage for future advances that are likely to impact holography, beyond 5G communications, imaging, and quantum sensing and transduction.
Collapse
Affiliation(s)
- Kebin Fan
- School of Electronic Science and Engineering, Nanjing University, Nanjing210023, China
| | | | - Willie J. Padilla
- Department of Electrical and Computer Engineering, Duke University, Durham, NC27708, USA
| |
Collapse
|
24
|
Kalaev D, Seo HG, Tuller HL. Temporal and spatial tuning of optical constants in praseodymium doped ceria by electrochemical means. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3943-3952. [PMID: 39635178 PMCID: PMC11501871 DOI: 10.1515/nanoph-2022-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2024]
Abstract
Temporal and spatial tuning of the refractive index of optical thin films is desired for flat optics applications. The redistribution of mobile ions in mixed ionic-electronic conductors (MIEC) has been demonstrated to serve as a viable means for achieving optical tuning down to the nanoscale. Here we studied the dynamic range of the optical tuning achievable in the refractive index, in the MIEC oxide - Pr x Ce1-x O2-δ (PCO), for x = 0.1, 0.2 and 0.4, at 500 °C, by in-situ spectrophotometry. Significant increases in the modulation of both the imaginary and real optical constants in the visible and the adjacent spectra were obtained for increased doping levels. Device employing an electrochemical titration method was implemented to modulate the oxygen concentration, and thereby the optical transmission of PCO. Incorporation of a patterned top electrode allowed for the demonstration of spatial control of PCO thin film properties by in-situ video imaging of the optical switching process. The electrochemically induced optical state is shown to remain non-volatile upon quenching the device to room temperature under applied bias.
Collapse
Affiliation(s)
- Dmitri Kalaev
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Han Gil Seo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Harry L. Tuller
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
26
|
Badloe T, Kim J, Kim I, Kim WS, Kim WS, Kim YK, Rho J. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. LIGHT, SCIENCE & APPLICATIONS 2022; 11:118. [PMID: 35487908 PMCID: PMC9054757 DOI: 10.1038/s41377-022-00806-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 05/20/2023]
Abstract
Taking inspiration from beautiful colors in nature, structural colors produced from nanostructured metasurfaces have shown great promise as a platform for bright, highly saturated, and high-resolution colors. Both plasmonic and dielectric materials have been employed to produce static colors that fulfil the required criteria for high-performance color printing, however, for practical applications in dynamic situations, a form of tunability is desirable. Combinations of the additive color palette of red, green, and blue enable the expression of further colors beyond the three primary colors, while the simultaneous intensity modulation allows access to the full color gamut. Here, we demonstrate an electrically tunable metasurface that can represent saturated red, green, and blue pixels that can be dynamically and continuously controlled between on and off states using liquid crystals. We use this to experimentally realize ultrahigh-resolution color printing, active multicolor cryptographic applications, and tunable pixels toward high-performance full-color reflective displays.
Collapse
Affiliation(s)
- Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won-Sik Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wook Sung Kim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Young-Ki Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| |
Collapse
|
27
|
Han JH, Kim D, Kim J, Kim G, Kim JT, Jeong HH. Responsive photonic nanopixels with hybrid scatterers. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1863-1886. [PMID: 39633928 PMCID: PMC11501278 DOI: 10.1515/nanoph-2021-0806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/07/2024]
Abstract
Metallic and dielectric nanoscatterers are optical pigments that offer rich resonating coloration in the subwavelength regime with prolonged material consistency. Recent advances in responsive materials, whose mechanical shapes and optical properties can change in response to stimuli, expand the scope of scattering-based colorations from static to active. Thus, active color-changing pixels are achieved with extremely high spatial resolution, in conjunction with various responsive polymers and phase-change materials. This review discusses recent progress in developing such responsive photonic nanopixels, ranging from electrochromic to other color-changing concepts. We describe what parameters permit modulation of the scattering colors and highlight superior functional devices. Potential fields of application focusing on imaging devices, including active full-color printing and flexible displays, information encryption, anticounterfeiting, and active holograms, are also discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| |
Collapse
|
28
|
Eaves-Rathert J, Kovalik E, Ugwu CF, Rogers BR, Pint CL, Valentine JG. Dynamic Color Tuning with Electrochemically Actuated TiO 2 Metasurfaces. NANO LETTERS 2022; 22:1626-1632. [PMID: 35138860 DOI: 10.1021/acs.nanolett.1c04613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dynamic tuning of metamaterials is a critical step toward advanced functionality and improved bandwidth. In the visible spectrum, full spectral color tuning is inhibited by the large absorption that accompanies index changes, particularly at blue wavelengths. Here, we show that the electrochemical lithiation of anatase TiO2 to Li0.5TiO2 (LTO) results in an index change of 0.65 at 649 nm with absorption coefficient less than 0.1 at blue wavelengths, making this material well-suited for dynamic visible color tuning. Dynamic tunability of TiO2 is leveraged in a Fabry-Perot cavity and a gap plasmon metasurface. In the Fabry-Perot configuration, the device exhibits a shift in reflectance of over 100 nm when subjected to only 2 V bias while the gap plasmon metasurface achieves enhanced switching speed. The dynamic range, speed, and cyclability indicate that the TiO2/LTO system is competitive with established actuators like WO3, with the additional advantage of reduced absorption at high frequencies.
Collapse
Affiliation(s)
- Janna Eaves-Rathert
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Elena Kovalik
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Chibuzor Fabian Ugwu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bridget R Rogers
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cary L Pint
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jason G Valentine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
29
|
Ko B, Chae JY, Badloe T, Kim H, Kim SJ, Hong SH, Paik T, Rho J. Multilevel Absorbers via the Integration of Undoped and Tungsten-Doped Multilayered Vanadium Dioxide Thin Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1404-1412. [PMID: 34978805 DOI: 10.1021/acsami.1c19223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reconfigurable light absorbers have attracted much attention by providing additional optical responses and expanding the number of degrees of freedom in security applications. Fabry-Pèrot absorbers based on phase change materials with tunable properties can be implemented over large scales without the need for additional steps such as lithography, while exhibiting reconfigurable optical responses. However, a fundamental limitation of widely used phase change materials such as vanadium dioxide and germanium-antimony-tellurium-based chalcogenide glasses is that they have only two distinct phases; therefore, only two different states of optical properties are available. Here, we experimentally demonstrate active multilevel absorbers that are tuned by controlling the external temperature. This is produced by creating large-scale lithography-free multilayer structures with both undoped and tungsten-doped solution-processed monoclinic-phase vanadium dioxide thin films. The doping of vanadium dioxide with tungsten allows for the modulation of the phase-transition temperature, which results in an extra degree of freedom and therefore an additional step for the tunable properties. The proposed multilevel absorber is designed and characterized both numerically and experimentally. Such large-scale multilevel tunable absorbers realized with nanoparticle-based solution fabrication techniques are expected to open the way for advanced thermo-optical cryptographic devices based on tunable reflective coloration and near-infrared absorption.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ji-Yeon Chae
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Soo-Jung Kim
- Materials and Component Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Sung-Hoon Hong
- Materials and Component Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
30
|
Li Y, Fang R, Wang D. A Reversible Moisture-Responsive Plasmonic Color-Raman and Transmittance Modulation Device by Dispersing Hyaluronan-Functionalized Ag into Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2219-2229. [PMID: 34962377 DOI: 10.1021/acsami.1c18259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic physical color generation, which mostly depends on selective absorption, creates unique colors by light transmission and scattering. Based on this, regulating plasmon and transparency with external stimulation is a promising approach for fabricating optical devices with enhanced visual displays; however, few studies have addressed the implementation of dual-optical modulation. In addition, developing a color response to environmental stimuli through the highly shape-sensitive plasmon depth modulation has long remained a significant challenge once the nanostructure is determined. Some stimulations also require high amounts of electricity, which can be costly. In this study, strategically designed hyaluronan-functionalized triangular silver nanoparticles (AgNPs) were embedded in polyvinyl alcohol-polyethylene nanofiber films to achieve a breakthrough in the moisture-responsive dual-optical modulation of the plasmonic color-Raman and transparency. Switchable colors that are reversible were induced in plasmon-resonance-modulation AgNPs via moisture stimulation, adjusting the expansion-tunable dielectric constant of hyaluronan-functionalized AgNPs and varying the electron density due to electron transfer. Furthermore, a moisture gradient was used to decrease the Raman scattering and increase the photoluminescence, which is a significant demonstration of smart-plasmonic evolution. This effect occurred due to the gradual transition from plasmon-driven photoluminescence quenching to photoluminescence enhancement as the interval of the Ag and hyaluronic acid molecules was increased. The transparency of the composite film was also dynamically regulated by turning moisture on/off. This occurred because of the significant difference in hygroscopic expansion between hyaluronan and the nanofibers, which generated a large variation in the total refractive index and caused changes in the surface roughness.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Ranran Fang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
31
|
Rossi S, Olsson O, Chen S, Shanker R, Banerjee D, Dahlin A, Jonsson MP. Dynamically Tuneable Reflective Structural Coloration with Electroactive Conducting Polymer Nanocavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105004. [PMID: 34626028 PMCID: PMC11469130 DOI: 10.1002/adma.202105004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Dynamic control of structural colors across the visible spectrum with high brightness has proven to be a difficult challenge. Here, this is addressed with a tuneable reflective nano-optical cavity that uses an electroactive conducting polymer (poly(thieno[3,4-b]thiophene)) as spacer layer. Electrochemical doping and dedoping of the polymer spacer layer provides reversible tuning of the cavity's structural color throughout the entire visible range and beyond. Furthermore, the cavity provides high peak reflectance that varies only slightly between the reduced and oxidized states of the polymer. The results indicate that the polymer undergoes large reversible thickness changes upon redox tuning, aided by changes in optical properties and low visible absorption. The electroactive cavity concept may find particular use in reflective displays, by opening for tuneable monopixels that eliminate limitations in brightness of traditional subpixel-based systems.
Collapse
Affiliation(s)
- Stefano Rossi
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Shangzhi Chen
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Ravi Shanker
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Debashree Banerjee
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Magnus P. Jonsson
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| |
Collapse
|
32
|
Wang JL, Liu JW, Sheng SZ, He Z, Gao J, Yu SH. Manipulating Nanowire Assemblies toward Multicolor Transparent Electrochromic Device. NANO LETTERS 2021; 21:9203-9209. [PMID: 34677062 DOI: 10.1021/acs.nanolett.1c03061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Assembling various nanowires together, enabling the assemblies with tailored optical, electrical, and multifunctional properties, represents a promising technology for next generation multifunctional electronics. Here we demonstrate a novel multicolor electrochromic device by coassembling W18O49 and V2O5 nanowires using solution-based Langmuir-Blodgett technique. The transparent W18O49 nanowire film became orange with the increasing addition of V2O5 nanowires and the film underwent a dynamic color change (orange, green, and gray) on application of different electrochemical biases of 2, 0, and -0.5 V (vs Ag/AgCl). Both the transmittance and color of the device can be easily controlled by manipulating the layers of coassembled nanowires and the ratios between the two nanowires. On the basis of this approach, different patterns can be easily fabricated with the addition of corresponding masks, and the solid electrochromic device is assembled, suggesting its significant potentials in smart windows and multicolor electrochromic displays.
Collapse
Affiliation(s)
- Jin-Long Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Si-Zhe Sheng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Zhen He
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jie Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Liang Y, Cao S, Wei Q, Zeng R, Zhao J, Li H, Yu WW, Zou B. Reversible Zn 2+ Insertion in Tungsten Ion-Activated Titanium Dioxide Nanocrystals for Electrochromic Windows. NANO-MICRO LETTERS 2021; 13:196. [PMID: 34523029 PMCID: PMC8440694 DOI: 10.1007/s40820-021-00719-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Zinc-anode-based electrochromic devices (ZECDs) are emerging as the next-generation energy-efficient transparent electronics. We report anatase W-doped TiO2 nanocrystals (NCs) as a Zn2+ active electrochromic material. It demonstrates that the W doping in TiO2 highly reduces the Zn2+ intercalation energy, thus triggering the electrochromism. The prototype ZECDs based on W-doped TiO2 NCs deliver a high optical modulation (66% at 550 nm), fast spectral response times (9/2.7 s at 550 nm for coloration/bleaching), and good electrochemical stability (8.2% optical modulation loss after 1000 cycles).
Collapse
Affiliation(s)
- Yi Liang
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Sheng Cao
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| | - Qilin Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Ruosheng Zeng
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jialong Zhao
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Haizeng Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, People's Republic of China.
| | - William W Yu
- Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, 71115, USA
| | - Bingsuo Zou
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
34
|
Gugole M, Olsson O, Rossi S, Jonsson MP, Dahlin A. Electrochromic Inorganic Nanostructures with High Chromaticity and Superior Brightness. NANO LETTERS 2021; 21:4343-4350. [PMID: 33969987 PMCID: PMC8289301 DOI: 10.1021/acs.nanolett.1c00904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Indexed: 05/08/2023]
Abstract
The possibility of actively controlling structural colors has recently attracted a lot of attention, in particular for new types of reflective displays (electronic paper). However, it has proven challenging to achieve good image quality in such devices, mainly because many subpixels are necessary and the semitransparent counter electrodes lower the total reflectance. Here we present an inorganic electrochromic nanostructure based on tungsten trioxide, gold, and a thin platinum mirror. The platinum reflector provides a wide color range and makes it possible to "reverse" the device design so that electrolyte and counter electrode can be placed behind the nanostructures with respect to the viewer. Importantly, this makes it possible to maintain high reflectance regardless of how the electrochemical cell is constructed. We show that our nanostructures clearly outperform the latest commercial color e-reader in terms of both color range and brightness.
Collapse
Affiliation(s)
- Marika Gugole
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Oliver Olsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Stefano Rossi
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Magnus P. Jonsson
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Andreas Dahlin
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|