1
|
Canimkurbey B, Isik F, Delikanli S, Bozkaya I, Unal E, Isik AT, Dikmen Z, Shabani F, Ozkan I, Piravadili S, Demir HV. Flexible Colloidal Light-Emitting Diodes of Self-Assembled Quantum Well Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502314. [PMID: 40317681 DOI: 10.1002/smll.202502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Quasi-2D semiconductor nanocrystals, also known as colloidal quantum wells (CQWs), with their high quantum yield in the visible range, ultra-narrow emission, and in-plane oriented transition dipole moments, provide potentially an excellent platform for flexible light-emitting diodes (f-LEDs). In this study, it is proposed and demonstrated colloidal f-LEDs of a single layer face-down oriented CdSe/CdZnS core/hot injection shell-grown CQWs employed as an emissive monolayer in a flexible platform for the first time. The obtained f-LEDs are shown to be immune to a large number of bending, enabled by the use of only a single emitter layer and their configuration all being face-down in the layer. These f-LEDs exhibit a maximum external quantum efficiency of 14.12%, an intense luminance of ≈33 700 cd m-2, a low turn-on voltage of <2 V, and a highly saturated red color. Here, orienting these CQWs only in face-down configuration is essential to efficient charge injection thanks to its extremely low roughness and increased outcoupling efficiency owing to in-plane oriented transition dipoles. Therefore, these f-LEDs of face-down CQW monolayers, with their excellent luminance properties and stable emission, stand out as exceptional candidates for future advanced flexible display and lighting applications as well as wearables.
Collapse
Affiliation(s)
- Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Physics, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara, 06900, Turkey
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Iklim Bozkaya
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ahmet Tarik Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Zeynep Dikmen
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Faculty of Engineering, Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Ilayda Ozkan
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Selin Piravadili
- Material Technologies, The Scientific and Technological Research Council of Turkey (TUBITAK) - Marmara Research Center (MAM), Gebze/Kocaeli, 41470, Türkiye
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Chang WJ, Roman BJ, Paul T, Sakotic Z, Vora P, Kim K, Hurst LE, Wasserman D, Truskett TM, Milliron DJ. Ultrastrong Coupling by Assembling Plasmonic Metal Oxide Nanocrystals in Open Cavities. ACS NANO 2025; 19:12332-12344. [PMID: 40116477 DOI: 10.1021/acsnano.5c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Plasmon polaritons created by coupling optical cavity modes with plasmonic resonances offer widely tunable frequencies and strong light-matter interaction. While metallic nanocrystals (NCs) are compelling building blocks, existing approaches for their photonic integration are not scalable, limiting their systematic study and potential applications. Here, we assemble colloidal tin-doped indium oxide NCs in a straightforward Salisbury screen configuration to realize an 'open' cavity structure, where the infrared resonance frequencies of the NC assembly and the photonic mode are independently controlled and strongly coupled. By modeling each NC layer as an effective medium, we designed cavities with plasmon polariton spectra tuned to target frequencies, for example, approximating the two atmospheric transparency windows. NCs with varying ligands and doping concentrations can be stacked in the assemblies to customize the spectral line shape and control the spatial distribution of the electric near-field within the assembly. We anticipate applications in chemosensing and photonic technologies.
Collapse
Affiliation(s)
- Woo Je Chang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanay Paul
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zarko Sakotic
- Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, United States
| | - Priyansh Vora
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kihoon Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauralee E Hurst
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel Wasserman
- Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Duan R, Zhang Q, Thung YT, Zhou X, Yin T, Ao Y, Xiao L, Zhang Z, Lee CXX, Ren T, Demir HV, Lew WS, Zhang B, Sun H. Continuous-Wave Pumped Self-Assembled Colloidal Topological Lasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416635. [PMID: 39916562 PMCID: PMC11923508 DOI: 10.1002/adma.202416635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Indexed: 03/21/2025]
Abstract
The field of optoelectronic integrated circuits is actively developing reliable and efficient room-temperature continuous-wave (CW) lasers. CW-pumped lasers combine the economical and simple manufacturing processes of colloidal semiconductor lasers with the efficient and stable output of continuous pumping, enabling them to significantly impact the field of semiconductor lasers. However, development is still severely challenged by limitations such as gain materials and cavity structures. Consequently, as a compromise, most colloidal semiconductor lasers proposed to date have relied on another pulsed laser as the pumping source. In this study, a self-assembled colloidal topological laser is proposed that benefits from CW pumping at room temperature. By utilizing an interfacial self-assembly strategy, nanoplatelets (NPLs) are managed to control the collective orientation (face-down or edge-up), achieving controlled polarization of amplified spontaneous emission for the first time. Furthermore, precise control over the thickness of a single NPL layer is demonstrated, which enables the laser system to offer extensive wavelength tunability (over 50 nm), ultra-high polarization (over 95%), and good temporal stability. These metrics signify the optimal performance level of colloidal semiconductor lasers, marking a new era in solution processing systems for the optoelectronic integrated circuit field.
Collapse
Affiliation(s)
- Rui Duan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| | - Qiang Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yi Tian Thung
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuehong Zhou
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tingting Yin
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yutian Ao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zitong Zhang
- Institute of Semiconductors Guangdong Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Calvin Xiu Xian Lee
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tianhua Ren
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| | - Hilmi Volkan Demir
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics UNAM-Institute of Materials Science and Nanotechnology and the National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Wen Siang Lew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Handong Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
4
|
Ibrahem MA, Waris M, Miah MR, Shabani F, Canimkurbey B, Unal E, Delikanli S, Demir HV. Orientation-Dependent Photoconductivity of Quasi-2D Nanocrystal Self-Assemblies: Face-Down, Edge-Up Versus Randomly Oriented Quantum Wells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401423. [PMID: 38770984 DOI: 10.1002/smll.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Here, strongly orientation-dependent lateral photoconductivity of a CdSe monolayer colloidal quantum wells (CQWs) possessing short-chain ligands is reported. A controlled liquid-air self-assembly technique is utilized to deliberately engineer the alignments of CQWs into either face-down (FO) or edge-up (EO) orientation on the substrate as opposed to randomly oriented (RO) CQWs prepared by spin-coating. Adapting planar configuration metal-semiconductor-metal (MSM) photodetectors, it is found that lateral conductivity spans ≈2 orders of magnitude depending on the orientation of CQWs in the film in the case of utilizing short ligands. The long native ligands of oleic acid (OA) are exchanged with short-chain ligands of 2-ethylhexane-1-thiol (EHT) to reduce the inter-platelet distance, which significantly improved the photoresponsivity from 4.16, 0.58, and 4.79 mA W-1 to 528.7, 6.17, and 94.2 mA W-1, for the MSM devices prepared with RO, FO, and EO, before and after ligands exchange, respectively. Such CQW orientation control profoundly impacts the photodetector performance also in terms of the detection speed (0.061 s/0.074 s for the FO, 0.048 s/0.060 s for the EO compared to 0.10 s/0.16 s for the RO, for the rise and decay time constants, respectively) and the detectivity (1.7 × 1010, 2.3 × 1011, and 7.5 × 1011 Jones for the FO, EO, and RO devices, respectively) which can be further tailored for the desired optoelectronic device applications. Attributed to charge transportation in colloidal films being proportional to the number of hopping steps, these findings indicate that the solution-processed orientation of CQWs provides the ability to tune the photoconductivity of CQWs with short ligands as another degree of freedom to exploit and engineer their absorptive devices.
Collapse
Affiliation(s)
- Mohammed A Ibrahem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Laser Science and Technology Branch, Applied Sciences Department, University of Technology, Baghdad, 10066, Iraq
| | - Mohsin Waris
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Serefeddin Health Services Vocational School, Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Watkins NE, Diroll BT, Williams KR, Liu Y, Greene CL, Wasielewski MR, Schaller RD. Amplified Spontaneous Emission from Electron-Hole Quantum Droplets in Colloidal CdSe Nanoplatelets. ACS NANO 2024; 18:9605-9612. [PMID: 38497777 DOI: 10.1021/acsnano.3c13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two-dimensional cadmium selenide nanoplatelets (NPLs) exhibit large absorption cross sections and homogeneously broadened band-edge transitions that offer utility in wide-ranging optoelectronic applications. Here, we examine the temperature-dependence of amplified spontaneous emission (ASE) in 4- and 5-monolayer thick NPLs and show that the threshold for close-packed (neat) films decreases with decreasing temperature by a factor of 2-10 relative to ambient temperature owing to extrinsic (trapping) and intrinsic (phonon-derived line width) factors. Interestingly, for pump intensities that exceed the ASE threshold, we find development of intense emission to lower energy in particular provided that the film temperature is ≤200 K. For NPLs diluted in an inert polymer, both biexcitonic ASE and low-energy emission are suppressed, suggesting that described neat-film observables rely upon high chromophore density and rapid, collective processes. Transient emission spectra reveal ultrafast red-shifting with the time of the lower energy emission. Taken together, these findings indicate a previously unreported process of amplified stimulated emission from polyexciton states that is consistent with quantum droplets and constitutes a form of exciton condensate. For studied samples, quantum droplets form provided that roughly 17 meV or less of thermal energy is available, which we hypothesize relates to polyexciton binding energy. Polyexciton ASE can produce pump-fluence-tunable red-shifted ASE even 120 meV lower in energy than biexciton ASE. Our findings convey the importance of biexciton and polyexciton populations in nanoplatelets and show that quantum droplets can exhibit light amplification at significantly lower photon energies than biexcitonic ASE.
Collapse
Affiliation(s)
- Nicolas E Watkins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kali R Williams
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chelsie L Greene
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- International Institute for Nanotechnology, Paula Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Bozkaya T, Isik F, Bozkaya I, Delikanli S, Unal E, Demir HV. Light-sensitive monolayer-thick nanocrystal skins of face-down self-oriented colloidal quantum wells. NANOSCALE 2023; 15:17583-17588. [PMID: 37873738 DOI: 10.1039/d3nr04065h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Colloidal quantum wells (CQWs), a quasi-two-dimensional, atomically-flat sub-family of semiconductor nanocrystals, are well suited to produce excellent devices for photosensing applications thanks to their extraordinarily large absorption cross-sections. In this work, we propose and demonstrate a new class of light-sensitive nanocrystal skins (LS-NS) that employ a monolayer of face-down orientation-controlled self-assembled CQWs as the active absorbing layer in the UV-visible range. This CQW LS-NS platform enables non-conventional photosensing operation that relies on the strong optical absorption of the monolayered assembly of CQWs and the subsequent photogenerated potential build-up across the device, allowing for self-powered operation. Here such self-oriented CQWs reduce the surface roughness in their monolayer-thick film, essential to high device performance. Owing to their ease of fabrication and low cost, these devices hold great promise for large-scale use in semi-transparent photosensing surfaces.
Collapse
Affiliation(s)
- Taylan Bozkaya
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM- Institute of Materials Science and Nanotechnology, and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM- Institute of Materials Science and Nanotechnology, and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| | - Iklim Bozkaya
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM- Institute of Materials Science and Nanotechnology, and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM- Institute of Materials Science and Nanotechnology, and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM- Institute of Materials Science and Nanotechnology, and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM- Institute of Materials Science and Nanotechnology, and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
7
|
Abstract
Lasers and optical amplifiers based on solution-processable materials have been long-desired devices for their compatibility with virtually any substrate, scalability, and ease of integration with on-chip photonics and electronics. These devices have been pursued across a wide range of materials including polymers, small molecules, perovskites, and chemically prepared colloidal semiconductor nanocrystals, also commonly referred to as colloidal quantum dots. The latter materials are especially attractive for implementing optical-gain media as in addition to being compatible with inexpensive and easily scalable chemical techniques, they offer multiple advantages derived from a zero-dimensional character of their electronic states. These include a size-tunable emission wavelength, low optical gain thresholds, and weak sensitivity of lasing characteristics to variations in temperature. Here we review the status of colloidal nanocrystal lasing devices, most recent advances in this field, outstanding challenges, and the ongoing progress toward technological viable devices including colloidal quantum dot laser diodes.
Collapse
Affiliation(s)
- Namyoung Ahn
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clément Livache
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Valerio Pinchetti
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor I Klimov
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
9
|
Belitsch M, Dirin DN, Kovalenko MV, Pichler K, Rotter S, Ghalgaoui A, Ditlbacher H, Hohenau A, Krenn JR. Gain and lasing from CdSe/CdS nanoplatelet stripe waveguides. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Erdem T, Zupkauskas M, O’Neill T, Cassiagli A, Xu P, Altintas Y, Mutlugun E, Eiser E. Magnetically controlled anisotropic light emission of DNA-functionalized supraparticles. MRS BULLETIN 2022; 47:1084-1091. [DOI: 10.1557/s43577-022-00352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 09/01/2023]
|
11
|
Weiss R, VanOrman ZA, Sullivan CM, Nienhaus L. A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS MATERIALS AU 2022; 2:641-654. [PMID: 36855545 PMCID: PMC9928406 DOI: 10.1021/acsmaterialsau.2c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The process of photon upconversion promises importance for many optoelectronic applications, as it can result in higher efficiencies and more effective photon management. Upconversion via triplet-triplet annihilation (TTA) occurs at low incident powers and at high efficiencies, requirements for integration into existing optoelectronic devices. Semiconductor nanocrystals are a diverse class of triplet sensitizers with advantages over traditional molecular sensitizers such as energetic tunability and minimal energy loss during the triplet sensitization process. In this Perspective, we review current progress in semiconductor nanocrystal triplet sensitization, specifically focusing on the nanocrystal, the ligand shell which surrounds the nanocrystal, and progress in solid-state sensitization. Finally, we discuss potential areas of improvement which could result in more efficient upconversion systems sensitized by semiconductor nanocrystals. Specifically, we focus on the development of solid-state TTA upconversion systems, elucidation of the energy transfer mechanisms from nanocrystal to transmitter ligand which underpin the upconversion process and propose novel configurations of nanocrystal-sensitized systems.
Collapse
|
12
|
Guillemeney L, Lermusiaux L, Landaburu G, Wagnon B, Abécassis B. Curvature and self-assembly of semi-conducting nanoplatelets. Commun Chem 2022; 5:7. [PMID: 36697722 PMCID: PMC9814859 DOI: 10.1038/s42004-021-00621-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 01/28/2023] Open
Abstract
Semi-conducting nanoplatelets are two-dimensional nanoparticles whose thickness is in the nanometer range and controlled at the atomic level. They have come up as a new category of nanomaterial with promising optical properties due to the efficient confinement of the exciton in the thickness direction. In this perspective, we first describe the various conformations of these 2D nanoparticles which display a variety of bent and curved geometries and present experimental evidences linking their curvature to the ligand-induced surface stress. We then focus on the assembly of nanoplatelets into superlattices to harness the particularly efficient energy transfer between them, and discuss different approaches that allow for directional control and positioning in large scale assemblies. We emphasize on the fundamental aspects of the assembly at the colloidal scale in which ligand-induced forces and kinetic effects play a dominant role. Finally, we highlight the collective properties that can be studied when a fine control over the assembly of nanoplatelets is achieved.
Collapse
Affiliation(s)
- Lilian Guillemeney
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Laurent Lermusiaux
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Guillaume Landaburu
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Benoit Wagnon
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Benjamin Abécassis
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| |
Collapse
|
13
|
Samadi Khoshkhoo M, Prudnikau A, Chashmejahanbin MR, Helbig R, Lesnyak V, Cuniberti G. Multicolor Patterning of 2D Semiconductor Nanoplatelets. ACS NANO 2021; 15:17623-17634. [PMID: 34665592 DOI: 10.1021/acsnano.1c05400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocrystal micro/nanoarrays with multiplexed functionalities are of broad interest in the field of nanophotonics, cellular dynamics, and biosensing due to their tunable electrical and optical properties. This work focuses on the multicolor patterning of two-dimensional nanoplatelets (NPLs) via two sequential self-assembly and direct electron-beam lithography steps. By using scanning electron microscopy, atomic force microscopy, and fluorescence microscopy, we demonstrate the successful fabrication of fluorescent nanoarrays with a thickness of only two or three monolayers (7-11 nm) and a feature line width of ∼40 nm, which is three to four NPLs wide. To this end, first, large-area thin films of red-emitting CdSe/ZnyCd1-yS and green-emitting CdSe1-xSx/ZnyCd1-yS core/shell NPLs are fabricated based on Langmuir-type self-assembly at the liquid/air interface. By varying the concentration of ligands in the subphase, we investigate the effect of interaction potential on the film's final characteristics to prepare thin superlattices suitable for the patterning step. Equipped with the ability to fabricate a uniform superlattice with a controlled thickness, we next perform nanopatterning on a thin film of NPLs utilizing a direct electron-beam lithography (EBL) technique. The effect of acceleration voltage, aperture size, and e-beam dosage on the nanopattern's resolution and fidelity is investigated for both of the presented NPLs. After successfully optimizing EBL parameters to fabricate single-color nanopatterns, we finally focus on fabricating multicolor patterns. The obtained micro/nanoarrays provide us with an innovative experimental platform to investigate biological interactions as well as Förster resonance energy transfer.
Collapse
Affiliation(s)
- Mahdi Samadi Khoshkhoo
- Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01062, Germany
| | - Anatol Prudnikau
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Mohammad Reza Chashmejahanbin
- Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01062, Germany
| | - Ralf Helbig
- Leibniz Institute of Polymer Research Dresden and Max-Bergmann Center for Biomaterials, Hohe Straße 6, 01069 Dresden, Germany
| | - Vladimir Lesnyak
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, School of Engineering Sciences, 01069 Dresden, Germany
| |
Collapse
|
14
|
Humayun MH, Hernandez-Martinez PL, Gheshlaghi N, Erdem O, Altintas Y, Shabani F, Demir HV. Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103524. [PMID: 34510722 DOI: 10.1002/smll.202103524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2 O3 ) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d-1 with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.
Collapse
Affiliation(s)
- Muhammad Hamza Humayun
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez-Martinez
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Gheshlaghi N, Foroutan-Barenji S, Erdem O, Altintas Y, Shabani F, Humayun MH, Demir HV. Self-Resonant Microlasers of Colloidal Quantum Wells Constructed by Direct Deep Patterning. NANO LETTERS 2021; 21:4598-4605. [PMID: 34028277 DOI: 10.1021/acs.nanolett.1c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, the first account of self-resonant fully colloidal μ-lasers made from colloidal quantum well (CQW) solution is reported. A deep patterning technique is developed to fabricate well-defined high aspect-ratio on-chip CQW resonators made of grating waveguides and in-plane reflectors. The fabricated waveguide-coupled laser, enabling tight optical confinement, assures in-plane lasing. CQWs of the patterned layers are closed-packed with sharp edges and residual-free lifted-off surfaces. Additionally, the method is successfully applied to various nanoparticles including colloidal quantum dots and metal nanoparticles. It is observed that the patterning process does not affect the nanocrystals (NCs) immobilized in the attained patterns and the different physical and chemical properties of the NCs remain pristine. Thanks to the deep patterning capability of the proposed method, patterns of NCs with subwavelength lateral feature sizes and micron-scale heights can possibly be fabricated in high aspect ratios.
Collapse
Affiliation(s)
- Negar Gheshlaghi
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Sina Foroutan-Barenji
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gul University, Kayseri 38080, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Muhammad Hamza Humayun
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, Centre of Optical Fiber Technology, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
16
|
Sui X, Gao X, Wu X, Li C, Yang X, Du W, Ding Z, Jin S, Wu K, Sum TC, Gao P, Liu J, Wei X, Zhang J, Zhang Q, Tang Z, Liu X. Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. NANO LETTERS 2021; 21:4137-4144. [PMID: 33913710 DOI: 10.1021/acs.nanolett.0c04169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal CdSe nanoplatelets (NPLs) have substantial potential in light-emitting applications because of their quantum-well-like characteristics. The self-trapped state (STS), originating from strong electron-phonon coupling (EPC), is promising in white light luminance because of its broadband emission. However, achieving STS in CdSe NPLs is extremely challenging because of their intrinsic weak EPC nature. Herein, we developed a strong STS emission in the spectral range of 450-600 nm by building superlattice (SL) structures with colloidal CdSe NPLs. We demonstrated that STS is generated via strong coupling of excitons and zone-folded longitudinal acoustic phonons with formation time of ∼450 fs and localization length of ∼0.56 nm. The Huang-Rhys factor, describing the EPC strength in SL structure, is estimated to be ∼19.9, which is much larger than that (∼0.1) of monodispersed CdSe NPLs. Our results provide an in-depth understanding of STS and a platform for generating and manipulating STS by designing SL structures.
Collapse
Affiliation(s)
- Xinyu Sui
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Xuekang Yang
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhengping Ding
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Peng Gao
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Junjie Liu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P.R. China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, P.R. China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P.R. China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, P.R. China
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, and Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100083, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Zhiyong Tang
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
17
|
Qiang Y, Turner KT, Lee D. Polymer-infiltrated nanoplatelet films with nacre-like structure via flow coating and capillary rise infiltration (CaRI). NANOSCALE 2021; 13:5545-5556. [PMID: 33688884 DOI: 10.1039/d0nr08691f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alignment of highly anisotropic nanomaterials in a polymer matrix can yield nanocomposites with unique mechanical and transport properties. Conventional methods of nanocomposite film fabrication are not well-suited for manufacturing composites with very high concentrations of anisotropic nanomaterials, potentially limiting the widespread implementation of these useful structures. In this work, we present a scalable approach to fabricate polymer-infiltrated nanoplatelet films (PINFs) based on flow coating and capillary rise infiltration (CaRI) and study the processing-structure-property relationship of these PINFs. We show that films with high aspect ratio (AR) gibbsite (Al (OH)3) nanoplatelets (NPTs) aligned parallel to the substrate can be prepared using a flow coating process. NPTs are highly aligned with a Herman's order parameter of 0.96 and a high packing fraction >80 vol%. Such packings show significantly higher fracture toughness compared to low AR nanoparticle (NP) packings. By depositing NPTs on a polymer film and subsequently annealing the bilayer above the glass transition temperature of the polymer, polymer infiltrates into the tortuous NPT packings though capillarity. We observe larger enhancement in the modulus, hardness and scratch resistance of NPT films upon polymer infiltration compared to NP packings. The excellent mechanical properties of such films benefit from both thermally promoted oxide bridge formation between NPTs as well as polymer infiltration increasing the strength of NPT contacts. Our approach is widely applicable to highly anisotropic nanomaterials and allows the generation of mechanically robust polymer nanocomposite films for a diverse set of applications.
Collapse
Affiliation(s)
- Yiwei Qiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Kevin T Turner
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
18
|
Faraji M, Bafekry A, Gogova D, Hoat DM, Ghergherehchi M, Chuong NV, Feghhi SAH. Novel two-dimensional ZnO2, CdO2 and HgO2 monolayers: a first-principles-based prediction. NEW J CHEM 2021. [DOI: 10.1039/d1nj01610e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this paper, the existence of monolayers with the chemical formula XO2, where X = Zn, Cd, and Hg with hexagonal and tetragonal lattice structures is theoretically predicted by means of first principles calculations.
Collapse
Affiliation(s)
- M. Faraji
- Micro and Nanotechnology Graduate Program
- TOBB University of Economics and Technology
- Ankara
- Turkey
| | - A. Bafekry
- Department of Radiation Application
- Shahid Beheshti University
- Tehran 1983969411
- Iran
- Department of Physics, University of Antwerp
| | - D. Gogova
- Department of Physics
- University of Oslo
- Blindern
- Norway
| | - D. M. Hoat
- Institute of Theoretical and Applied Research
- Duy Tan University
- Hanoi 100000
- Vietnam
- Faculty of Natural Sciences
| | - M. Ghergherehchi
- College of Electronic and Electrical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - N. V. Chuong
- Department of Materials Science and Engineering
- Le Quy Don Technical University
- Hanoi 100000
- Vietnam
| | - S. A. H. Feghhi
- Department of Radiation Application
- Shahid Beheshti University
- Tehran 1983969411
- Iran
| |
Collapse
|
19
|
Foroutan-Barenji S, Erdem O, Gheshlaghi N, Altintas Y, Demir HV. Optical Gain in Ultrathin Self-Assembled Bi-Layers of Colloidal Quantum Wells Enabled by the Mode Confinement in their High-Index Dielectric Waveguides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004304. [PMID: 33078558 DOI: 10.1002/smll.202004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates an ultra-thin colloidal gain medium consisting of bi-layers of colloidal quantum wells (CQWs) with a total film thickness of 14 nm integrated with high-index dielectrics. To achieve optical gain from such an ultra-thin nanocrystal film, hybrid waveguide structures partly composed of self-assembled layers of CQWs and partly high-index dielectric material are developed and shown: in asymmetric waveguide architecture employing one thin film of dielectric underneath CQWs and in the case of quasi-symmetric waveguide with a pair of dielectric films sandwiching CQWs. Numerical modeling indicates that the modal confinement factor of ultra-thin CQW films is enhanced in the presence of the adjacent dielectric layers significantly. The active slabs of these CQW monolayers in the proposed waveguide structure are constructed with great care to obtain near-unity surface coverage, which increases the density of active particles, and to reduce the surface roughness to sub-nm scale, which decreases the scattering losses. The excitation and propagation of amplified spontaneous emission (ASE) along these active waveguides are experimentally demonstrated and numerically analyzed. The findings of this work offer possibilities for the realization of ultra-thin electrically driven colloidal laser devices, providing critical advantages including single-mode lasing and high electrical conduction.
Collapse
Affiliation(s)
- Sina Foroutan-Barenji
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gül University, Kayseri, TR-38080, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, Centre of Optical Fiber Technology, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|