1
|
Sugawara Y, Yamaguchi T. Electrocatalysts for Hydrogen Production - Catalyst Design Strategies Based on Crystal Structures of Multimetal Oxides. CHEM REC 2025; 25:e202400246. [PMID: 39967406 DOI: 10.1002/tcr.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Solid-state crystalline multimetal oxides have been widely studied for their applications as electrode materials, e. g., in fuel cells, water electrolyzer, lithium-ion batteries, and metal-air batteries. Particularly, hydrogen production via water electrolysis is considered a key technology for realizing a sustainable circular carbon society. Enhancing the activity of electrocatalysts is a critical challenge for improving the efficiency of the water electrolysis technology. Thus, strategies for designing prominent catalyst materials have drawn considerable attention. Our group has been conducting research aimed at establishing comprehensive design strategies for the rational and rapid development of highly active catalysts. In this Personal Account, we present our research efforts on enhancing the activity of cost-efficient nonprecious metal-based oxide catalysts for the oxygen evolution reaction at the anode of water electrolysis. Specifically, we propose design strategies based on crystal structures of multimetal oxides and demonstrate how these strategies have contributed to the development of highly active electrocatalysts.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Laboratory of Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Takeo Yamaguchi
- Laboratory of Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
2
|
Yue Y, Zhong X, Sun M, Du J, Gao W, Hu W, Zhao C, Li J, Huang B, Li Z, Li C. Fluorine Engineering Induces Phase Transformation in NiCo 2O 4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418058. [PMID: 40244616 DOI: 10.1002/adma.202418058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Dynamic reconstruction of catalysts is key to active site formation in alkaline oxygen evolution reaction (OER), but precise control over this process remains challenging. Herein, F-doped NiCo2O4 (NiCo2O4-Fn), consisting of a NiCo2O4 core and a (NH4)NixCo1-xF3 shell is reported, which promotes the formation of a dual-metal NiCoOOH active phase. In situ Raman and X-ray absorption fine structure analyses reveal that the NiCoOOH, rich in oxygen vacancies (Ov), forms at 1.2 V versus the reversible hydrogen electrode (RHE) for NiCo2O4-F1, in contrast to the NiOOH phase formation at 1.4 V versus RHE for undoped NiCo2O4. This is facilitated by the transformation of (NH4)NixCo1-xF3 into amorphous NixCo1-x(OH)2 in the KOH electrolyte without bias. Electrochemical tests show that NiCo2O4-F1 exhibits a 14-fold increase in intrinsic activity compared to NiCo2O4. Theoretical calculations suggest that Ov-induced unsaturated Co and Ni sites enhance electroactivity by promoting *OH intermediates adsorption and conversion, lowering the OER energy barrier. The oriented control of NiCoOOH active motifs in NiCo2O4 spinel, achieved through fluorine engineering, paves a new avenue for designing efficient OER electrocatalysts.
Collapse
Affiliation(s)
- Ya Yue
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xinyu Zhong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzi Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Du
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wensheng Gao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei Hu
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chunyang Zhao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Bolong Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
3
|
Liu Y, Peng W, Ma H, Tian J, Wang K, Zheng Z, Xu L, Ding Y. Tailoring Electrocatalytic O v-NiOOH by Regulating the Reconstruction in Ni-Based Metal-Organic Frameworks with Highly Asymmetric Ni-O Coordination. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19806-19817. [PMID: 40128121 DOI: 10.1021/acsami.5c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metal-organic frameworks have aroused growing interest in the research of energy conversion and storage. However, their specific configuration, especially the coordination environment of metal active sites, has not been well designed. Their role in regulating the structural reconstruction of pre-electrocatalysts remains ambiguous. Herein, this work reports a dual-ligand strategy to design a Ni-MOF with asymmetric Ni-O coordination, named Ni-BDC-DOBDC, which occupies unsaturated Ni sites and strengthens Ni-O bonds. As inspected by X-ray absorption near edge structure as well as a series of in situ and ex situ characterizations, this special Ni-O coordination contributes to Ov-NiOOH with rich oxygen vacancies during fast self-reconstruction at a lower potential. Moreover, theoretical results reveal that Ni sites in Ov-NiOOH occupy a higher d-band center, a lower adsorption energy barrier, and a more electronic negative surface in the oxygen evolution reaction, leading to good electrocatalytic performance. Overall, Ni-BDC-DOBDC catalysts exhibit a low overpotential of 202 mV at 10 mA cm-2 and outstanding stability within 240 h. The insights in this work pave the way for high-performance MOF-based catalysts by regulating their self-reconstruction kinetics through a new aspect of asymmetric ligand engineering.
Collapse
Affiliation(s)
- Yue Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wei Peng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hancheng Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jinsai Tian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Kao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhaobo Zheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yao Ding
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
- Hubei Longzhong Laboratory, Xiangyang 441138, PR China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
4
|
Wang K, Xu Y, Daneshvariesfahlan V, Rafique M, Fu Q, Wei H, Zhang Y, Zhang J, Zhang B, Song B. Insight into the structural reconstruction of alkaline water oxidation electrocatalysts. NANOSCALE 2025; 17:6287-6307. [PMID: 39957262 DOI: 10.1039/d4nr05426a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The oxygen-evolution reaction (OER) is an indispensable component of various energy storage and conversion electrocatalytic systems. However, the slow reaction kinetics have forced the development of advanced, efficient, and inexpensive OER electrocatalysts to break through the bottleneck of its application. Recently, the structural reconstruction of precatalysts has provided a promising avenue to boost the catalytic activity of electrocatalysts. Structural reconstruction implies atomic rearrangement and composition change of the pristine catalytic materials, which is a very complex process. Therefore, it is very crucial to have a deep understanding of the reconstruction chemical process and then modulate the reconstruction by deliberate design of electrochemical conditions and precatalysts. However, a systematic review of the structural reconstruction process, research methods, influencing factors and structure-performance relationship remains elusive, significantly impeding the further developments of efficient electrocatalysts based on structural reconstruction chemistry. This critical review is dedicated to providing a deep insight into the structural reconstruction during alkaline water oxidation, comprehensively summarizing the basic research methods to understand the structural evolution process and various factors affecting the structural reconstruction process, and providing a reference and basis for regulating the dynamic reconstruction. Moreover, the impact of reconstruction on the structure and performance is also covered. Finally, challenges and perspectives for the future study on structural reconstruction are discussed. This review will offer future guidelines for the rational development of state-of-the-art OER electrocatalysts.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Yifei Xu
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Yumin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiheng Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bing Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bo Song
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences; Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
He B, Bai F, Jain P, Li T. A Review of Surface Reconstruction and Transformation of 3d Transition-Metal (oxy)Hydroxides and Spinel-Type Oxides during the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411479. [PMID: 39916593 PMCID: PMC11899548 DOI: 10.1002/smll.202411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Developing efficient and sustainable electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing energy conversion and storage technologies. 3d transition-metal (oxy)hydroxides and spinel-type oxides have emerged as promising candidates due to their structural flexibility, oxygen redox activity, and abundance in earth's crust. However, their OER performance can be changed dynamically during the reaction due to surface reconstruction and transformation. Essentially, multiple elementary processes occur simultaneously, whereby the electrocatalyst surfaces undergo substantial changes during OER. A better understanding of these elementary processes and how they affect the electrocatalytic performance is essential for the OER electrocatalyst design. This review aims to critically assess these processes, including oxidation, surface amorphization, transformation, cation dissolution, redeposition, and facet and electrolyte effects on the OER performance. The review begins with an overview of the electrocatalysts' structure, redox couples, and common issues associated with electrochemical measurements of 3d transition-metal (oxy)hydroxides and spinels, followed by recent advancements in understanding the elementary processes involved in OER. The challenges and new perspectives are presented at last, potentially shedding light on advancing the rational design of next-generation OER electrocatalysts for sustainable energy conversion and storage applications.
Collapse
Affiliation(s)
- Biao He
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Fan Bai
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Priya Jain
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Tong Li
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
6
|
Zhu A, Qiao L, Liu K, Gan G, Luan C, Lin D, Zhou Y, Bu S, Zhang T, Liu K, Song T, Liu H, Li H, Hong G, Zhang W. Rational design of precatalysts and controlled evolution of catalyst-electrolyte interface for efficient hydrogen production. Nat Commun 2025; 16:1880. [PMID: 39987094 PMCID: PMC11846950 DOI: 10.1038/s41467-025-57056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
The concept of precatalyst is widely accepted in electrochemical water splitting, but the role of precatalyst activation and the resulted changes of electrolyte composition is often overlooked. Here, we elucidate the impact of potential-dependent changes for both precatalyst and electrolyte using Co2Mo3O8 as a model system. Potential-dependent reconstruction of Co2Mo3O8 precatalyst results in an electrochemically stable Co(OH)2@Co2Mo3O8 catalyst and additional Mo dissolved as MoO42- into electrolyte. The Co(OH)2/Co2Mo3O8 interface accelerates the Volmer reaction and negative potentials induced Mo2O72- (from MoO42-) further enhances proton adsorption and H2 desorption. Leveraging these insights, the well-designed MoO42-/Mo2O72- modified Co(OH)2@Co2Mo3O8 catalyst achieves a Faradaic efficiency of 99.9% and a yield of 1.85 mol h-1 at -0.4 V versus reversible hydrogen electrode (RHE) for hydrogen generation. Moreover, it maintains stable over one month at approximately 100 mA cm-2, highlighting its industrial suitability. This work underscores the significance of understanding on precatalyst reconstruction and electrolyte evolution in catalyst design.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao SAR, China
| | - Kai Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guoqiang Gan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chuhao Luan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dewu Lin
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yin Zhou
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuyu Bu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kunlun Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tianyi Song
- Department of Chemistry, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Guo Hong
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- The Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Shi Y, Miao H, Gao J, Liu F, Deng Y, Li H, Chi J, Li C, Liu F, Lai J, Wang L. Bifunctional fluorine doped Ru/RuO 2 clusters with dynamic electron modification and strong metal-support interaction boost proton exchange membrane water electrolyzer. J Colloid Interface Sci 2025; 679:578-585. [PMID: 39383836 DOI: 10.1016/j.jcis.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The sluggish kinetics and inherent instability over the Ru/RuO2 clusters are still enormous challenges in proton exchange membrane (PEM) water electrolyzer. Herein, we innovatively report synergistic modulation of dynamic electron modification and strong metal-support interaction (SMSI) to activate and stabilize bifunctional fluorine doped Ru/RuO2 clusters anchored on carbon nanotube (CNT), thus achieving efficient and stable acidic overall water splitting. Theoretical and experimental studies found that surface metal-fluorine modification layer could dynamically regulate the interfacial electronic environment to stabilize and activate multiple active Ru species; and the SMSI between Ru/RuO2 cluster and CNT maintains stable electronic environment for dynamic electron modification and avoids migrating or shedding of active species in acidic environment. Therefore, the PEM electrolyzer assembled with optimal F5.5-Ru/RuO2@CNT can operate stably for 100 h at a high current density of 100 mA cm-2, which is the first time that bifunctional Ru-based nanocatalysts applied to PEM device at a high current density.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongfu Miao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianyang Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Feifei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ying Deng
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingqi Chi
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caixia Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
8
|
Zheng T, Shi J, Wang D, Min Y, Xu Q, Li Q. CoFe Hydroxide Nanospheres for Enhanced Alkaline Water Splitting and Seawater Oxidation:Anion Doping Effects of Fluorine and Carbonate. Chemistry 2025; 31:e202403628. [PMID: 39551705 DOI: 10.1002/chem.202403628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Green hydrogen production can be achieved through electrolysis of fresh water or the use of renewable energy to electrolyze seawater. However, due to the low activity and poor stability of oxygen evolution reaction catalysts, direct electrolysis of alkaline seawater faces significant challenges. Herein, The catalyst F-CoFe(OH)-CO3/NF with three-dimensional nanosphere structure was prepared, The introduction of CO3 2- into the intermediate layer of CoFe hydroxide improves the corrosion resistance of alkaline electrolyte and the doping of F- is to design three-dimensional layered nanostructures, increase the active site, and accelerate the diffusion of the electrolyte. By in situ Raman analysis, partial oxidation of CoFe hydroxide to CoFe (oxy)hydroxide as the active center can accelerating the adsorption of oxygen-related intermediates. In 1 M KOH, it requires overpotentials of 210 mV and 251 mV to drive current densities of 10 and 100 mA cm-2, respectively. And it remained stable at the current density of 100 mA cm-2 for 120 h in 1 M KOH. F-CoFe(OH)-CO3/NF can also catalyzes the decomposition of electrolytic seawater. Compared with hydroxide, anion-doped carbonate hydroxide is more efficient and stable in electrolyte solution, which is of great importance for the development of a new stable electrocatalyst for water decomposition.
Collapse
Affiliation(s)
- Tingting Zheng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - JunYu Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Dandan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, China
| |
Collapse
|
9
|
Pei C, Kim M, Baeck U, Hong WT, Kim JH, Han H, Kim J, Cho SM, Yu X, Park J, Park HS, Kim JK. Fluorine-Induced Lattice Oxygen Participation in 2D Layered Double Hydroxide/MXene Hybrids for Efficient Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410812. [PMID: 39529269 PMCID: PMC11714146 DOI: 10.1002/advs.202410812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
In oxygen evolution reaction (OER), the participation of lattice oxygen can break the limitation of adsorption evolution mechanism, but the activation of lattice oxygen remains a critical challenge. Herein, a surface fluorinated highly active 2D/2D FeNi layered double hydroxide/MXene (F-LDH/MX) is demonstrated, boosting OER with the enhanced lattice-oxygen-mediated path. The introduction of fluorine promotes the self-evolution of catalyst in an alkaline environment, even without an external current. It further accelerates the formation of active metal oxyhydroxides with abundant oxygen vacancies under the operating potential. The introduced oxygen vacancy activates the lattice oxygen, increasing the proportion of lattice oxygen mechanism in OER. Owing to the synergistic effects of the 2D/2D hierarchical structure and the modulated active surface, F-LDH/MX possesses excellent electrochemical performances, including a low overpotential of 251 mV at 10 mA cm-2, a low Tafel slope of 40.28 mV dec-1, and robust stability. The water electrolyzer system with F-LDH/MX as the anode offers the benchmark current density at a low cell voltage of 1.53 V, while the Zn-air battery with F-LDH/MX as the air electrode exhibits a higher power density of 75.43 mW cm-2. This study presents a promising strategy to design highly active electrocatalysts for energy conversion and storage.
Collapse
Affiliation(s)
- Chengang Pei
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Min‐Cheol Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
- Department of ChemistrySookmyung Women's UniversitySeoul04310Republic of Korea
| | - Unbeom Baeck
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Won Tae Hong
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Jong Hun Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyungu Han
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Jaekyum Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Sung Min Cho
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Jongwook Park
- Integrated EngineeringDepartment of Chemical EngineeringKyung Hee UniversityGyeonggi17104South Korea
| | - Ho Seok Park
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Jung Kyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐Ro, Jangan‐guSuwon16419Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan University2066 Seobu‐roSuwon16419Republic of Korea
| |
Collapse
|
10
|
Qin Z, Yu Z, Zhang Z, Qin X, Liu J, Fan B, Zhang B, Jiang R, Hou Y, Qu J. Electrochemical reconfiguration of iron-modified Ni 3S 2 surface induced oxygen vacancies to immobilize sulfate for enhanced oxygen evolution reaction. J Colloid Interface Sci 2025; 677:259-270. [PMID: 39146814 DOI: 10.1016/j.jcis.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
There is an urgent need for highly active, durable, and low-cost electrocatalysts to overcome the shortcomings of high overpotential in the oxygen evolution reaction (OER) process. In this work, the nickel-iron hydroxysulfate rich in sulfate and oxygen vacancies (SO42-@Fe-NiOOH-Ov/NiS) is legitimately constructed. SO42-@Fe-NiOOH-Ov/NiS only requires a low overpotentials of 190 mV and 232 mV at 10 mA cm-2 and 100 mA cm-2 current densities in 1 M KOH, with excellent stability for 200 h at 100 mA cm-2 current density. In situ Raman spectroscopy and Fourier transform infrared spectroscopy demonstrated the stable adsorption of more SO42- on the surface of catalyst. Density functional theory calculations testify surface reconstruction, doped Fe and oxygen vacancies significantly reduced the adsorption energy of sulfate on the surface. More importantly, the formation of *OOH to O2 is facilitated by the highly hydrogen bonding between SO42- and *OOH, accelerating the OER process.
Collapse
Affiliation(s)
- Zuoyu Qin
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China.
| | - Zimu Zhang
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Xuanning Qin
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Jing Liu
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Ben Fan
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Boge Zhang
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, PR China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Jiayi Qu
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
11
|
Jin B, Zhang W, Wei S, Zhang K, Wang H, Liu G, Li J. Magnesium-promoted rapid self-reconstruction of NiFe-based electrocatalysts toward efficient oxygen evolution. J Colloid Interface Sci 2025; 677:208-216. [PMID: 39089127 DOI: 10.1016/j.jcis.2024.07.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
The acceleration of active sites formation through surface reconstruction is widely acknowledged as the crucial factor in developing high-performance oxygen evolution reaction (OER) catalysts for water splitting. Herein, a simple one-step corrosion method and magnesium (Mg)-promoted strategy are reported to develop the NiFe-based catalyst with enhanced OER performance. The Mg is introduced in NiFe materials to preparate a "pre-catalyst" Mg-Ni/Fe2O3. In-situ Raman shows that Mg doping would accelerate the self-reconstruction of Ni/Fe2O3 to form active NiOOH species during OER. In-situ infrared indicates that Mg doping benefits the formation of *OOH intermediate. Theoretical analysis further confirms that Mg doping can optimize the adsorption of oxygen intermediates, accelerating the OER kinetics. Accordingly, the Mg-Ni/Fe2O3 catalyst exhibits excellent OER performance with overpotential of 168 mV at 10 mA cm-2. The anion exchange membrane water electrolyzer achieved 200 mA cm-2 at voltage of 1.53 V, showing excellent stability over 500 h as well. This work demonstrates the potential of Mg-promoted strategy in regulating the activity of transition metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Boxuan Jin
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenwen Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuaichong Wei
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kai Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongyu Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guihua Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Jingde Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
12
|
Qin Y, Xu Q, Zhao R, Wang Q. Highly Efficient NiS/Ni(OH) x Heterogeneous Structure Electrocatalyst with Regenerative Oxygen Vacancies for Oxygen Evolution Reaction. CHEMSUSCHEM 2024; 17:e202400961. [PMID: 39031879 DOI: 10.1002/cssc.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Developing low-cost and highly efficient electrocatalysts toward oxygen evolution reaction (OER) is of vital significance for electrochemical water splitting. Herein, we fabricate a heterostructure NiS/Ni(OH)x electrocatalyst (Ni-S-n) with regenerative oxygen vacancies via electro-deposition on nickel foam (NF) followed by a facile NaBH4 reduction. The resulting Ni-S-5 catalyst with appropriate amount of oxygen vacancies (Ovs) exhibits extraordinary activity for alkaline OER with overpotential of 142 mV and 248 mV to reach the current density of 10 mA cm-2 and 100 mA cm-2, respectively. This catalyst also shows remarkable durability with 40 h. After the stability test, the excellent OER performance is well recovered by regenerating the surface oxygen vacancies (Ovs) significantly with additional NaBH4 reduction. The Ni-S-5 catalyst still displays good activity even after repeating it three times (180 h). The surface oxygen vacancies act as vital active sites for OER. A mechanism of Ovs species transformation and regeneration based on the Ni-S-5 catalyst is proposed, which provides a new direction for exploring ultrastable and efficient OER electrocatalysts with renewable active species.
Collapse
Affiliation(s)
- Yue Qin
- State Key Laboratory of Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qingli Xu
- State Key Laboratory of Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rong Zhao
- State Key Laboratory of Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qingfa Wang
- State Key Laboratory of Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Zhang Y, Song X, Guo X, Li X. Design of NiCoP nanorod loaded on cocoon carbon substrate and its non-metal doping for efficient hydrogen evolution. J Colloid Interface Sci 2024; 675:391-400. [PMID: 38972126 DOI: 10.1016/j.jcis.2024.06.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The quest for effective and sustainable electrocatalysts for hydrogen evolution is crucial in advancing the widespread use of H2. In this study, we utilized silkworm cocoons as the source material to produce porous N-doped carbon (PNCC) substrates through a process involving degumming and annealing. Subsequently, NiCoP nanorod (NiCoP@PNCC) is deposited onto the substrates via a simple impregnation and calcination method to enhance the catalytic performance for the hydrogen evolution reaction (HER). The optimal spacing between the silk fibers of PNCC facilitates longitudinal growth, increases the active surface area, and balances the adsorption and desorption of reaction intermediates, thereby accelerating HER kinetics. Consequently, NiCoP@PNCC demonstrates impressive performance, with 44 mV overpotential to achieve a current density of 10 mA cm-2. Additionally, density functional theory (DFT) calculations reveal that the electronic structure and energy band of NiCoP@PNCC can be modified through the doping of elements such as B, C, N, O, F, and S. In addition, with the electronegativity enhancement of the doping elements, the interaction between Co atoms in NiCoP@PNCC and O atoms in adsorbed H2O molecules gradually enhanced, which is conducive to the dissociation of water in alkaline solution. This research introduces a novel approach for fine-tuning the catalytic activity of transition metal phosphides.
Collapse
Affiliation(s)
- Yongzheng Zhang
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Song
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xu Guo
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Liao H, Chen K, He X, Tong J, Liu X, Tan P, Guo X, Pan J. Metal Hydroxide-Organic Framework Mediated Structural Reengineering Enables Efficient NiFe Interaction for Robust Water Oxidation. NANO LETTERS 2024. [PMID: 39565186 DOI: 10.1021/acs.nanolett.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
NiFe layered double hydroxide (NiFe LDH) derived oxyhydroxides are promising electrocatalysts for the alkaline oxygen evolution reaction (OER). However, NiFe LDH with a stable metal-oxygen-metal (M-O-M) structure suffers from inadequate NiFe interaction, leading to undesirable activity and stability. Herein, we develop a NiFe hydroxide-organic framework (NiFe HOF) via modification of NiFe LDH with an organic linker to break the structural constraint of M-O-M and thus boost the OER. NiFe HOF with reconfigurable metal sites facilitates structural reengineering under the OER condition to form abundant NiFe interaction and prolonged M-O bonds, stimulating lattice oxygen mechanism. Therefore, NiFe HOF shows a distinctly decreased overpotential at 50 mA cm-2, which is 68 mV lower than that of NiFe LDH. The anion exchange membrane electrolyzer using NiFe HOF as anode electrode displays ultralong stability exceeding 1050 h at 1 A cm-2 with a low attenuation of 0.16 mV h-1.
Collapse
Affiliation(s)
- Hanxiao Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Kejun Chen
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Xiaorong He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiaxin Tong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xuanzhi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
15
|
Zeng Y, Zheng J, Zhang H, Yao F, Deng D, Wu Q, Makgwane PR, Liang H. Surface Reconstruction Regulation of Co 3N Through Heterostructure Engineering Toward Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406465. [PMID: 39225379 DOI: 10.1002/smll.202406465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Oxygen evolution reaction (OER) electrocatalysts generally experience structural and electronic modifications during electrocatalysis. This phenomenon, referred to as surface reconstruction, results in the formation of catalytically active species that act as real OER sites. Controlling surface reconstruction therefore is vital for enhancing the OER performance of electrocatalysts. In this study, a new approach is introduced of heterostructure engineering to facilitate the surface reconstruction of target catalysts. Using MnCo carbonate hydroxide (MnCo─CH)@Co3N as a demonstration, it is discovered that the surface reconstruction occurs more readily and rapidly on MnCo─CH@Co3N than on Co3N. More interestingly, during the reconstruction process, Mn species migrate to the surface, enabling the in situ formation of highly active Mn-doped CoOOH. Consequently, the MnCo─CH@Co3N catalyst after reconstruction exhibits a low overpotential of 257 mV at 10 mA cm-2, compared to 379 mV of individual Co3N. This work offers fresh perspectives on understanding the enhanced OER performance of heterostructure electrocatalysts and the role of heterostructure in promoting surface reconstruction.
Collapse
Affiliation(s)
- Ye Zeng
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiaxian Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Heru Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fen Yao
- Laboratory of Preparation and Applications of Environmentally Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun, 130103, China
| | - Dingrong Deng
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Qihui Wu
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Peter R Makgwane
- Institute for Catalysis and Energy Solutions (ICES), College of Science Engineering and Technology, University of South Africa, Florida, 1710, South Africa
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
16
|
Li R, Wu Y, Yang P, Li Y, Meng F, Fan Y, Wang D, Ren P, Xu H, Peng X, Zhu W, Wang H, Qin J, Zhang J, An M. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution. NANO LETTERS 2024. [PMID: 39365290 DOI: 10.1021/acs.nanolett.4c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
During the oxygen evolution reaction (OER), catalyst candidates that can fully trigger self-reconstruction to derive active species with favorable configurations are expected to overcome the sluggish reaction kinetics. Herein, we innovatively propose the introduction of heterogeneous vanadate dopants into nickel-iron alloy precatalysts, where the crystal mismatch structure induces local electron delocalization in the hexagonal close packed alloy phase, thereby facilitating adequate electrochemical reconstruction to form (oxy)hydroxides as the real catalytic species. Simultaneously, the participation of vanadate in the reconstruction also triggers mismatch in the derived (oxy)hydroxides, reinforcing the metal-oxygen covalence, so that lattice oxygen activation is kinetically favorable and facilitates the OER via the lattice oxygen pathway. Optimized reconstructed catalyst r-NiFeVOx-NF exhibits a low overpotential of 220 mV at current densities of 10 mA cm-2 and considerably stable operation. Our study opens up opportunities for achieving robust OER performance through the design and fabrication of the mismatch catalytic configuration.
Collapse
Affiliation(s)
- Ruopeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Youzheng Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peixia Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yaqiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuhao Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Penghui Ren
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xuesong Peng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weirun Zhu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Hui Wang
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Jiang Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150000, China
| | - Jinqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Maozhong An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
17
|
Wu F, Jiao Y, Ge JL, Zhu Y, Feng C, Wu Z, Li Q. Zn-facilitated surface reconstruction of Ni-MOF for an enhanced oxygen evolution reaction. Dalton Trans 2024; 53:15093-15100. [PMID: 39212297 DOI: 10.1039/d4dt02040e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Facilitating the surface reconstruction of pre-catalysts has been considered an effective strategy for constructing low-cost and highly efficient OER electrocatalysts. Metal doping is a feasible way to activate the surface reconstruction, thus enhancing the OER performance. Herein, we report a facile hydrothermal method to synthesize a series of Zn-doped Ni-MOF on nickel foam (NiZn-MOF/NF) as promising pre-catalysts toward the oxygen evolution reaction (OER). The Zn leaching of NiZn-MOF/NF can promote the surface self-reconstruction of NiZn-MOF/NF into oxygen-vacancy-rich NiOOH after electrochemical activation. Benefiting from the optimized electronic structure, abundant defects, more accessible active sites, and enhanced electrical conductivity, the reconstructed metal oxyhydroxide hybrids exhibit better electrocatalytic activity than the catalysts transformed from Ni-MOF/NF without Zn doping. The optimized NiZn-MOF/NF-OH as an OER catalyst has an overpotential of 336 mV at 100 mA cm-2, and a Tafel slope of 65.9 mV dec-1, as well as stability over 12 h. This work reveals that Zn cation-doping/leaching induces the surface reconstruction of pre-catalysts for enhanced oxygen catalytic activity, which provides a new approach for the development of advanced electrocatalysts.
Collapse
Affiliation(s)
- Fang Wu
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Yuhong Jiao
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Jin-Long Ge
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Yujun Zhu
- Department of Pharmacy and Biomedical Engineering, Anhui Medical University, Hefei 230000, China.
| | - Chao Feng
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Zhong Wu
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Qiu Li
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| |
Collapse
|
18
|
Hou T, Yang R, Xu J, He X, Yang H, Menezes PW, Chen Z. In situ evolution of bulk-active γ-CoOOH with immobilized Gd dopants enabling efficient oxygen evolution electrocatalysis. NANOSCALE 2024; 16:15629-15639. [PMID: 39132983 DOI: 10.1039/d4nr01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Promoting the in situ reconstruction of transition metal (TM)-based precatalysts into low-crystalline and well-modified TM (oxy)hydroxides (TMOxHy) during the alkaline oxygen evolution reaction (OER) is crucial for enhancing their catalytic performances. In this study, we incorporated gadolinium (Gd) into a cobalt hydroxide precatalyst, achieving a deep reconstruction into cobalt oxyhydroxide (γ-CoOOH) while retaining the incorporated Gd during the activation process of the alkaline OER. The unconventional non-leaching Gd dopants endow γ-CoOOH with reduced crystallinity, increasing the exposure of electrolyte-accessible Co atoms and enhancing its bulk activity. Furthermore, the modulation of the electronic structure of γ-CoOOH substantially boosts the intrinsic activity of the active Co sites. As a result, when supported on nickel foam, the catalyst exhibits remarkable alkaline OER performance, achieving a current density of 100 mA cm-2 at a low overpotential of approximately 327 mV. Notably, an ultrahigh current density of 1000 mA cm-2 is robustly maintained for 5 days, highlighting its immense potential for practical applications in large-scale hydrogen production.
Collapse
Affiliation(s)
- Tianjue Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Ruotao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Jiaxin Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Xiaodie He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hongyuan Yang
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Prashanth W Menezes
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623 Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| |
Collapse
|
19
|
Zhang L, Xu Q, Wen S, Zhang H, Chen L, Jiang H, Li C. Recycling Spent Ternary Cathodes to Oxygen Evolution Catalysts for Pure Water Anion-Exchange Membrane Electrolysis. ACS NANO 2024; 18:22454-22464. [PMID: 39129247 DOI: 10.1021/acsnano.4c07340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Recycling spent lithium-ion batteries (LIBs) to efficient water-splitting electrocatalysts is a promising and sustainable technology route for green hydrogen production by renewables. In this work, a fluorinated ternary metal oxide (F-TMO) derived from spent LIBs was successfully converted to a robust water oxidation catalyst for pure water electrolysis by utilizing an anion-exchange membrane. The optimized catalyst delivered a high current density of 3.0 A cm-2 at only 2.56 V and a durability of >300 h at 0.5 A cm-2, surpassing the noble-metal IrO2 catalyst. Such excellent performance benefits from an artificially endowed interface layer on the F-TMO, which renders the exposure of active metal (oxy)hydroxide sites with a stabilized configuration during pure water operation. Compared to other metal oxides (i.e., NiO, Co3O4, MnO2), F-TMO possesses a higher stability number of 2.4 × 106, indicating its strong potential for industrial applications. This work provides a feasible way of recycling waste LIBs to valuable electrocatalysts.
Collapse
Affiliation(s)
- Liyue Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Qiucheng Xu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Section for Surface Physics and Catalysis (SurfCat), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shuting Wen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoxuan Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Wang Z, Niu X, Ye L, Wang X, Wang C, Wen Y, Zong L, Wang L, Gao H, Li X, Zhan T. Boron modification promoting electrochemical surface reconstruction of NiFe-LDH for efficient and stable freshwater/seawater oxidation catalysis. J Colloid Interface Sci 2024; 668:607-617. [PMID: 38696989 DOI: 10.1016/j.jcis.2024.04.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Transition metal-based electrocatalysts generally take place surface reconstruction in alkaline conditions, but little is known about how to improve the reconstruction to a highly active oxyhydroxide surface for an efficient and stable oxygen evolution reaction (OER). Herein, we develop a strategy to accelerate surface reconstruction by combining boron modification and cyclic voltammetry (CV) activation. Density functional theory calculations and in-situ/ex-situ characterizations indicate that both B-doping and electrochemical activation can reduce the energy barrier and contribute to the surface evolution into highly active oxyhydroxides. The formed oxyhydroxide active phase can tune the electronic configuration and boost the OER process. The reconstructed catalyst of CV-B-NiFe-LDH displays excellent alkaline OER performance in freshwater, simulated seawater, and natural seawater with low overpotentials at 100 mA cm-2 (η100: 219, 236, and 255 mV, respectively) and good durability. This catalyst also presents outstanding Cl- corrosion resistance in alkalized seawater electrolytes. The CV-B-NiFe-LDH||Pt/C electrolyzer reveals prominent performance for alkalized freshwater/seawater splitting. This study provides a guideline for developing advanced OER electrocatalysts by promoting surface reconstruction.
Collapse
Affiliation(s)
- Zekun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xueqing Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyu Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xingwei Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
21
|
Li Y, Chen C, Zhao G, Huang H, Ren Y, Zuo S, Wu ZP, Zheng L, Lai Z, Zhang J, Rueping M, Han Y, Zhang H. Unveiling the Activity Origin of Electrochemical Oxygen Evolution on Heteroatom-Decorated Carbon Matrix. Angew Chem Int Ed Engl 2024:e202411218. [PMID: 39137124 DOI: 10.1002/anie.202411218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Chemical modification via functional dopants in carbon materials holds great promise for elevating catalytic activity and stability. To gain comprehensive insights into the pivotal mechanisms and establish structure-performance relationships, especially concerning the roles of dopants, remains a pressing need. Herein, we employ computational simulations to unravel the catalytic function of heteroatoms in the acidic oxygen evolution reaction (OER), focusing on a physical model of high-electronegative F and N co-doped carbon matrix. Theoretical and experimental findings elucidate that the enhanced activity originates from the F and pyridinic-N (Py-N) species that achieve carbon activation. This activated carbon significantly lowers the conversion energy barrier from O* to OOH*, shifts the potential-limiting step from OOH* formation to O* generation, and ultimately optimizes the energy barrier of the potential-limiting step. This wok elucidates that the critical role of heteroatoms in catalyzing the reaction and unlocks the potential of carbon materials for acidic OER.
Collapse
Affiliation(s)
- Yang Li
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Guoxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huawei Huang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Zhi-Peng Wu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiping Lai
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
22
|
Pei MJ, Shuai YK, Gao X, Chen JC, Liu Y, Yan W, Zhang J. Ni and Co Active Site Transition and Competition in Fluorine-Doped NiCo(OH) 2 LDH Electrocatalysts for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400139. [PMID: 38497843 DOI: 10.1002/smll.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/25/2024] [Indexed: 03/19/2024]
Abstract
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g, and subsequently to e0 g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.
Collapse
Affiliation(s)
- Mao-Jun Pei
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yan-Kang Shuai
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiang Gao
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jia-Cheng Chen
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yao Liu
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Yan
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiujun Zhang
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
23
|
Hong Y, Choi J, Lee E, Hwang YJ. Enhanced stability of boron modified NiFe hydroxide for oxygen evolution reaction. NANOSCALE 2024; 16:11564-11574. [PMID: 38855939 DOI: 10.1039/d4nr01186d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The introduction of non-metal elements including boron has been identified as a significant means to enhance oxygen evolution reaction (OER) performance in NiFe-based catalysts. To understand the catalytic activity and stability, recent attention has widened toward the Fe species as a potential contributor, prompting exploration from various perspectives. Here, boron incorporation in NiFe hydroxide achieves significantly enhanced activity and stability compared to the boron-free NiFe hydroxide. The boron inclusion in NiFe hydroxide is found to show exceptionally improved stability from 12 to 100 hours at a high current density (200 mA cm-2). It facilitates the production and redeposition of OER-active, high-valent Fe species in NiFe hydroxide based on the operando Raman, UV-vis, and X-ray absorption spectroscopy analysis. It is proposed that preserving a homogenous distribution of Fe across the boron-containing catalyst surface enhances OER stability, unlike the bare NiFe hydroxide electrocatalyst, which exhibits uneven Fe dissolution, confirmed through elementary mapping analysis. These findings shed light on the potential of anionic regulation to augment the activity of iron, an aspect not previously explored in depth, and thus are expected to aid in designing practical OER electrocatalysts.
Collapse
Affiliation(s)
- Yewon Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Juhyung Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Eunchong Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Yun Jeong Hwang
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Sun X, Song S, Yan G, Liu Y, Ding H, Zhang X, Feng Y. F-regulated Ni 2P-F3 nanosheets as efficient electrocatalysts for full-water-splitting and urea oxidation. Dalton Trans 2024; 53:8843-8849. [PMID: 38716691 DOI: 10.1039/d4dt00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heteroatomic anion doping represents a powerful approach for manipulating the electronic configuration of the active metal locus in electrocatalysts, resulting in enhanced multifunctional electrocatalytic properties in hydrogen/oxygen evolution reactions (HER/OER). Here, fluorine-tailored Ni2P-F3 nanosheets were synthesized and evaluated as a robust multifunctional electrocatalyst for HER, OER, and UOR. Our comprehensive experimental and theoretical investigations reveal that the anionic F effectively tailored the electronic states of the Ni2P-F3 nanosheets, resulting in an elevated d-band center and optimizing the sorption capacity of intermediates. In addition to thermodynamically and kinetically favoured redox reactions, F doping facilitates the reconstruction and generation of active γ-NiOOH. Resulting from the optimized electronic configuration and nanosheet architecture, outstanding catalytic activities are demonstrated by Ni2P-F3 with low overpotentials to reach 100 mA cm-2 for HER (177 mV) and OER (293 mV), surpassing Ni2P by 234 and 205 mV, respectively. Notably, 1.618 V is required for full-water-diversion to reach 10 mA cm-2, while 1.414 V is required with urea oxidation for 100 mA cm-2.
Collapse
Affiliation(s)
- Xi Sun
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Shixue Song
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yingchun Liu
- Jinghua Plastics Industry Co. Ltd., Langfang 065800, China.
| | - Huili Ding
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| |
Collapse
|
25
|
Li A, Song D, Cao R, Wang F, Yan H, Chen H. In situ reconstruction of self-supported NiFeP electrodes for overall water splitting at large current density. Chem Commun (Camb) 2024; 60:3838-3841. [PMID: 38497308 DOI: 10.1039/d4cc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In this study, self-supported NiFeP was fabricated on Ni mesh (NiFeP/NM) via a two-step monopulse electrodeposition and phosphorization strategy. The NiFeP/NM exhibited excellent activity through electrochemical surface reconstruction to generate true active sites, requiring low overpotentials of 349 mV and 310 mV to reach a current density of 500 mA cm-2 for the HER and OER, respectively, and exhibiting satisfactory stability in 6 M NaOH.
Collapse
Affiliation(s)
- Ang Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources, Chongqing University, Chongqing, China.
| | - Dongcai Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources, Chongqing University, Chongqing, China.
| | - Runjie Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Fangzheng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources, Chongqing University, Chongqing, China.
| | - Hua Yan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources, Chongqing University, Chongqing, China.
| | - Hongmei Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources, Chongqing University, Chongqing, China.
| |
Collapse
|
26
|
Abouelnaga AM, Mansour AM, Abou Hammad AB, El Nahrawy AM. Optimizing magnetic, dielectric, and antimicrobial performance in chitosan-PEG-Fe 2O 3@NiO nanomagnetic composites. Int J Biol Macromol 2024; 260:129545. [PMID: 38272427 DOI: 10.1016/j.ijbiomac.2024.129545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
There is a growing interest in eco-friendly and cost-effective organic-inorganic nanocomposites due to their alignment with the principles of "green" chemistry, as well as their biocompatibility and non-toxicity. This study focused on producing Chitosan-PEG-Fe2O3@NiO nanomagnetic composites to improve the stability, dielectric properties, and antimicrobial effectiveness of these nanocomposite materials. The process involved synthesizing Fe2O3@NiO via sol-gel and polymerizing chitosan-PEG. The nanocomposites were characterized by XRD, TEM, FTIR, optical, dielectric, and VSM. Incorporating Fe2O3@NiO significantly improved stability, and the interaction with Fe2O3 during the sol-gel process facilitated the formation of NiFe2O4 with an increase in the crystallinity within the chitosan-PEG matrix. The study examined optical and dielectric properties, highlighting that the 3 NiO-doped chitosan-PEG-Fe2O3 composites had high electrical conductivity (1.8 ∗ 10-3 S/cm) and a significant dielectric constant (106 at low frequencies). As the ratio of NiO NPs within the chitosan-PEG-Fe2O3 increases, the energy band gap of chitosan-PEG-Fe2O3 films decreases up to 3.7 eV. This decrease is owing to the quantum confinement effect. These composites also demonstrated improved antimicrobial activity against E. coli and S. aureus and higher activity in the presence of nanomagnetic particles. The minimum inhibitory concentrations of CS-PEG-Fe2O3/NiO NPs against (Bacillus cereus, M. luteus, S. aureus and (S. enterica, H. pylori, E. coli) were (22-35 mm) and (21-34 mm), respectively.
Collapse
Affiliation(s)
- Amel Mohamed Abouelnaga
- Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - A M Mansour
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ali B Abou Hammad
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Amany M El Nahrawy
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
27
|
Cao Y, Yan Y, Wen Y, Cao M, Li Y, Xie H, Gu W. Fe-Based Metal Organic Framework-Derived FeNiP/N-Doped Carbon Heterogeneous Core-Shell Structures for Oxygen Evolution. Inorg Chem 2024; 63:3599-3609. [PMID: 38333957 DOI: 10.1021/acs.inorgchem.3c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
It is of great significance to explore high activity, low overpotential, and outstanding durability electrocatalysts without precious metals for oxygen evolution reaction to reduce the energy consumption in the electrolysis of water to product hydrogen. Metal organic frameworks (MOFs) with periodic structure and uniform pore distribution have been widely used as precursors for the synthesis of transition metal electrocatalysts. Herein, we first synthesized nanoscale Fe-soc-MOFs with relatively high specific surface area and in situ converted it into nickel-iron double layer hydroxide/MOF (FeNi LDH/MOF) by Ni2+ etching. Finally, a nickel-iron phosphide/nitrogen-doped carbon cubic nanocage (FeNiP/NC) was obtained by calcination and phosphating. FeNiP/NC with its unique core-shell structure has an overpotential of only 240 mV at a current density of 10 mA/cm2 and can be continuously electrolyzed for 45 h. High catalytic activity of FeNiP/NC is mainly attributed to the action of Fe and Ni bimetals and the synergistic effect between FeNiP and N-doped porous carbon, which was confirmed by the calculation of density functional theory (i.e., Gibbs free energy). After a long period of electrolysis, FeNiP was converted to MOOH (M = Fe and Ni) and became the new active site. This study provides a feasible optimization strategy for the development of high-efficiency three-dimensional electrode materials without precious metals.
Collapse
Affiliation(s)
- Yijia Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunfang Yan
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusong Wen
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengya Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanrong Li
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Zhejiang, Hangzhou 310003, China
| | - Wen Gu
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Zhang B, Li Z, Zhou Y, Yang Z, Xue Z, Mu T. Fluorine Induced In Situ Formation of High Valent Nickel Species for Ultra Low Potential Electrooxidation of 5-Hydroxymethylfurfural. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306663. [PMID: 37817371 DOI: 10.1002/smll.202306663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Indexed: 10/12/2023]
Abstract
The Nickel-based catalysts have a good catalytic effect on the 5-hydroxymethylfurfural electrooxidation reaction (HMFOR), but limited by the conversion potential of Ni2+ /Ni3+ , 1.35 V versus RHE, the HMF electrooxidation potential of nickel-based catalysts is generally greater than 1.35 V versus RHE. Considering fluorine has the highest Pauling electronegativity and similar atomic radius of oxygen, the introduction of fluorine into the lattice of metal oxides might promote the adsorption of intermediate species, thus improving the catalytic performance. F is successfully doped into the lattice structure of NiCo2 O4 spinel oxide by the strategy of hydrothermal reaction and low-temperature fluorination. As is confirmed by in situ electrochemical impedance spectroscopy and Raman spectroscopy, the introduction of F weakens the interaction force of metal-oxygen covalent bonds of the asymmetric MT -O-MO backbone and improves the valence of Ni in tetrahedra structure, which makes it easier to be oxidized to higher valence active Ni3+ under the action of electric field and promotes the adsorption of OH- , while the decrease of Co valence enhances the adsorption of HMF with the catalyst. Combining the above reasons, F-NiCo2 O4 shows superb electrocatalytic performance with a potential of only 1.297 V versus RHE at a current density of 20 mA cm-2 , which is lower than the most catalyst.
Collapse
Affiliation(s)
- Baolong Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zijian Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yushang Zhou
- 600 S Mathews Ave Roger Adams Laboratory, Department of Chemistry, University of Illinois Urbana Champaign, IL, 61820, USA
| | - Zhaohui Yang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
29
|
Kim D, Park S, Choi J, Piao Y, Lee LYS. Surface-Reconstructed Ru-Doped Nickel/Iron Oxyhydroxide Arrays for Efficient Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304822. [PMID: 37726224 DOI: 10.1002/smll.202304822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/09/2023] [Indexed: 09/21/2023]
Abstract
The generation of an active phase through dynamic surface reconstruction is a promising strategy for improving the activity of electrocatalysts. However, studies investigating the reconstruction process and its impact on the intrinsic properties of the catalysts are scarce. Herein, the surface reconstruction of NiFe2 O4 interfaced with NiMoO4 (Ru-NFO/NMO) facilitated by Ru doping is reported. The electrochemical and material characterizations demonstrate that Ru doping can regulate the electronic structure of NFO/NMO and induce the high-valence state of Ni3.6+ δ , facilitating the surface reconstruction to highly active Ru-doped NiFeOOH/NiOOH (SR-Ru-NFO/NMO). The optimized SR-Ru-NFO/NMO exhibits promising performance in the oxygen evolution reaction, displaying a low overpotential of 229 mV at 10 mA cm-2 and good stability at varying current densities for 80 h. Density functional theory calculations indicate that Ru doping can increase the electron density and optimize intermediate adsorption by shifting the d-band center downward. This work provides valuable insights into the tuning of electrocatalysts by surface reconstruction and offers a rational design strategy for the development of highly active oxygen evolution reaction electrocatalysts.
Collapse
Affiliation(s)
- Daekyu Kim
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea
| | - Juhyung Choi
- Research Institute of Basic Science (rIBS), Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| |
Collapse
|
30
|
Zou A, Tang Y, Wu C, Li J, Meng H, Wang Z, Ma Y, An H, Zhong H, Zhang Q, Zhang X, Xue J, Wang X, Wu J. Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts. CHEMSUSCHEM 2024; 17:e202301195. [PMID: 37743254 DOI: 10.1002/cssc.202301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Electrochemical water splitting to generate hydrogen energy fills a gap in the intermittency issues for wind and sunlight power. Transition metal (TM) oxides have attracted significant interest in water oxidation due to their availability and excellent activity. Typically, the transitional metal oxyhydroxides species derived from these metal oxides are often acknowledged as the real catalytic species, due to the irreversible structural reconstruction. Hence, in order to innovatively design new catalyst, it is necessary to provide a comprehensive understanding for the origin of surface reconstruction. In this review, the most recent developments in the reconstruction of transition metal-based oxygen evolution reaction electrocatalysts were introduced, and various chemical driving forces behind the reconstruction mechanism were discussed. At the same time, specific strategies for modulating pre-catalysts to achieve controllable reconfiguration, such as metal substituting, increase of structural defect sites, were summarized. At last, the issues for the further understanding and optimization of transition metal oxides compositions based on structural reconstruction were provided.
Collapse
Affiliation(s)
- Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifan Ma
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hang An
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xin Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
31
|
Da Silva ES, Macili A, Bofill R, García-Antón J, Sala X, Francàs L. Boosting the Oxygen Evolution Activity of FeNi Oxides/Hydroxides by Molecular and Atomic Engineering. Chemistry 2024; 30:e202302251. [PMID: 37702295 DOI: 10.1002/chem.202302251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
FeNi oxides/hydroxides are the best performing catalysts for oxidizing water at basic pH. Consequently, their improvement is the cornerstone to develop more efficient artificial photosynthetic systems. During the last 5 years different reports have demonstrated an enhancement of their activity by engineering their structures via: (1) modulation of the number of oxygen, iron and nickel vacancies; (2) single atoms (SAs) doping with metals such as Au, Ir, Ru and Pt; and (3) modification of their surface using organic ligands. All these strategies have led to more active and stable electrocatalysts for oxygen evolution rection (OER). In this Concept, we critically analyze these strategies using the most relevant examples.
Collapse
Affiliation(s)
- Eliana S Da Silva
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Aureliano Macili
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roger Bofill
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi García-Antón
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Laia Francàs
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
32
|
Yan Y, Lin J, Huang K, Zheng X, Qiao L, Liu S, Cao J, Jun SC, Yamauchi Y, Qi J. Tensile Strain-Mediated Spinel Ferrites Enable Superior Oxygen Evolution Activity. J Am Chem Soc 2023; 145:24218-24229. [PMID: 37874900 DOI: 10.1021/jacs.3c08598] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exploring efficient strategies to overcome the performance constraints of oxygen evolution reaction (OER) electrocatalysts is vital for electrocatalytic applications such as H2O splitting, CO2 reduction, N2 reduction, etc. Herein, tunable, wide-range strain engineering of spinel oxides, such as NiFe2O4, is proposed to enhance the OER activity. The lattice strain is regulated by interfacial thermal mismatch during the bonding process between thermally expanding NiFe2O4 nanoparticles and the nonexpanding carbon fiber substrate. The tensile lattice strain causes energy bands to flatten near the Fermi level, lowering eg orbital occupancy, effectively increasing the number of electronic states near the Fermi level, and reducing the pseudoenergy gap. Consequently, the energy barrier of the rate-determining step for strained NiFe2O4 is reduced, achieving a low overpotential of 180 mV at 10 mA/cm2. A total water decomposition voltage range of 1.52-1.56 V at 10 mA/cm2 (without iR correction) was achieved in an asymmetric alkaline electrolytic cell with strained NiFe2O4 nanoparticles, and its robust stability was verified with a voltage retention of approximately 99.4% after 100 h. Furthermore, the current work demonstrates the universality of tuning OER performance with other spinel ferrite systems, including cobalt, manganese, and zinc ferrites.
Collapse
Affiliation(s)
- Yaotian Yan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinghuang Lin
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, 999078, China
| | - Keke Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaohang Zheng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang Qiao
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130022, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
33
|
Wu L, Ning M, Xing X, Wang Y, Zhang F, Gao G, Song S, Wang D, Yuan C, Yu L, Bao J, Chen S, Ren Z. Boosting Oxygen Evolution Reaction of (Fe,Ni)OOH via Defect Engineering for Anion Exchange Membrane Water Electrolysis Under Industrial Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306097. [PMID: 37607336 DOI: 10.1002/adma.202306097] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Developing non-precious catalysts with long-term catalytic durability and structural stability under industrial conditions is the key to practical alkaline anion exchange membrane (AEM) water electrolysis. Here, an energy-saving approach is proposed to synthesize defect-rich iron nickel oxyhydroxide for stability and efficiency toward the oxygen evolution reaction. Benefiting from in situ cation exchange, the nanosheet-nanoflake-structured catalyst is homogeneously embedded in, and tightly bonded to, its substrate, making it ultrastable at high current densities. Experimental and theoretical calculation results reveal that the introduction of Ni in FeOOH reduces the activation energy barrier for the catalytic reaction and that the purposely created oxygen defects not only ensure the exposure of active sites and maximize the effective catalyst surface but also modulate the local coordination environment and chemisorption properties of both Fe and Ni sites, thus lowering the energy barrier from *O to *OOH. Consequently, the optimized d-(Fe,Ni)OOH catalyst exhibits outstanding catalytic activity with long-term durability under both laboratory and industrial conditions. The large-area d-(Fe,Ni)OOH||NiMoN pair requires 1.795 V to reach a current density of 500 mA cm-2 at an absolute current of 12.5 A in an AEM electrolyzer for overall water electrolysis, showing great potential for industrial water electrolysis.
Collapse
Affiliation(s)
- Libo Wu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Minghui Ning
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Xinxin Xing
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- School of Materials and Energy, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yu Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX, 77204, USA
| | - Fanghao Zhang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Guanhui Gao
- Department of Materials Science and Nano-Engineering, Rice University, Houston, TX, 77005, USA
| | - Shaowei Song
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Dezhi Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Chuqing Yuan
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Luo Yu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Jiming Bao
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Shuo Chen
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
34
|
Ma Y, Zhou Y, Xie Y, Jin N, Cui Y, Qin Y, Ge H. Open-Microcolumn Array: A Novel Approach for Enhanced Electrocatalytic Bubble Desorption in Microreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47790-47798. [PMID: 37769290 DOI: 10.1021/acsami.3c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
High-efficiency electrocatalytic water splitting requires high intrinsic activity of catalysts and even more importantly favorable mass transfer. However, gas bubbles adhering to the surface of catalysts limit the re-expose of catalytic active sites to the electrolyte and reduce the catalytic activities. The efficient desorption of bubbles can be facilitated by a hierarchical multiscale structure of the electrode surface. Herein, we report an opened periodic three-dimensional electrode composed of iron (Fe)-cobalt (Co)-nickel (Ni) (oxy)hydroxide nanorods (NRs) grown in situ on a high aspect ratio nickel microcolumn array (NCA) for electrocatalytic water splitting. Compared with the flat nickel plate, the NCA not only increases the surface area for catalyst loading but also improves the wettability of the electrolyte on the electrode surface, exhibiting superhydrophilicity/superaerophobicity (the electrolyte and the bubble contact angles were about ∼0 and 163°, respectively), which accelerates the bubble evolution and desorption process. The X-ray photoelectron spectroscopy indicates that the synergy of Fe-Co-Ni could enhance the ratio of Co3+/Co2+ and Ni3+/Ni2+ and promote the electrocatalytic activity. Benefiting from the microstructure design and synergistic effects, the Co4Fe0.5Ni0.5OOH-NR@NCA electrode achieves a superior OER performance with an overpotential of 199 mV at 10 mA·cm-2.
Collapse
Affiliation(s)
- Yibing Ma
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yaya Zhou
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yaqing Xie
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Ningxuan Jin
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yushuang Cui
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yiqiang Qin
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Haixiong Ge
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| |
Collapse
|
35
|
Zhao M, Guo C, Liu C, Gao L, Ren X, Yang H, Kuang X, Sun X, Wei Q. An amorphous Ni-Fe catalyst for electrocatalytic dehydrogenation of alcohols to value-added chemicals. NANOSCALE 2023; 15:15600-15607. [PMID: 37740308 DOI: 10.1039/d3nr03511e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As for the hydrogen production process via electrocatalytic water splitting, the green and sustainable electro-oxidation of organic molecules at the anode is thermodynamically more favourable than the oxygen evolution reaction (OER). Here, we proposed for the first time to replace the OER process by the oxidation of N-Boc-4-piperidine methanol (BPM), via a parallel reaction, which finally leads to the green production of N-Boc-4-piperidine carboxaldehyde (BPC). The amorphous NiFeO(OH) nanospheres with rich valence states were adopted as the anode catalyst, with creation of more active sites. The gas chromatography results showed that nearly all the BPM converted to BPC after 15 h reaction. The electrochemical tests showed that the Faraday efficiency (FE) approaches nearly 100% when the charge transfer is approximately equal to the theoretical charge. This work reports a new process for the alcohol oxidation, providing a valuable green organic synthesis process.
Collapse
Affiliation(s)
- Mingzhu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chengying Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Chengqing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Lingfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
36
|
He Z, Ajmal M, Zhang M, Liu X, Huang Z, Shi C, Gao R, Pan L, Zhang X, Zou J. Progress in Manipulating Dynamic Surface Reconstruction via Anion Modulation for Electrocatalytic Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304071. [PMID: 37551998 PMCID: PMC10582449 DOI: 10.1002/advs.202304071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Indexed: 08/09/2023]
Abstract
The development of efficient and economical electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the sustainable production of renewable fuels and energy storage systems; however, the sluggish OER kinetics involving multistep four proton-coupled electron transfer hampers progress in these systems. Fortunately, surface reconstruction offers promising potential to improve OER catalyst design. Anion modulation plays a crucial role in controlling the extent of surface reconstruction and positively persuading the reconstructed species' performances. This review starts by providing a general explanation of how various types of anions can trigger dynamic surface reconstruction and create different combinations with pre-catalysts. Next, the influences of anion modulation on manipulating the surface dynamic reconstruction process are discussed based on the in situ advanced characterization techniques. Furthermore, various effects of survived anionic groups in reconstructed species on water oxidation activity are further discussed. Finally, the challenges and prospects for the future development directions of anion modulation for redirecting dynamic surface reconstruction to construct highly efficient and practical catalysts for water oxidation are proposed.
Collapse
Affiliation(s)
- Zexing He
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Muhammad Ajmal
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Minghui Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Xiaokang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Ruijie Gao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| |
Collapse
|
37
|
Adak M, Basak HK, Chakraborty B. Ease of Electrochemical Arsenate Dissolution from FeAsO 4 Microparticles during Alkaline Oxygen Evolution Reaction. ACS ORGANIC & INORGANIC AU 2023; 3:223-232. [PMID: 37545654 PMCID: PMC10401858 DOI: 10.1021/acsorginorgau.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-based ABO4-type materials have now been paid significant attention due to their excellent electrochemical activity. However, a detailed study to understand the active species and its electro-evolution pathway is not traditionally performed. Herein, FeAsO4, a bimetallic ABO4-type oxide, has been prepared solvothermally. In-depth microscopic and spectroscopic studies showed that the as-synthesized cocoon-like FeAsO4 microparticles consist of several small individual nanocrystals with a mixture of monoclinic and triclinic phases. While depositing FeAsO4 on three-dimensional nickel foam (NF), it can show oxygen evolution reaction (OER) in a moderate operating potential. During the electrochemical activation of the FeAsO4/NF anode through cyclic voltammetric (CV) cycles prior to the OER study, an exponential increment in the current density (j) was observed. An ex situ Raman study with the electrode along with field emission scanning electron microscopy imaging showed that the pronounced OER activity with increasing number of CV cycles is associated with a rigorous morphological and chemical change, which is followed by [AsO4]3- leaching from FeAsO4. A chronoamperometric study and subsequent spectro- and microscopic analyses of the isolated sample from the electrode show an amorphous γ-FeO(OH) formation at the constant potential condition. The in situ formation of FeO(OH)ED (ED indicates electrochemically derived) shows better activity compared to pristine FeAsO4 and independently prepared FeO(OH). Tafel, impedance spectroscopic study, and determination of electrochemical surface area have inferred that the in situ formed FeO(OH)ED shows better electro-kinetics and possesses higher surface active sites compared to its parent FeAsO4. In this study, the electrochemical activity of FeAsO4 has been correlated with its structural integrity and unravels its electro-activation pathway by characterizing the active species for OER.
Collapse
|
38
|
Xu D, Liu S, Zhang M, Xu L, Gao H, Yao J. Manipulating the Dynamic Self-Reconstruction of CoP Electrocatalyst Driven by Charge Transport and Ion Leaching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300201. [PMID: 36967560 DOI: 10.1002/smll.202300201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Surface reconstruction of electrocatalysts is very important to clarify the structure-component-activity relationship. In this work, in situ Raman and ex situ technologies are used to capture the surface structure evolution of F-Fe-CoP during the oxygen evolution reaction (OER). The results reveal that the leaching of F accelerates the dynamic reconstruction response of CoP to rapidly convert into active (oxy)hydroxide species. The further introduction of Fe can accelerate the charge transfer rate and alleviate the structural stacking caused by insufficient kinetics. The introduction of F and Fe increases the electron occupation states of cobalt sites and promotes the adsorption of OH- ions on the CoP catalyst, which significantly improves the OER performance. F-Fe-CoP exhibits excellent OER performance with an overpotential of 259 mV at 20 mA cm-2 . This finding enriches the OER mechanism associated with the surface reconstruction of CoP and provides a reference for the rational design of efficient electrocatalysts.
Collapse
Affiliation(s)
- Dexin Xu
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Sirui Liu
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Mingyi Zhang
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
| | - Lingling Xu
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
| | - Hong Gao
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
| | - Jing Yao
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
39
|
Peng Y, Huang M, Yang Q, Xing Z, Lu ZH. Replacing Oxygen Evolution with Hydrazine Borane Oxidation for Energy-Saving Electrochemical Hydrogen Production. Inorg Chem 2023. [PMID: 37411009 DOI: 10.1021/acs.inorgchem.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Electrochemical water splitting is a green strategy for hydrogen (H2) production but is severely hindered by the sluggish anodic oxygen evolution reaction (OER). Therefore, replacing the sluggish anodic OER with more favorable oxidation reactions is an energy-saving approach for hydrogen production. Hydrazine borane (HB, N2H4BH3) is considered a potential hydrogen storage material due to its easy preparation, nontoxicity, and high chemical stability. Furthermore, the complete electrooxidation of HB has a unique characteristic of a much lower potential compared to that of OER. All these make it an ideal alternative for energy-saving electrochemical hydrogen production, however, which has never been reported so far. Herein, HB oxidation (HBOR)-assisted overall water splitting (OWS) is proposed for the first time for energy-saving electrochemical hydrogen production. The as-synthesized NiCoP@CoFeP nanoneedle array catalyst exhibited superefficient OER, hydrogen evolution reaction (HER), and HBOR performance. Impressively, NiCoP@CoFeP serves as both anodic and cathodic electrocatalysts for HB-assisted OWS, only requires a low cell voltage of only 0.078 V to achieve a current density of 10 mA cm-2, which was 1.4 V lower than that for HB-free OWS, indicating the highly energy-saving H2 production.
Collapse
Affiliation(s)
- Yefei Peng
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Minsong Huang
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qifeng Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyuan Xing
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Zhang-Hui Lu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
40
|
Wang Y, Meng C, Zhao L, Zhang J, Chen X, Zhou Y. Surface and near-surface engineering design of transition metal catalysts for promoting water splitting. Chem Commun (Camb) 2023. [PMID: 37334928 DOI: 10.1039/d3cc01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transition metal catalysts are widely used in the field of hydrogen production via water electrolysis. The surface state and near-surface environment of the catalysts greatly affect the efficiency of hydrogen production. Therefore, the rational design of surface engineering and near-surface engineering of transition metal catalysts can significantly improve the performance of water electrolysis. This review systematically introduces surface engineering strategies, including heteroatom doping, vacancy engineering, strain regulation, heterojunction effect, and surface reconstruction. These strategies optimize the surface electronic structure of the catalysts, expose more active sites, and promote the formation of highly active species, ultimately enhancing water electrolysis performance. Furthermore, near-surface engineering strategies, such as surface wettability, three-dimensional structure, high-curvature structure, external field assistance, and extra ion addition, are thoroughly discussed. These strategies expedite the mass transfer of reactants and gas products, improve the local chemical environment near the catalyst surface, and contribute toward achieving an industrial-level current density for overall water splitting. Finally, the key challenges faced by surface engineering and near-surface engineering of transition metal catalysts are highlighted and potential solutions are proposed. This review offers essential guidelines for the design and development of efficient transition metal catalysts for water electrolysis.
Collapse
Affiliation(s)
- Yanmin Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jialin Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xuemin Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
41
|
Liu J, Du W, Guo S, Pan J, Hu J, Xu X. Iron-Locked Hydr(oxy)oxide Catalysts via Ion-Compensatory Reconstruction Boost Large-Current-Density Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300717. [PMID: 37026683 PMCID: PMC10238203 DOI: 10.1002/advs.202300717] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Indexed: 06/04/2023]
Abstract
Nickel-iron based hydr(oxy)oxides have been well recognized as one of the best oxygen-evolving catalysts in alkaline water electrolysis. A crucial problem, however, is that iron leakage during prolonged operation would lead to the oxygen evolution reaction (OER) deactivation over time, especially under large current densities. Here, the NiFe-based Prussian blue analogue (PBA) is designed as a structure-flexible precursor for navigating an electrochemical self-reconstruction (ECSR) with Fe cation compensation to fabricate a highly active hydr(oxy)oxide (NiFeOx Hy ) catalyst stabilized with NiFe synergic active sites. The generated NiFeOx Hy catalyst exhibits the low overpotentials of 302 and 313 mV required to afford large current densities of 500 and 1000 mA cm-2 , respectively. Moreover, its robust stability over 500 h at 500 mA cm-2 stands out among the NiFe-based OER catalysts reported previously. Various in/ex situ studies indicate that the Fe fixation by dynamic reconstruction process can reinforce the Fe-activated effect on the OER amenable to the industrial-level large current conditions against the Fe leakage. This work opens up a feasible strategy to design highly active and durable catalysts via thermodynamically self-adaptive reconstruction engineering.
Collapse
Affiliation(s)
- Jiao Liu
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Wei Du
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Siying Guo
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Jing Pan
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Jingguo Hu
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Xiaoyong Xu
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| |
Collapse
|
42
|
Liu Y, Wang S, Li Z, Chu H, Zhou W. Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
43
|
Kuila SK, Guchhait SK, Mandal D, Kumbhakar P, Chandra A, Tiwary CS, Kundu TK. Dimensionality effects of g-C 3N 4 from wettability to solar light assisted self-cleaning and electrocatalytic oxygen evolution reaction. CHEMOSPHERE 2023; 333:138951. [PMID: 37196791 DOI: 10.1016/j.chemosphere.2023.138951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Unique interfacial properties of 2D materials make them more functional than their bulk counterparts in a catalytic application. In the present study, bulk and 2D graphitic carbon nitride nanosheet (bulk g-C3N4 and 2D-g-C3N4 NS) coated cotton fabrics and nickel foam electrode interfaces have been applied for solar light-driven self-cleaning of methyl orange (MO) dye and electrocatalytic oxygen evolution reaction (OER), respectively. Compared to bulk, 2D-g-C3N4 coated interfaces show higher surface roughness (1.094 > 0.803) and enhanced hydrophilicity (θ ∼ 32° < 62° for cotton fabric and θ ∼ 25° < 54° for Ni foam substrate) due to oxygen defect induction as confirmed from morphological (HR-TEM and AFM) and interfacial (XPS) characterizations. The self-remediation efficiencies for blank and bulk/2D-g-C3N4 coated cotton fabrics are estimated through colorimetric absorbance and average intensity changes. The self-cleaning efficiency for 2D-g-C3N4 NS coated cotton fabric is 87%, whereas the blank and bulk-coated fabric show 31% and 52% efficiency. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis determines the reaction intermediates for MO cleaning. 2D-g-C3N4 shows lower overpotential (108 mV) and onset potential (1.30 V) vs. RHE for 10 mA cm-2 OER current density in 0.1 M KOH. Also, the decreased charge transfer resistance (RCT = 12 Ω) and lower Tafel's slope (24 mV dec-1) of 2D-g-C3N4 make it the most efficient OER catalyst over bulk-g-C3N4 and state-of-the-art material RuO2. The pseudocapacitance behavior of OER governs the kinetics of electrode-electrolyte interaction through the electrical double layer (EDL) mechanism. The 2D electrocatalyst demonstrates long-term stability (retention ∼94%) and efficacy compared to commercial electrocatalysts.
Collapse
Affiliation(s)
- Saikat Kumar Kuila
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | | | - Debabrata Mandal
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Amreesh Chandra
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Tarun Kumar Kundu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
44
|
Operando spectroscopies capturing surface reconstruction and interfacial electronic regulation by FeOOH@Fe 2O 3@Ni(OH) 2 heterostructures for robust oxygen evolution reaction. J Colloid Interface Sci 2023; 636:501-511. [PMID: 36652825 DOI: 10.1016/j.jcis.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction (OER) and understanding the phase evolution in the catalytic process are vital to improving the overall efficiency of electrochemical water splitting. Herein, a hybrid heterogeneous FeOOH@Fe2O3@Ni(OH)2 electrocatalyst with robust OER intrinsic activity and a low overpotential of 269 mV to obtain a current density of 100 mA cm-2 and a Tafel slope value of 60.15 mV dec-1 is effectively prepared. The dynamic surface evolution has been detected by in-situ Raman spectroscopy, which exposes that FeOOH@Fe2O3@Ni(OH)2 is reconstituted as Ni(Fe)OOH demonstrated as catalytically active species under high potential. X-ray photoelectron spectroscopy analysis indicates that partial electrons of Ni in the heterogeneous interface transfer to Fe. Furthermore, partial Fe doping of NiOOH under high potential accompanied by the oxidized Ni3+ with optimized d-orbit electronic configuration for nearly unity eg occupancy results in proper chemisorption bonding strength for oxygen reaction intermediates and is conducive to enhancing OER reaction kinetics. This work provides ideas that multicomponent heterostructure can adjust the electronic structure of iron and nickel to enhance the intrinsic activity of OER, which could help with the design and synthesis of high-performance OER catalysts used in energy storage and conversion.
Collapse
|
45
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
46
|
Hua W, Sun H, Hou Z, Li Y, Wei B, Wang JG. Boosting large-current-density water oxidation activity and stability by phytic acid-assisted rapid electrochemical corrosion. J Colloid Interface Sci 2023; 633:24-31. [PMID: 36434932 DOI: 10.1016/j.jcis.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Corrosion engineering is an efficient strategy to achieve durable oxygen evolution reaction (OER) catalysts at high current densities beyond 500 mA cm-2. However, the spontaneous electrochemical corrosion has a slow reaction rate, and most of them need to add large amounts of salts (such as NaCl) to accelerate the corrosion process. In this report, a novel and effective phytic acid (PA)-assisted in situ electrochemical corrosion strategy is demonstrated to accelerate the the corrosion process and form bimetallic active catalysts to show excellent OER performance at large current densities. In situ rapid electrochemical corrosion of nickel foam substrate and PA ligands etching realize localized high concentrations of Ni and Fe ions. High concentrations of metal ions will combine with hydroxyl to effectively form defects-enriched NiFe layered double hydroxides porous nanosheets tightly anchoring on the underneath substrate. Remarkably, the activated electrode exhibits excellent OER catalytic activities with ultralow overpotentials of 289 and 315 mV to reach high current densities of 500 and 1000 mA cm-2, respectively. When coupled with Ni-Mo-N hydrogen evolution reaction catalysts, the two-electrode cell merely requires 1.87 V to deliver 1000 mA cm-2. The ligands-assisted rapid electrochemical corrosion strategy provides a fresh perspective for facile, cost-effective, and scale-up production of superior OER catalysts at large current densities.
Collapse
Affiliation(s)
- Wei Hua
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Huanhuan Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Zhidong Hou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Yueying Li
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China
| | - Bingqing Wei
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States.
| | - Jian-Gan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China.
| |
Collapse
|
47
|
Metal-Organic Frameworks Derived Interfacing Fe2O3/ZnCo2O4 Multimetal Oxides as a Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
48
|
Cao D, Zhang Z, Cui Y, Zhang R, Zhang L, Zeng J, Cheng D. One-Step Approach for Constructing High-Density Single-Atom Catalysts toward Overall Water Splitting at Industrial Current Densities. Angew Chem Int Ed Engl 2023; 62:e202214259. [PMID: 36495017 DOI: 10.1002/anie.202214259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The construction of highly active, durable, and cost-effective catalysts is urgently needed for green hydrogen production. Herein, catalysts consisting of high-density Pt (24 atoms nm-2 ) and Ir (32 atoms nm-2 ) single atoms anchored on Co(OH)2 were constructed by a facile one-step approach. Remarkably, Pt1 /Co(OH)2 and Ir1 /Co(OH)2 only required 4 and 178 mV at 10 mA cm-2 for hydrogen evolution reaction and oxygen evolution reaction, respectively. Moreover, the assembled Pt1 /Co(OH)2 //Ir1 /Co(OH)2 system showed mass activity of 4.9 A mgnoble metal -1 at 2.0 V in an alkaline water electrolyzer, which is 316.1 times higher than that of Pt/C//IrO2 . Mechanistic studies revealed that reconstructed Ir-O6 single atoms and remodeled Pt triple-atom sites enhanced the occupancy of Ir-O bonding orbitals and improved the occupation of Pt-H antibonding orbital, respectively, contributing to the formation of the O-O bond and the desorption of hydrogen. This one-step approach was also generalized to fabricate other 20 single-atom catalysts.
Collapse
Affiliation(s)
- Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhirong Zhang
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yahui Cui
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Runhao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lipeng Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
49
|
Zhou Y, Jin N, Ma Y, Cui Y, Wang L, Kwon Y, Lee WK, Zhang W, Ge H, Zhang J. Tube-Sponge-Inspired Hierarchical Electrocatalysts with Boosted Mass and Electron Transfer for Efficient Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209500. [PMID: 36462219 DOI: 10.1002/adma.202209500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hindered gas bubble release and limited electron conducting process represent the major bottlenecks for large-scale electrochemical water splitting. Both the desorption of bubbles and continuous electron transport are achievable on the surfaces of biomimetic catalytic materials by designing multiscale structural hierarchy. Inspired by the tubular structures of the deep-sea sponges, an exceptionally active and binder-free porous nickel tube arrays (PNTA) decorated with NiFe-Zn2+ -pore nanosheets (NiFe-PZn ) are fabricated. The PNTA facilitate removal of bubbles and electron transfer in the oxygen evolution reaction by reproducing trunks of the sponges, and simultaneously, the NiFe-PZn increase the number of catalytic active sites by simulating the sponge epidermis. With improved external mass transfer and interior electron transfer, the hierarchical NiFe-PZn @PNTA electrode exhibits superior oxygen evolution reaction performance with an overpotential of 172 mV at 10 mA cm-2 (with a Tafel slope of 50 mV dec-1 ). Furthermore, this electrocatalytic system recorded excellent reaction stability over 360 h with a constant current density of 100 mA cm-2 at the potential of 1.52 V (versus RHE). This work provides a new strategy of designing hierarchical electrocatalysts for highly efficient water splitting.
Collapse
Affiliation(s)
- Yaya Zhou
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Ningxuan Jin
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Yibing Ma
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Yushuang Cui
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Lina Wang
- International Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongwoo Kwon
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Haixiong Ge
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Jian Zhang
- International Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
50
|
A Petal-like Structured NiCuOOH-NF Electrode by a Sonochemical Combined with the Electrochemical Method for Ammonia Oxidation Reaction. Processes (Basel) 2023. [DOI: 10.3390/pr11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Direct electrochemical oxidation, as an economical and efficient method, has recently received increasing attention for ammonia-nitrogen wastewater treatment. Developing a low-cost, efficient catalytic electrode is the key to solve the problem of sluggish ammonia oxidation reaction (AOR) kinetics. In this study, a three-dimensional (3D) Ni foam electrode coated with NiCuOOH petal-like cluster structures was prepared using a simple sonochemical method combined with a surface electrochemical reconstruction strategy. This structure has a large surface area and abundant NiCuOOH active sites, giving a good premise for extraordinary electrocatalytic activity of AOR. The results show that the maximum current density for AOR reaches 97.8 mA cm−2 at 0.60 V vs. saturated calomel electrode (SCE). Additionally, 96.53% of NH4+-N removal efficiency and 63.12% of TN removal efficiency were acquired in the electrolysis system based on the NiCuOOH-NF electrode, as well as a good stability for at least 24 h. It is a promising flow-through anode for the clean treatment of ammonia-nitrogen wastewater.
Collapse
|