1
|
Guo LJ, Wu J, Lu W, Li J, Wang Y, Yang H, Wang TZ. Nanoparticles Modulating the Immune Microenvironment in Breast Cancer Treatment. Int J Nanomedicine 2025; 20:1367-1382. [PMID: 39917056 PMCID: PMC11799854 DOI: 10.2147/ijn.s492713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Breast cancer remains a significant therapeutic challenge, with the immune microenvironment playing a crucial role in its progression and treatment response. This review investigates the potential of nanoparticles to modulate the immune microenvironment in breast cancer therapy. Initially, we discuss the composition and influence of the immune microenvironment on breast cancer, followed by current strategies targeting these components. We then provide strategies of nanoparticles for targeting immune cells such as macrophages, dendritic cells, and T-cells. The role of nanoparticles in enhancing immune checkpoint blockade (ICB) and their application in cancer vaccines is also examined. Additionally, we explore the synergistic effects of combining nanoparticles with conventional therapies. The review addresses the challenges in clinical translation, focusing on safety, biocompatibility, and toxicity. Finally, we outline future research directions and the potential advancements in nanoparticle-based immunotherapy, emphasizing their transformative impact on breast cancer treatment.
Collapse
Affiliation(s)
- Li-Juan Guo
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, People’s Republic of China
| | - Jinsheng Wu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, People’s Republic of China
| | - Weifeng Lu
- Institute of Oncology, The First Affiliated Hospital of Hainan Medical College Institute of Oncology, Haikou, 570102, People’s Republic of China
| | - Jing Li
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, People’s Republic of China
| | - Yeling Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, People’s Republic of China
| | - Hui Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, People’s Republic of China
| | - Tian-Zhu Wang
- Department of Radiation Oncology, Hainan Cancer Hospital, Haikou, 570311, People’s Republic of China
| |
Collapse
|
2
|
Hoover EC, Day ES. Antibody/siRNA Nanocarriers Against Wnt Signaling Suppress Oncogenic and Stem-Like Behavior in Triple-Negative Breast Cancer Cells. J Biomed Mater Res A 2025; 113:e37867. [PMID: 39760151 PMCID: PMC11800355 DOI: 10.1002/jbm.a.37867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes. One promising target for therapeutic manipulation is the Wnt signaling pathway, which has been associated with many invasive breast cancers, including TNBC. This pathway is activated in TNBC cells when extracellular Wnt ligands bind to overexpressed Frizzled7 (FZD7) transmembrane receptors, leading to downstream activation of intracellular β-catenin proteins. To target and inhibit Wnt signaling in TNBC cells, polymer nanoparticles (NPs) modified with anti-FZD7 antibodies and β-catenin small interfering RNAs (siRNAs) were developed, and their impact on the oncogenic behavior of treated TNBC cells was investigated. When compared to control NPs, the Wnt-targeted NPs induced greater levels of Wnt oncogene suppression. This led to greater inhibition of oncogenic and stem-like properties, including cell proliferation, drug resistance, and spheroid formation capacity. This work demonstrates a promising approach for targeting the Wnt pathway in TNBC to counter the cellular phenotypes that drive disease progression.
Collapse
Affiliation(s)
- Elise C. Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE
- Department of Materials Science and Engineering, University of Delaware, Newark, DE
- Helen F. Graham Cancer Center and Research Institute, Newark, DE
| |
Collapse
|
3
|
Sun X, Li D, Lv Y, Zhang M, Qiao D, Zhang Z, Ren H, Zhang Y, Yang Z, Gao J. Nanomaterials for the Diagnosis and Treatment of Triple-Negative Breast Cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2019. [PMID: 39654400 DOI: 10.1002/wnan.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent years, the diagnosis and treatment at the early stages significantly raise the survival rate of breast cancer patients. Moreover, antibody drugs pave the way toward precision target therapy. However, the treatment and survival of triple-negative breast cancer (TNBC) patients is still worrying, which needs further understanding and study. During the last several years, nanomaterials attracted extensive research interests in TNBC diagnosis and therapy. In this review, we summarize recent advances of nanomaterial-based strategies for diagnosing and treating TNBC. Specifically, treatments for TNBC utilizing nanomaterials are classified into monotherapy, combined therapy, and multimodal therapy based on the complexity of the treatment. Nanomaterials also offer the opportunity to integrating diagnosis with treatment, which are introduced and summarized in this review. By summarizing the design principles in detail, some insights into the challenges and opportunities are provided to inspire further research and clinical translation in this field. The scope of this review is to summarize the development of nanomaterials for diagnosis and treatment of TNBC, and to discuss future directions to improve the clinical outcome of TNBC patients.
Collapse
Affiliation(s)
- Xuan Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Dandan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yue Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Mengnan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Dianhe Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zuyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Han Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Ma K, Diao H, Xu X, Jin Y, Qiu M, Liu Z, Yang C, Zhao J, Chai S, Fang Q, Guo Z, Cui C, Xu J, Yin L, Ma HY. Dual-targeting of tumor cells and subcellular endoplasmic reticulum via AgPPIX-based Janus nanoparticles for photodynamic/immunotherapy against TNBC. NANOSCALE 2024; 16:12095-12106. [PMID: 38819371 DOI: 10.1039/d4nr01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is known for its strong invasiveness, high recurrence rates, and poor prognosis. Heme oxygenase-1 (HO-1) is closely related to tumor invasion, metastasis, recurrence and formation of tumor immunosuppression. The expression of HO-1 is high in TNBC and low in normal tissues. In this study, AgPPIX was synthesized as a heme oxygenase-1 (HO-1) inhibitor and a photosensitizer for TNBC therapy. PDA nanoparticles were synthesized and modified with anti-CD24 and p-toluenesulfonamide (PTSC) on their both sides to obtain PTSC@AgPPIX/PDA@anti-CD24 Janus nanoparticles (PAPC) for AgPPIX-targeted delivery. Anti-CD24 is targeted to CD24 on tumor cells and the PTSC moiety is targeted to endoplasmic reticulum (ER), where HO-1 is located. The results indicated that PAPC Janus nanoparticles exhibited higher cytotoxicity in 4T1 cells than that of the mono-modified nanoparticles. PAPC not only inhibited the expression of HO-1 and VEGF but also reduced TrxR activity significantly. Furthermore, PAPC not only promoted intracellular ROS production under laser irradiation for tumor photodynamic therapy (PDT) but also polarized TAMs from M2-type to M1 for tumor immunotherapy. In vivo experiments confirmed that PAPC could remodel the tumor immune microenvironment and almost completely inhibit the tumor growth in mouse models. Therefore, PAPC Janus nanoparticles are a promising nanoplatform with a dual-targeting capacity for TNBC immune/PDT synergistic therapy.
Collapse
Affiliation(s)
- Kun Ma
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - He Diao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xiangyi Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yu Jin
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Mingling Qiu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Zicheng Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Chenbo Yang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jiacheng Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Senchao Chai
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Qingxian Fang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Zhaoming Guo
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Changhao Cui
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jianqiang Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Liangwei Yin
- Department of Oncology, Central Hospital of Dalian University of Technology, Dalian 116033, China.
| | - Hai-Ying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
5
|
Yang EL, Sun ZJ. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity. Adv Healthc Mater 2024; 13:e2303294. [PMID: 38288864 DOI: 10.1002/adhm.202303294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Indexed: 02/13/2024]
Abstract
Cancer immunotherapy, a field within immunology that aims to enhance the host's anti-cancer immune response, frequently encounters challenges associated with suboptimal response rates. The presence of myeloid-derived suppressor cells (MDSCs), crucial constituents of the tumor microenvironment (TME), exacerbates this issue by fostering immunosuppression and impeding T cell differentiation and maturation. Consequently, targeting MDSCs has emerged as crucial for immunotherapy aimed at enhancing anti-tumor responses. The development of nanomedicines specifically designed to target MDSCs aims to improve the effectiveness of immunotherapy by transforming immunosuppressive tumors into ones more responsive to immune intervention. This review provides a detailed overview of MDSCs in the TME and current strategies targeting these cells. Also the benefits of nanoparticle-assisted drug delivery systems, including design flexibility, efficient drug loading, and protection against enzymatic degradation, are highlighted. It summarizes advances in nanomedicine targeting MDSCs, covering enhanced treatment efficacy, safety, and modulation of the TME, laying the groundwork for more potent cancer immunotherapy.
Collapse
Affiliation(s)
- En-Li Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| |
Collapse
|
6
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
7
|
Hoover E, Ruggiero OM, Swingler RN, Day ES. FZD7-Targeted Nanoparticles to Enhance Doxorubicin Treatment of Triple-Negative Breast Cancer. ACS OMEGA 2024; 9:14323-14335. [PMID: 38559981 PMCID: PMC10976388 DOI: 10.1021/acsomega.3c10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy agent commonly used to treat triple-negative breast cancer (TNBC), but it has insufficient efficacy against the disease and considerable toxicity due to its off-target delivery. To improve the specificity of DOX for TNBC, we encapsulated it in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) coated with antibodies against Frizzled7 (FZD7), a receptor that is overexpressed on TNBC cells and which is a key activator of the Wnt signaling pathway. In vitro studies show that DOX encapsulation does not hinder its ability to localize to the nucleus in human TNBC cell cultures and that DOX delivered via NPs induces apoptosis and DNA damage via H2A.X phosphorylation to the same degree as freely delivered DOX. FZD7-targeted NPs delivering DOX caused significantly greater inhibition of metabolic activity and led to a smaller cell population following treatment when compared to freely delivered DOX or DOX-loaded NPs coated only with poly(ethylene glycol) (PEG). The FZD7 antibodies additionally provided significant levels of Wnt pathway inhibition, as demonstrated by an increase in β-catenin phosphorylation, indicative of β-catenin destruction and downregulation. These results show that FZD7-targeted platforms have great promise for improving the therapeutic window of otherwise toxic chemotherapies like DOX in TNBC and other cancers that display the overexpression of FZD7 receptors.
Collapse
Affiliation(s)
- Elise
C. Hoover
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Olivia M. Ruggiero
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Rachel N. Swingler
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Emily S. Day
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Helen
F. Graham Cancer Center and Research Institute, Newark, Delaware 19713, United States
| |
Collapse
|
8
|
Cui H, Zhang L, Shi Y. Biomaterials-mediated ligation of immune cell surface receptors for immunoengineering. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100695. [PMID: 38405432 PMCID: PMC10891334 DOI: 10.1016/j.iotech.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A wide variety of cell surface receptors found on immune cells are essential to the body's immunological defense mechanisms. Cell surface receptors enable immune cells to sense extracellular stimuli and identify pathogens, transmitting activating or inhibitory signals that regulate the immune cell state and coordinate immunological responses. These receptors can dynamically aggregate or disperse due to the fluidity of the cell membrane, particularly during interactions between cells or between cells and pathogens. At the contact surface, cell surface receptors form microclusters, facilitating the recruitment and amplification of downstream signals. The strength of the immune signal is influenced by both the quantity and the specific types of participating receptors. Generally, receptor cross-linking, meaning multivalent ligation of receptors on one cell, leads to greater interface connectivity and more robust signaling. However, intercellular interactions are often spatially restricted by other cellular structures. Therefore, it is essential to comprehend these receptors' features for developing effective immunoengineering approaches. Biomaterials can stimulate and simulate interactions between immune cells and their targets. Biomaterials can activate immune cells to act against pathogenic organisms or cancer cells, thereby offering a valuable immunoengineering toolset for vaccination and immunotherapy. In this review, we systematically summarize biomaterial-based immunoengineering strategies that consider the biology of diverse immune cell surface receptors and the structural attributes of pathogens. By combining this knowledge, we aim to advance the development of rational and effective approaches for immune modulation and therapeutic interventions.
Collapse
Affiliation(s)
- H. Cui
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - L. Zhang
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus N, Denmark
| | - Y. Shi
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Zhang J, Wang S, Zhang D, He X, Wang X, Han H, Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front Immunol 2023; 14:1230893. [PMID: 37600822 PMCID: PMC10435760 DOI: 10.3389/fimmu.2023.1230893] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has developed rapidly in solid tumors, especially in the areas of blocking inhibitory immune checkpoints and adoptive T-cell transfer for immune regulation. Many patients benefit from immunotherapy. However, the response rate of immunotherapy in the overall population are relatively low, which depends on the characteristics of the tumor and individualized patient differences. Moreover, the occurrence of drug resistance and adverse reactions largely limit the development of immunotherapy. Recently, the emergence of nanodrug delivery systems (NDDS) seems to improve the efficacy of immunotherapy by encapsulating drug carriers in nanoparticles to precisely reach the tumor site with high stability and biocompatibility, prolonging the drug cycle of action and greatly reducing the occurrence of toxic side effects. In this paper, we mainly review the advantages of NDDS and the mechanisms that enhance conventional immunotherapy in solid tumors, and summarize the recent advances in NDDS-based therapeutic strategies, which will provide valuable ideas for the development of novel tumor immunotherapy regimen.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daidi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Wang
- Academy of Medical Science, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Choi Y, Cho BK, Seok SH, Kim C, Ryu JH, Kwon IC. Controlled spatial characteristics of ligands on nanoparticles: Determinant of cellular functions. J Control Release 2023; 360:672-686. [PMID: 37437847 DOI: 10.1016/j.jconrel.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Interactions of various ligands and receptors have been extensively investigated because they regulate a series of signal transduction leading to various functional cellular outcomes. The receptors on cell membrane recognize their specific ligands, resulting in specific binding between ligands and receptors. Accumulating evidence reveals that the receptors recognize the difference on the spatial characteristics of ligands as well as the types of ligands. Thus, control on spatial characteristics of multiple ligands presented on therapeutic nanoparticles is believed to impact the cellular functions. Specifically, the localized and multivalent distribution of ligands on nanoparticles can induce receptor oligomerization and receptor clustering, controlling intensity or direction of signal transduction cascades. Here, we will introduce recent studies on the use of material-based nanotechnology to control spatial characteristics of ligands and their effect on cellular functions. These therapeutic nanoparticles with controlled spatial characteristics of ligands may be a promising strategy for maximized therapeutic outcome.
Collapse
Affiliation(s)
- Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bo Kyung Cho
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Su Hyun Seok
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chansoo Kim
- Computational Science Centre & ASSIST, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; AI-Robot Department, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Zhang H, Li QW, Li YY, Tang X, Gu L, Liu HM. Myeloid-derived suppressor cells and pulmonary hypertension. Front Immunol 2023; 14:1189195. [PMID: 37350962 PMCID: PMC10282836 DOI: 10.3389/fimmu.2023.1189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder characterized by an increase in pulmonary vascular resistance and pulmonary arterial pressure. The detailed molecular mechanisms remain unclear. In recent decades, increasing evidence shows that altered immune microenvironment, comprised of immune cells, mesenchymal cells, extra-cellular matrix and signaling molecules, might induce the development of PH. Myeloid-derived suppressor cells (MDSCs) have been proposed over 30 years, and the functional importance of MDSCs in the immune system is appreciated recently. MDSCs are a heterogeneous group of cells that expand during cancer, chronic inflammation and infection, which have a remarkable ability to suppress T-cell responses and may exacerbate the development of diseases. Thus, targeting MDSCs has become a novel strategy to overcome immune evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted as a cancer-like disease, and MDSCs are closely related to the development and prognosis of PH. Here, we review the relationship between MDSCs and PH with respect to immune cells, cytokines, chemokines and metabolism, hoping that the key therapeutic targets of MDSCs can be identified in the treatment of PH, especially in severe PH.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qi-Wei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Gu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Li X, Li Y, Yu C, Bao H, Cheng S, Huang J, Zhang Z. ROS-Responsive Janus Au/Mesoporous Silica Core/Shell Nanoparticles for Drug Delivery and Long-Term CT Imaging Tracking of MSCs in Pulmonary Fibrosis Treatment. ACS NANO 2023; 17:6387-6399. [PMID: 36946383 DOI: 10.1021/acsnano.2c11112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mesenchymal stem cell (MSC) therapy has been proven to be a potentially effective approach for idiopathic pulmonary fibrosis (IPF) treatment. However, this strategy is currently limited by the poor curative effect and an insufficient comprehension of the in vivo condition of the transplanted MSCs in the remedy of IPF. To address these issues, herein, a nanosystem composed of Janus Au/mesoporous silica core/shell nanoparticles (Janus NPs) is designed for effective therapeutic and real-time tracing of MSCs in MSC-based IPF therapy. The Janus NPs consist of a Au core and a pirfenidone (PFD)-loaded mesoporous silica shell asymmetrically decorated with two targeting moieties: one is reactive oxygen species (ROS)-sensitive thioketal grafted methoxy poly(ethylene glycol) (mPEG-TK), and the other is 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE). The asymmetric decoration on each side of the particle allows long-term anchoring of the Janus NPs on the cell membrane to facilitate the responsive release of PFD in the ROS environment of the fibrotic lung, thereby enhancing the therapeutic efficacy of the transplanted MSCs by improving the microenvironment. Following drug release, the Janus NPs quickly enter into MSCs, achieving long-term computed tomography (CT) imaging tracing of MSCs in IPF model mice for an in-depth comprehension of the cell therapy mechanism. Overall, this work reports on Janus Au/PFD-loaded mesoporous silica core/shell NPs that combine the drug delivery and imaging tracking of MSCs, which may provide a strategy for the stem cell-based treatment of IPF.
Collapse
Affiliation(s)
- Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
13
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
14
|
Zhang Y, Tang H, Wang R. Controlling the two components modified on nanoparticles to construct nanomaterials. SOFT MATTER 2022; 18:8213-8222. [PMID: 36285648 DOI: 10.1039/d2sm00877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoparticle self-assembly technology has made great progress in the past 30 years. Many kinds of self-assembly strategies of modifiable nanoparticles have been developed and used to construct nano-aggregates by designing the shape, size and type of nanoparticles and controlling the components modified on nanoparticles. These strategies are widely used in many fields, such as medical diagnosis, biological detection, drug delivery, materials synthesis and sensors. The modified components can be DNA chains, polymer chains, proteins, and even organic molecules based on different molecular conformations and chemical properties. In recent years, the self-assembly of two-component modified nanoparticles has gradually attracted more attention. Nanoparticles modified with two components of different DNA strands can self-assemble to produce a variety of nano arrangement structures, such as BCC, FCC and other cubic crystals, which can be used in crystal materials. Two-component modification of hydrophilic and hydrophobic polymers can produce vesicular aggregates, which can be used for drug delivery. In this review, we summarize the latest experimental progress and theoretical simulation of self-assembly of two-component modified nanoparticles including different DNA chains, different polymer chains, DNA and polymer chains, proteins and polymer chains, and different organic molecules. Their self-assembly characteristics and application prospects were discussed. Compared with single-component modified nanoparticles, two-component nanoparticles have different tethered molecules or molecular chains, which can be multifunctional by regulating different modified components and types of nanoparticles and ultimately expand the scope of applications.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Lee J, Kim D, Le QV, Oh YK. Nanotherapeutics for immune network modulation in tumor microenvironments. Semin Cancer Biol 2022; 86:1066-1087. [PMID: 34844846 DOI: 10.1016/j.semcancer.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
Immunotherapy has shown promise in cancer treatment, and is thus drawing increasing interest in this field. While the standard chemotherapy- and/or radiotherapy-based cancer treatments aim to directly kill cancer cells, immunotherapy uses host immune cell surveillance to fight cancer. In the tumor environment, there is a close relationship between tumor cells and the adjacent immune cells, which are largely suppressed by cancer-related regulation of immune checkpoints, immune-suppressive cytokines, and metabolic factors. The immune modulators currently approved for cancer treatment remain limited by issues with dose tolerance and insufficient efficacy. Researchers have developed and tested various nano-delivery systems with the goal of improving the treatment outcome of these drugs. By encapsulating immune modulators in particles and directing their tissue accumulation, some such systems have decreased immune-related toxicity while sharpening the antitumor response. Surface-ligand modification of nanoparticles has allowed drugs to be delivered to specific immune cells types. Researchers have also studied strategies for depleting or reprogramming the immune-suppressive cells to recover the immune environment. Combining a nanomaterial with an external stimulus has been used to induce immunogenic cell death; this favors the inflammatory environment found in tumor tissues to promote antitumor immunity. The present review covers the most recent strategies aimed at modulating the tumor immune environment, and discusses the challenges and future perspectives in developing nanoparticles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
17
|
Chen Z, Yuan J, Dong Y, Liu H, Liang F, Yang Z, Wang Y, Xu J. Efficient recovery and enrichment of rare earth elements by a continuous flow micro-extraction system. FUNDAMENTAL RESEARCH 2022; 2:588-594. [PMID: 38934003 PMCID: PMC11197687 DOI: 10.1016/j.fmre.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022] Open
Abstract
The excessive exploitation of rare earth elements (REEs) has caused major losses of non-renewable resources and damage to the ecosystem. The processes of mining and smelting produce massive amounts of wastewater with low concentrations of REEs. Consequently, the enrichment and recovery of low-concentration REEs from wastewater has significant economic and environmental value. For this purpose, operation under large phase ratios (the flow rate ratio between the aqueous phase and extractant) is more desirable and economically viable. However, the traditional REE extraction process suffers from the uneven dispersion of the extractant and the difficulty of phase separation, which leads to long extraction times and large consumption of extractants. Hence, there is an urgent need to develop a green and efficient technique to extract low concentrations of REEs from wastewater. In this work, a droplet-based microfluidic technique was used to continuously extract and recover low-concentration REEs at large phase ratios. Snowman-shaped magnetic Janus nanoparticles were added to the continuous phase as emulsifiers to facilitate uniform extractant dispersion and rapid phase separation. Several key factors affecting the extraction efficiency, including pH, residence time, and the amount of added Janus nanoparticles, were systematically investigated. Compared to batch extraction, droplet-based microfluidic extraction with the addition of Janus nanoparticles showed the advantages of a large specific surface area and fast phase separation during extraction. Meanwhile, the Janus nanoparticles exhibited good emulsification performance after three extraction cycles. In summary, the Janus nanoparticle-stabilized droplet generated by microfluidic methods provides a feasible path for the efficient enrichment and recovery of low-concentration REEs.
Collapse
Affiliation(s)
- Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jifang Yuan
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhang Dong
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haipeng Liu
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Fuxin Liang
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yundong Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Vu TQ, Peruzzi JA, Sant'Anna LE, Roth EW, Kamat NP. Lipid Phase Separation in Vesicles Enhances TRAIL-Mediated Cytotoxicity. NANO LETTERS 2022; 22:2627-2634. [PMID: 35298184 PMCID: PMC9680886 DOI: 10.1021/acs.nanolett.1c04365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ligand spatial presentation and density play important roles in signaling pathways mediated by cell receptors and are critical parameters when designing protein-conjugated therapeutic nanoparticles. Here, we harness lipid phase separation to spatially control the protein presentation on lipid vesicles. We use this system to improve the cytotoxicity of TNF-related apoptosis inducing ligand (TRAIL), a therapeutic anticancer protein. Vesicles with phase-separated TRAIL presentation induce more cell death in Jurkat cancer cells than vesicles with uniformly presented TRAIL, and cytotoxicity is dependent on TRAIL density. We assess this relationship in other cancer cell lines and demonstrate that phase-separated vesicles with TRAIL only enhance cytotoxicity through one TRAIL receptor, DR5, while another TRAIL receptor, DR4, is less sensitive to TRAIL density. This work demonstrates a rapid and accessible method to control protein conjugation and density on vesicles that can be adopted to other nanoparticle systems to improve receptor signaling by nanoparticles.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev 2022; 183:114137. [PMID: 35143893 DOI: 10.1016/j.addr.2022.114137] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
The critical role of tumor microenvironment (TME) in tumor initiation and development has been well-recognized after more than a century of studies. Numerous therapeutic approaches targeting TME are rapidly developed including those leveraging nanotechnology, which have been further accelerated since the emergence of immune checkpoint blockade therapies in the past decade. While there are many reviews focusing on TME remodeling therapies via drug delivery and engineering strategies in animal models, state-of-the-art evaluation of clinical development states of TME-targeted therapeutics is rarely found. Here, we illustrate opportunities for integrating nano-delivery system for the development of TME-specific therapeutic regimen, followed by a comprehensive summary of the most up to date approved or clinically evaluated therapeutics targeting cellular and extracellular components within tumor immune and stromal microenvironment, including small molecule and monoclonal antibody drugs as well as nanomedicines. In the end, we also discuss challenges and possible solutions for clinical translation of TME-targeted nanomedicines.
Collapse
|
20
|
Chu Y, Sun T, Jiang C. Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J, Bazhin AV. Myeloid-Derived Suppressor Cells in Solid Tumors. Cells 2022; 11:cells11020310. [PMID: 35053426 PMCID: PMC8774531 DOI: 10.3390/cells11020310] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the main suppressive cell population of the immune system. They play a pivotal role in the establishment of the tumor microenvironment (TME). In the context of cancers or other pathological conditions, MDSCs can differentiate, expand, and migrate in large quantities during circulation, inhibiting the cytotoxic functions of T cells and NK cells. This process is regulated by ROS, iNOS/NO, arginase-1, and multiple soluble cytokines. The definition of MDSCs and their phenotypes in humans are not as well represented as in other organisms such as mice, owing to the absence of the cognate molecule. However, a comprehensive understanding of the differences between different species and subsets will be beneficial for clarifying the immunosuppressive properties and potential clinical values of these cells during tumor progression. Recently, experimental evidence and clinical investigations have demonstrated that MDSCs have a close relationship with poor prognosis and drug resistance, which is considered to be a leading marker for practical applications and therapeutic methods. In this review, we summarize the remarkable position of MDSCs in solid tumors, explain their classifications in different models, and introduce new treatment approaches to target MDSCs to better understand the advancement of new approaches to cancer treatment.
Collapse
Affiliation(s)
- Tianmiao Ma
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
22
|
Vantucci CE, Guyer T, Leguineche K, Chatterjee P, Lin A, Nash KE, Hastings MA, Fulton T, Smith CT, Maniar D, Frey Rubio DA, Peterson K, Harrer JA, Willett NJ, Roy K, Guldberg RE. Systemic Immune Modulation Alters Local Bone Regeneration in a Delayed Treatment Composite Model of Non-Union Extremity Trauma. Front Surg 2022; 9:934773. [PMID: 35874126 PMCID: PMC9300902 DOI: 10.3389/fsurg.2022.934773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Bone non-unions resulting from severe traumatic injuries pose significant clinical challenges, and the biological factors that drive progression towards and healing from these injuries are still not well understood. Recently, a dysregulated systemic immune response following musculoskeletal trauma has been identified as a contributing factor for poor outcomes and complications such as infections. In particular, myeloid-derived suppressor cells (MDSCs), immunosuppressive myeloid-lineage cells that expand in response to traumatic injury, have been highlighted as a potential therapeutic target to restore systemic immune homeostasis and ultimately improve functional bone regeneration. Previously, we have developed a novel immunomodulatory therapeutic strategy to deplete MDSCs using Janus gold nanoparticles that mimic the structure and function of antibodies. Here, in a preclinical delayed treatment composite injury model of bone and muscle trauma, we investigate the effects of these nanoparticles on circulating MDSCs, systemic immune profiles, and functional bone regeneration. Unexpectedly, treatment with the nanoparticles resulted in depletion of the high side scatter subset of MDSCs and an increase in the low side scatter subset of MDSCs, resulting in an overall increase in total MDSCs. This overall increase correlated with a decrease in bone volume (P = 0.057) at 6 weeks post-treatment and a significant decrease in mechanical strength at 12 weeks post-treatment compared to untreated rats. Furthermore, MDSCs correlated negatively with endpoint bone healing at multiple timepoints. Single cell RNA sequencing of circulating immune cells revealed differing gene expression of the SNAb target molecule S100A8/A9 in MDSC sub-populations, highlighting a potential need for more targeted approaches to MDSC immunomodulatory treatment following trauma. These results provide further insights on the role of systemic immune dysregulation for severe trauma outcomes in the case of non-unions and composite injuries and suggest the need for additional studies on targeted immunomodulatory interventions to enhance healing.
Collapse
Affiliation(s)
- Casey E Vantucci
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Tyler Guyer
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Kelly Leguineche
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Paramita Chatterjee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America.,Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Angela Lin
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Kylie E Nash
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Molly Ann Hastings
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Travis Fulton
- The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, United States of America.,Department of Orthopaedics, Emory University, Atlanta, GA, United States of America
| | - Clinton T Smith
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Drishti Maniar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - David A Frey Rubio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Kaya Peterson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Julia Andraca Harrer
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Nick J Willett
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America.,The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, United States of America.,Department of Orthopaedics, Emory University, Atlanta, GA, United States of America
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Robert E Guldberg
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
23
|
Li K, Zhang Z, Mei Y, Li M, Yang Q, WU Q, Yang H, HE LIANGCAN, Liu S. Targeting innate immune system by nanoparticles for cancer immunotherapy. J Mater Chem B 2022; 10:1709-1733. [DOI: 10.1039/d1tb02818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system...
Collapse
|
24
|
Li Z, Li Z, Hu J, Feng X, Zhang M, Duan G, Zhang R, Li Y. Self-Assembly of Poly(Janus particle)s into Unimolecular and Oligomeric Spherical Micelles. ACS Macro Lett 2021; 10:1563-1569. [PMID: 35549135 DOI: 10.1021/acsmacrolett.1c00620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using shape-persistent Janus particles to construct poly(Janus particle)s and studying their self-assembly behaviors are of great interest, but remain largely unexplored. In this work, we reported a type of amphiphiles constructed by the ring-opening metathesis polymerization of nonspherical molecular Janus particles (APOSS-BPOSS), called poly(Janus particle)s (poly(APOSS-BPOSS)n, n = 12, 17, 22, and 35, and Mn = 35-100 kg/mol). Unlike traditional bottlebrush polymers consisting of flexible side chains, these poly(Janus particles) consist of rigid hydrophilic and hydrophobic polyhedral oligomeric silsesquioxane (POSS) cages as side chains. Interestingly, instead of maintaining an expected extended chain conformation, they could also collapse and then self-assemble to form unconventional unimolecular or oligomeric spherical micelles in solutions with a feature size smaller than 7 nm. More importantly, unlike traditional amphiphilic polymer brushes that could form unimolecular micelles at a relatively high degree of polymerization by self-assembly, these poly(Janus particles)s could accomplish self-assembly at a quite low degree of polymerization because of their unique chemical structure and molecular topology. The formation of unimolecular and oligomeric micelles was also further confirmed by dissipative particle dynamics simulations. This study of introducing the POSS-based poly(Janus particle)s as a class of shape amphiphiles will provide a model system for generating unimolecular and oligomeric micellar nanostructures through solution self-assembly.
Collapse
Affiliation(s)
- Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zongxin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xingwei Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Minghua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruimeng Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W, Cai Z. Nanoparticle-Mediated Targeted Drug Delivery to Remodel Tumor Microenvironment for Cancer Therapy. Int J Nanomedicine 2021; 16:5811-5829. [PMID: 34471353 PMCID: PMC8403563 DOI: 10.2147/ijn.s321416] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced research has revealed the crucial role of tumor microenvironment (TME) in tumorigenesis. TME consists of a complicated network with a variety of cell types including endothelial cells, pericytes, immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs) as well as the extracellular matrix (ECM). The TME-constituting cells interact with the cancerous cells through plenty of signaling mechanisms and pathways in a dynamical way, participating in tumor initiation, progression, metastasis, and response to therapies. Hence, TME is becoming an attractive therapeutic target in cancer treatment, exhibiting potential research interest and clinical benefits. Presently, the novel nanotechnology applied in TME regulation has made huge progress. The nanoparticles (NPs) can be designed as demand to precisely target TME components and to inhibit tumor progression through TME modulation. Moreover, nanotechnology-mediated drug delivery possesses many advantages including prolonged circulation time, enhanced bioavailability and decreased toxicity over traditional therapeutic modality. In this review, update information on TME remodeling through NPs-based targeted drug delivery strategies for anticancer therapy is summarized.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
26
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|