1
|
Merchiori S, Donne AL, Bhatia R, Alvelli M, Yu JJ, Wu XD, Li M, Li D, Scheller L, Lowe AR, Geppert-Rybczynska M, Trump BA, Yakovenko AA, Chorążewski M, Zajdel P, Grosu Y, Meloni S. Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu 2(tebpz) MOF. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402173. [PMID: 39113337 DOI: 10.1002/smll.202402173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Indexed: 10/19/2024]
Abstract
Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3',5,5'-tetraethyl-4,4'-bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young-Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young-Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF' pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.
Collapse
Affiliation(s)
- Sebastiano Merchiori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Andrea Le Donne
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Ribhu Bhatia
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Marta Alvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Jiang-Jing Yu
- College of Chemistry and Chemical Engineering, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou University, Guangdong, 515063, China
| | - Xu-Dong Wu
- College of Chemistry and Chemical Engineering, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou University, Guangdong, 515063, China
| | - Mian Li
- College of Chemistry and Chemical Engineering, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou University, Guangdong, 515063, China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Lukasz Scheller
- Institute of Physics, University of Silesia, Chorzów, 41-500, Poland
| | - Alexander R Lowe
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-006, Poland
| | | | - Benjamin A Trump
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Andrey A Yakovenko
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-006, Poland
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, Chorzów, 41-500, Poland
| | - Yaroslav Grosu
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-006, Poland
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, 01510, Spain
| | - Simone Meloni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
2
|
Sanchez J, Dammann L, Gallardo L, Li Z, Fröba M, Meißner RH, Stone HA, Huber P. Deformation dynamics of nanopores upon water imbibition. Proc Natl Acad Sci U S A 2024; 121:e2318386121. [PMID: 39264743 PMCID: PMC11420158 DOI: 10.1073/pnas.2318386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/26/2024] [Indexed: 09/14/2024] Open
Abstract
Capillarity-driven transport in nanoporous solids is widespread in nature and crucial for modern liquid-infused engineering materials. During imbibition, curved menisci driven by high negative Laplace pressures exert an enormous contractile load on the porous matrix. Due to the challenge of simultaneously monitoring imbibition and deformation with high spatial resolution, the resulting coupling of solid elasticity to liquid capillarity has remained largely unexplored. Here, we study water imbibition in mesoporous silica using optical imaging, gravimetry, and high-resolution dilatometry. In contrast to an expected Laplace pressure-induced contraction, we find a square-root-of-time expansion and an additional abrupt length increase when the menisci reach the top surface. The final expansion is absent when we stop the imbibition front inside the porous medium in a dynamic imbibition-evaporation equilibrium, as is typical for transpiration-driven hydraulic transport in plants, especially in trees. These peculiar deformation behaviors are validated by single-nanopore molecular dynamics simulations and described by a continuum model that highlights the importance of expansive surface stresses at the pore walls (Bangham effect) and the buildup or release of contractile Laplace pressures as menisci collectively advance, arrest, or disappear. Our model suggests that these observations apply to any imbibition process in nanopores, regardless of the liquid/solid combination, and that the Laplace contribution upon imbibition is precisely half that of vapor sorption, due to the linear pressure drop associated with viscous flow. Thus, simple deformation measurements can be used to quantify surface stresses and Laplace pressures or transport in a wide variety of natural and artificial porous media.
Collapse
Affiliation(s)
- Juan Sanchez
- Institute for Materials and X-ray Physics, Hamburg University of Technology, Hamburg 21073, Germany
| | - Lars Dammann
- Institute for Materials and X-ray Physics, Hamburg University of Technology, Hamburg 21073, Germany
- Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
- Institute of soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
| | - Laura Gallardo
- Institute for Materials and X-ray Physics, Hamburg University of Technology, Hamburg 21073, Germany
- Centre for the Study of Manuscript Cultures, Hamburg University, Hamburg 20354, Germany
| | - Zhuoqing Li
- Institute for Materials and X-ray Physics, Hamburg University of Technology, Hamburg 21073, Germany
- Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Robert H Meißner
- Institute of soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540
| | - Patrick Huber
- Institute for Materials and X-ray Physics, Hamburg University of Technology, Hamburg 21073, Germany
- Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
| |
Collapse
|
3
|
Amayuelas E, Farrando-Perez J, Missyul A, Grosu Y, Silvestre-Albero J, Carrillo-Carrión C. Fluorinated Nanosized Zeolitic-Imidazolate Frameworks as Potential Devices for Mechanical Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46374-46383. [PMID: 39178309 PMCID: PMC11378149 DOI: 10.1021/acsami.4c09969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Fluorination is one of the most efficient and universal strategies to increase the hydrophobicity of materials and consequently their water stability. Zeolitic-imidazolate frameworks (ZIFs), which have limited stability in aqueous media and even lower stability when synthesized on a nanometric scale, can greatly benefit from the incorporation of fluorine atoms, not only to improve their stability but also to provide additional properties. Herein, we report the preparation of two different fluorinated ZIFs through a simple and scalable approach by using mixed ligands [2-methylimidazole, as a common ligand, and 4-(4-fluorophenyl)-1H-imidazole (monofluorinated linker) or 2-methyl-5-(trifluoromethyl)-1H-imidazole (trifluorinated linker) as a dopant], demonstrating the high versatility of the synthetic method developed to incorporate different fluorine-containing imidazole-based ligands. Second, we demonstrate for the first time that these nanoscale fluorinated ZIFs outperform the pristine ZIF-8 for water intrusion/extrusion, i.e., for storing mechanical energy via forced intrusion of nonwetting water due to the improved hydrophobicity and modified framework dynamics. Moreover, we also show that by varying the nature of the F-imidazole ligand, the performance of the resulting ZIFs, including the pressure thresholds and stored/dissipated energy, can be finely tuned, thus opening the path for the design of a library of fluorine-modified ZIFs with unique behavior.
Collapse
Affiliation(s)
- Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gazteiz, Spain
| | - Judit Farrando-Perez
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain
| | - Alexander Missyul
- CELLS─ALBA Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gazteiz, Spain
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain
| | | |
Collapse
|
4
|
Paulo G, Bartolomé L, Bondarchuk O, Meloni S, Grosu Y, Giacomello A. Partial Water Intrusion and Extrusion in Hydrophobic Nanopores for Thermomechanical Energy Dissipation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12036-12045. [PMID: 39081555 PMCID: PMC11284848 DOI: 10.1021/acs.jpcc.4c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Forced wetting (intrusion) and spontaneous dewetting (extrusion) of hydrophobic/lyophobic nanoporous materials by water/nonwetting liquid are of great importance for a broad span of technological and natural systems such as shock-absorbers, molecular springs, separation, chromatography, ion channels, nanofluidics, and many more. In most of these cases, the process of intrusion-extrusion is not complete due to the stochastic nature of external stimuli under realistic operational conditions. However, understanding of these partial processes is limited, as most of the works are focused on an idealized complete intrusion-extrusion cycle. In this work, we show an experimental system operating under partial intrusion/extrusion conditions and present a simple model that captures its main features. We rationalize these operational conditions in terms of the pore entrance and cavity size distributions of the material, which control the range of intrusion/extrusion pressures.
Collapse
Affiliation(s)
- Gonçalo Paulo
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| | - Luis Bartolomé
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Álava, Spain
| | - Oleksandr Bondarchuk
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- SPIN-LAB
Centre for microscopic research on matter, University of Silesia in Katowice, 75 Pułku Piechoty 1A St., bldg J, 41-500 Chorzów, Poland
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Simone Meloni
- Dipartimento
di Scienze chimiche, farmaceutiche ed agrarie, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Yaroslav Grosu
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Álava, Spain
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
5
|
Caprini D, Battista F, Zajdel P, Di Muccio G, Guardiani C, Trump B, Carter M, Yakovenko AA, Amayuelas E, Bartolomé L, Meloni S, Grosu Y, Casciola CM, Giacomello A. Bubbles enable volumetric negative compressibility in metastable elastocapillary systems. Nat Commun 2024; 15:5076. [PMID: 38871721 DOI: 10.1038/s41467-024-49136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.
Collapse
Affiliation(s)
- Davide Caprini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, Italy
| | - Francesco Battista
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
| | - Paweł Zajdel
- A. Chełkowski Institute of Physics, University of Silesia, ul 75 Pułku Piechoty 1, Chorzów, Poland
| | - Giovanni Di Muccio
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
| | - Benjamin Trump
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Marcus Carter
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Andrey A Yakovenko
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Spain
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Spain
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Luigi Borsari 46, Ferrara, Italy.
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Spain.
- Institute of Chemistry, University of Silesia, Katowice, Poland.
| | - Carlo Massimo Casciola
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy.
| |
Collapse
|
6
|
Merchiori S, Le Donne A, Littlefair JD, Lowe AR, Yu JJ, Wu XD, Li M, Li D, Geppert-Rybczyńska M, Scheller L, Trump BA, Yakovenko AA, Zajdel P, Chorążewski M, Grosu Y, Meloni S. Mild-Temperature Supercritical Water Confined in Hydrophobic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:13236-13246. [PMID: 38701635 PMCID: PMC11099966 DOI: 10.1021/jacs.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.
Collapse
Affiliation(s)
- Sebastiano Merchiori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Andrea Le Donne
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Josh D. Littlefair
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Jiang-Jing Yu
- College
of Chemistry and Chemical Engineering, and Chemistry and Chemical
Engineering Guangdong Laboratory, Shantou
University, Guangdong 515063, China
| | - Xu-Dong Wu
- College
of Chemistry and Chemical Engineering, and Chemistry and Chemical
Engineering Guangdong Laboratory, Shantou
University, Guangdong 515063, China
| | - Mian Li
- College
of Chemistry and Chemical Engineering, and Chemistry and Chemical
Engineering Guangdong Laboratory, Shantou
University, Guangdong 515063, China
| | - Dan Li
- College
of Chemistry and Materials Science, Jinan
University, Guangzhou 510632, China
| | | | - Lukasz Scheller
- Institute
of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - Benjamin A. Trump
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrey A. Yakovenko
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Paweł Zajdel
- Institute
of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - Mirosław Chorążewski
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Yaroslav Grosu
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain
| | - Simone Meloni
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Bartolomé L, Anagnostopoulos A, Lowe AR, Ślęczkowski P, Amayuelas E, Le Donne A, Wasiak M, Chora̧żewski M, Meloni S, Grosu Y. Tuning Wetting-Dewetting Thermomechanical Energy for Hydrophobic Nanopores via Preferential Intrusion. J Phys Chem Lett 2024; 15:880-887. [PMID: 38241150 PMCID: PMC10839902 DOI: 10.1021/acs.jpclett.3c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores. We hypothesize that this effect is due to the enthalpy of dilution manifesting itself as the aqueous solution concentrates upon the preferential intrusion of pure water into pores. We suggest this genuinely subnanoscale phenomenon can be potentially a strategy for controlling the thermomechanical energy of microporous liquids and tuning the wetting/dewetting heat of nanopores relevant to a variety of natural and technological processes spanning from biomedical applications to oil-extraction and renewable energy.
Collapse
Affiliation(s)
- Luis Bartolomé
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | | | - Alexander R. Lowe
- Institute
of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | | | - Eder Amayuelas
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Andrea Le Donne
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
degli Studi di Ferrara, Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Michał Wasiak
- Department
of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 165, 90-236 Łódź, Poland
| | | | - Simone Meloni
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
degli Studi di Ferrara, Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Yaroslav Grosu
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Lowe AR, Ślęczkowski P, Arkan E, Le Donne A, Bartolomé L, Amayuelas E, Zajdel P, Chorążewski M, Meloni S, Grosu Y. Exploring the Heat of Water Intrusion into a Metal-Organic Framework by Experiment and Simulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5286-5293. [PMID: 38258752 PMCID: PMC10835660 DOI: 10.1021/acsami.3c15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Wetting of a solid by a liquid is relevant for a broad range of natural and technological processes. This process is complex and involves the generation of heat, which is still poorly understood especially in nanoconfined systems. In this article, scanning transitiometry was used to measure and evaluate the pressure-driven heat of intrusion of water into solid ZIF-8 powder within the temperature range of 278.15-343.15 K. The conditions examined included the presence and absence of atmospheric gases, basic pH conditions, solid sample origins, and temperature. Simultaneously with these experiments, molecular dynamics simulations were conducted to elucidate the changing behavior of water as it enters into ZIF-8. The results are rationalized within a temperature-dependent thermodynamic cycle. This cycle describes the temperature-dependent process of ZIF-8 filling, heating, emptying, and cooling with respect to the change of internal energy of the cycle from the calculated change in the specific heat capacity of the system. At 298 K the experimental heat of intrusion per gram of ZIF-8 was found to be -10.8 ± 0.8 J·g-1. It increased by 19.2 J·g-1 with rising temperature to 343 K which is in a reasonable match with molecular dynamic simulations that predicted 16.1 J·g-1 rise. From these combined experiments, the role of confined water in heat of intrusion of ZIF-8 is further clarified.
Collapse
Affiliation(s)
- Alexander R Lowe
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Piotr Ślęczkowski
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Emre Arkan
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Andrea Le Donne
- Dipartimento di Scienze Chimiche e Farmaceutiche Università Degli Studi di Ferrara, Via Luigi Borsari 46, Ferrara I-44121, Italy
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| | | | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche Università Degli Studi di Ferrara, Via Luigi Borsari 46, Ferrara I-44121, Italy
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
| |
Collapse
|
9
|
Amayuelas E, Bartolomé L, Zhang Y, López Del Amo JM, Bondarchuk O, Nikulin A, Bonilla F, Del Barrio EP, Zajdel P, Grosu Y. Quality-dependent performance of hydrophobic ZIF-67 upon high-pressure water intrusion-extrusion process. Phys Chem Chem Phys 2024; 26:2440-2448. [PMID: 38167891 DOI: 10.1039/d3cp03519k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Zeolitic imidazolate framework (ZIF) microporous materials have already been employed in many fields of energetic and environmental interest since the last decade. The commercial scale production of some of these materials makes them more accessible for their implementation in industrial processes; however, their massive synthesis may entail modifications to the preparation protocols, which may result in a loss in the optimization of this process and a drop in the material's quality. This fact may have implications for the performance of these materials during their lifetime, especially when they are used in applications such as energy dissipation, in which they are subjected to several operating cycles under high pressures. This study focuses on ZIF-67, a material that has demonstrated in the past its ability to dissipate energy through the water intrusion-extrusion process under high pressure. Two ZIF-67 samples were synthesized using different protocols, and 2 batches of different qualities (labelled as high quality (HQ) and low quality (LQ)) were obtained and analysed by water porosimetry to study their performance in the intrusion-extrusion process. Unexpectedly, minor structural differences, which are typically neglected especially under production conditions, had a dramatic effect on their performance. The results presented in this study reiterate the importance of quality control with respect to reproducibility of experimental results. In a broader perspective, they are critical to the technology transfer from academia to industry.
Collapse
Affiliation(s)
- Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
| | - Yan Zhang
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
| | - Juan Miguel López Del Amo
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
| | | | - Artem Nikulin
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
| | - Francisco Bonilla
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
| | - Elena Palomo Del Barrio
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
- IKERBASQUE Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzów, Poland.
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
10
|
Johnson LJ, Mirani D, Le Donne A, Bartolomé L, Amayuelas E, López GA, Grancini G, Carter M, Yakovenko AA, Trump BA, Meloni S, Zajdel P, Grosu Y. Effect of Crystallite Size on the Flexibility and Negative Compressibility of Hydrophobic Metal-Organic Frameworks. NANO LETTERS 2023; 23:10682-10686. [PMID: 38033298 PMCID: PMC10722533 DOI: 10.1021/acs.nanolett.3c02431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Flexible nanoporous materials are of great interest for applications in many fields such as sensors, catalysis, material separation, and energy storage. Of these, metal-organic frameworks (MOFs) are the most explored thus far. However, tuning their flexibility for a particular application remains challenging. In this work, we explore the effect of the exogenous property of crystallite size on the flexibility of the ZIF-8 MOF. By subjecting hydrophobic ZIF-8 to hydrostatic compression with water, the flexibility of its empty framework and the giant negative compressibility it experiences during water intrusion were recorded via in operando synchrotron irradiation. It was observed that as the crystallite size is reduced to the nanoscale, both flexibility and the negative compressibility of the framework are reduced by ∼25% and ∼15%, respectively. These results pave the way for exogenous tuning of flexibility in MOFs without altering their chemistries.
Collapse
Affiliation(s)
- Liam J.
W. Johnson
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz 01510, Spain
- Department
of Physics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Bilbao 48490, Leioa, Spain
| | - Diego Mirani
- Department
of Chemistry and INSTM University of Pavia Via Taramelli 14, Pavia I-27100, Italy
| | - Andrea Le Donne
- Dipartimento
di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Luis Bartolomé
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz 01510, Spain
| | - Eder Amayuelas
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz 01510, Spain
| | - Gabriel A. López
- Department
of Physics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Bilbao 48490, Leioa, Spain
| | - Giulia Grancini
- Department
of Chemistry and INSTM University of Pavia Via Taramelli 14, Pavia I-27100, Italy
| | - Marcus Carter
- Center
for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrey A. Yakovenko
- X-Ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Benjamin A. Trump
- Center
for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Simone Meloni
- Dipartimento
di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Paweł Zajdel
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Yaroslav Grosu
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz 01510, Spain
- Department
of Chemistry, Institute of Chemistry, University
of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
11
|
Le Donne A, Littlefair JD, Tortora M, Merchiori S, Bartolomé L, Grosu Y, Meloni S. Hydrophobicity of molecular-scale textured surfaces: The case of zeolitic imidazolate frameworks, an atomistic perspective. J Chem Phys 2023; 159:184709. [PMID: 37955326 DOI: 10.1063/5.0173110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Hydrophobicity has proven fundamental in an inexhaustible amount of everyday applications. Material hydrophobicity is determined by chemical composition and geometrical characteristics of its macroscopic surface. Surface roughness or texturing enhances intrinsic hydrophilic or hydrophobic characteristics of a material. Here we consider crystalline surfaces presenting molecular-scale texturing typical of crystalline porous materials, e.g., metal-organic frameworks. In particular, we investigate one such material with remarkable hydrophobic qualities, ZIF-8. We show that ZIF-8 hydrophobicity is driven not only by its chemical composition but also its sub-nanoscale surface corrugations, a physical enhancement rare amongst hydrophobes. Studying ZIF-8's hydrophobic properties is challenging as experimentally it is difficult to distinguish between the materials' and the macroscopic corrugations' contributions to the hydrophobicity. The computational contact angle determination is also difficult as the standard "geometric" technique of liquid nanodroplet deposition is prone to many artifacts. Here, we characterise ZIF-8 hydrophobicity via: (i) the "geometric" approach and (ii) the "energetic" method, utilising the Young-Dupré formula and computationally determining the liquid-solid adhesion energy. Both approaches reveal nanoscale Wenzel-like bathing of the corrugated surface. Moreover, we illustrate the importance of surface linker termination in ZIF-8 hydrophobicity, which reduces when varied from sp3 N to sp2 N termination. We also consider halogenated analogues of the methyl-imidazole linker, which promote the transition from nanoWenzel-like to nanoCassie-Baxter-like states, further enhancing surface hydrophobicity. Present results reveal the complex interface physics and chemistry between water and complex porous, molecular crystalline surfaces, providing a hint to tune their hydrophobicity.
Collapse
Affiliation(s)
- Andrea Le Donne
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie (DOCPAS), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Josh D Littlefair
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie (DOCPAS), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Marco Tortora
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Universitá di Roma "Sapienza," Via Eudossiana 18, 00184 Rome, Italy
| | - Sebastiano Merchiori
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie (DOCPAS), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Simone Meloni
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie (DOCPAS), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| |
Collapse
|
12
|
Lai B, Liu S, Cahir J, Sun Y, Yin H, Youngs T, Tan JC, Fonrouge SF, Pópolo MGD, Borioni JL, Crawford DE, Alexander FM, Li C, Bell SEJ, Murrer B, James SL. Liquids with High Compressibility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306521. [PMID: 37643739 DOI: 10.1002/adma.202306521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Compressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible. If the compressibility of liquids could be increased and controlled, new applications in hydraulics and shock absorption could result. Here, it is shown that dispersing hydrophobic porous particles into water gives aqueous suspensions with much greater compressibilities than any normal liquids such as water (specifically, up to 20 times greater over certain pressure ranges). The increased compressibility results from water molecules being forced into the hydrophobic pores of the particles under applied pressure. The degree of compression can be controlled by varying the amount of porous particles added. Also, the pressure range of compression can be reduced by adding methanol or increased by adding salt. In all cases, the liquids expand back to their original volume when the applied pressure is released. The approach shown here is simple and economical and could potentially be scaled up to give large amounts of highly compressible liquids.
Collapse
Affiliation(s)
- Beibei Lai
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Siyuan Liu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - John Cahir
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Yueting Sun
- School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Haixia Yin
- School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tristan Youngs
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Sergio F Fonrouge
- ICB-CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, CP5500, Argentina
| | - Mario G Del Pópolo
- ICB-CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, CP5500, Argentina
| | - José L Borioni
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - Deborah E Crawford
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Francesca M Alexander
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Barry Murrer
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| | - Stuart L James
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
13
|
Giacomello A. What keeps nanopores boiling. J Chem Phys 2023; 159:110902. [PMID: 37724724 DOI: 10.1063/5.0167530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liquid-to-vapor transition can occur under unexpected conditions in nanopores, opening the door to fundamental questions and new technologies. The physics of boiling in confinement is progressively introduced, starting from classical nucleation theory, passing through nanoscale effects, and terminating with the material and external parameters that affect the boiling conditions. The relevance of boiling in specific nanoconfined systems is discussed, focusing on heterogeneous lyophobic systems, chromatographic columns, and ion channels. The current level of control of boiling in nanopores enabled by microporous materials such as metal organic frameworks and biological nanopores paves the way to thrilling theoretical challenges and to new technological opportunities in the fields of energy, neuromorphic computing, and sensing.
Collapse
Affiliation(s)
- Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
14
|
Amayuelas E, Sharma SK, Utpalla P, Mor J, Bartolomé L, Carter M, Trump B, Yakovenko AA, Zajdel P, Grosu Y. Bimetallic Zeolitic Imidazole Frameworks for Improved Stability and Performance of Intrusion-Extrusion Energy Applications. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:18310-18315. [PMID: 37752902 PMCID: PMC10518860 DOI: 10.1021/acs.jpcc.3c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Hydrophobic flexible zeolitic imidazole frameworks (ZIFs) represent reference microporous materials in the area of mechanical energy storage, conversion, and dissipation via non-wetting liquid intrusion-extrusion cycle. However, some of them exhibit drawbacks such as lack of stability, high intrusion pressure, or low intrusion volume that make them non-ideal materials to consider as candidates for real applications. In this work, we face these limitations by exploiting the hybrid ZIF concept. Concretely, a bimetallic SOD-like ZIF consisting of Co and Zn ions was synthesized and compared with Co-ZIF (ZIF-67) and Zn-ZIF (ZIF-8) showing for the first time that the hybrid ZIF combines the good stability of ZIF-8 with the higher water intrusion volume of ZIF-67. Moreover, it is shown that the hybrid-ZIF approach can be used to tune the intrusion/extrusion pressure, which is crucial for technological applications.
Collapse
Affiliation(s)
- Eder Amayuelas
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Sandeep Kumar Sharma
- Radiochemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Pranav Utpalla
- Radiochemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Jaideep Mor
- Radiochemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Luis Bartolomé
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Marcus Carter
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Benjamin Trump
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrey Andreevich Yakovenko
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pawel Zajdel
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Yaroslav Grosu
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
15
|
Liu Z, Navas JL, Han W, Ibarra MR, Cho Kwan JK, Yeung KL. Gel transformation as a general strategy for fabrication of highly porous multiscale MOF architectures. Chem Sci 2023; 14:7114-7125. [PMID: 37416716 PMCID: PMC10321590 DOI: 10.1039/d3sc00905j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
The structure and chemistry of metal-organic frameworks or MOFs dictate their properties and functionalities. However, their architecture and form are essential for facilitating the transport of molecules, the flow of electrons, the conduction of heat, the transmission of light, and the propagation of force, which are vital in many applications. This work explores the transformation of inorganic gels into MOFs as a general strategy to construct complex porous MOF architectures at nano, micro, and millimeter length scales. MOFs can be induced to form along three different pathways governed by gel dissolution, MOF nucleation, and crystallization kinetics. Slow gel dissolution, rapid nucleation, and moderate crystal growth result in a pseudomorphic transformation (pathway 1) that preserves the original network structure and pores, while a comparably faster crystallization displays significant localized structural changes but still preserves network interconnectivity (pathway 2). MOF exfoliates from the gel surface during rapid dissolution, thus inducing nucleation in the pore liquid leading to a dense assembly of percolated MOF particles (pathway 3). Thus, the prepared MOF 3D objects and architectures can be fabricated with superb mechanical strength (>98.7 MPa), excellent permeability (>3.4 × 10-10 m2), and large surface area (1100 m2 g-1) and mesopore volumes (1.1 cm3 g-1).
Collapse
Affiliation(s)
- Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
| | - Javier Lopez Navas
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
- Guangzhou HKUST Fok Ying Tung Research Institute Nansha IT Park Guangzhou 511458 China
| | - Manuel Ricardo Ibarra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Laboratory of Advanced Microscopies (LMA), Universidad de Zaragoza 50018 Zaragoza Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza 50009 Zaragoza Spain
| | - Joseph Kai Cho Kwan
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
- Guangzhou HKUST Fok Ying Tung Research Institute Nansha IT Park Guangzhou 511458 China
| |
Collapse
|
16
|
Amayuelas E, Tortora M, Bartolomé L, Littlefair JD, Paulo G, Le Donne A, Trump B, Yakovenko AA, Chorążewski M, Giacomello A, Zajdel P, Meloni S, Grosu Y. Mechanism of Water Intrusion into Flexible ZIF-8: Liquid Is Not Vapor. NANO LETTERS 2023. [PMID: 37294683 DOI: 10.1021/acs.nanolett.3c00235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zeolitic Imidazolate Frameworks (ZIF) find application in storage and dissipation of mechanical energy. Their distinctive properties linked to their (sub)nanometer size and hydrophobicity allow for water intrusion only under high hydrostatic pressure. Here we focus on the popular ZIF-8 material investigating the intrusion mechanism in its nanoscale cages, which is the key to its rational exploitation in target applications. In this work, we used a joint experimental/theoretical approach combining in operando synchrotron experiments during high-pressure intrusion experiments, molecular dynamics simulations, and stochastic models to reveal that water intrusion into ZIF-8 occurs by a cascade filling of connected cages rather than a condensation process as previously assumed. The reported results allowed us to establish structure/function relations in this prototypical microporous material, representing an important step to devise design rules to synthesize porous media.
Collapse
Affiliation(s)
- Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Marco Tortora
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Josh David Littlefair
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Gonçalo Paulo
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Andrea Le Donne
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Benjamin Trump
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
17
|
Johnson LJW, Paulo G, Bartolomé L, Amayuelas E, Gubbiotti A, Mirani D, Le Donne A, López GA, Grancini G, Zajdel P, Meloni S, Giacomello A, Grosu Y. Optimization of the wetting-drying characteristics of hydrophobic metal organic frameworks via crystallite size: The role of hydrogen bonding between intruded and bulk liquid. J Colloid Interface Sci 2023; 645:775-783. [PMID: 37172487 DOI: 10.1016/j.jcis.2023.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
HYPOTHESIS The behavior of Heterogeneous Lyophobic Systems (HLSs) comprised of a lyophobic porous material and a corresponding non-wetting liquid is affected by a variety of different structural parameters of the porous material. Dependence on exogenic properties such as crystallite size is desirable for system tuning as they are much more facilely modified. We explore the dependence of intrusion pressure and intruded volume on crystallite size, testing the hypothesis that the connection between internal cavities and bulk water facilitates intrusion via hydrogen bonding, a phenomenon that is magnified in smaller crystallites with a larger surface/volume ratio. EXPERIMENTS Water intrusion/extrusion pressures and intrusion volume were experimentally measured for ZIF-8 samples of various crystallite sizes and compared to previously reported values. Alongside the practical research, molecular dynamics simulations and stochastic modeling were performed to illustrate the effect of crystallite size on the properties of the HLSs and uncover the important role of hydrogen bonding within this phenomenon. FINDINGS A reduction in crystallite size led to a significant decrease of intrusion and extrusion pressures below 100 nm. Simulations indicate that this behavior is due to a greater number of cages being in proximity to bulk water for smaller crystallites, allowing cross-cage hydrogen bonds to stabilize the intruded state and lower the threshold pressure of intrusion and extrusion. This is accompanied by a reduction in the overall intruded volume. Simulations demonstrate that this phenomenon is linked to ZIF-8 surface half-cages exposed to water being occupied by water due to non-trivial termination of the crystallites, even at atmospheric pressure.
Collapse
Affiliation(s)
- Liam J W Johnson
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain; Department of Physics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Bilbao, 48490, Leioa, Spain
| | - Gonçalo Paulo
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Roma, Italy
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain
| | - Alberto Gubbiotti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Roma, Italy
| | - Diego Mirani
- Department of Chemistry & INSTM University of Pavia, Via Taramelli 14, Pavia, I-27100, Italy
| | - Andrea Le Donne
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife) Via Luigi Borsari 46, Ferrara, I-44121, Italy
| | - Gabriel A López
- Department of Physics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Bilbao, 48490, Leioa, Spain
| | - Giulia Grancini
- Department of Chemistry & INSTM University of Pavia, Via Taramelli 14, Pavia, I-27100, Italy
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow, 41-500, Poland
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife) Via Luigi Borsari 46, Ferrara, I-44121, Italy.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Roma, Italy.
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Calle Albert Einstein, 48, Vitoria-Gasteiz, 01510, Araba/Alava, Spain; Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-006, Poland.
| |
Collapse
|
18
|
Zajdel P, Madden DG, Babu R, Tortora M, Mirani D, Tsyrin NN, Bartolomé L, Amayuelas E, Fairen-Jimenez D, Lowe AR, Chorążewski M, Leao JB, Brown CM, Bleuel M, Stoudenets V, Casciola CM, Echeverría M, Bonilla F, Grancini G, Meloni S, Grosu Y. Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion-Extrusion into-from Hydrophobic Nanopores. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26699-26713. [PMID: 35656844 PMCID: PMC9204699 DOI: 10.1021/acsami.2c04314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.
Collapse
Affiliation(s)
- Paweł Zajdel
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - David G. Madden
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Robin Babu
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Marco Tortora
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Diego Mirani
- Department
of Chemistry & INSTM University of Pavia, Via Taramelli 14, Pavia I-27100, Italy
| | - Nikolay Nikolaevich Tsyrin
- Laboratory
of Thermomolecular Energetics, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Pr.
Peremogy 37, 03056 Kyiv, Ukraine
| | - Luis Bartolomé
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Eder Amayuelas
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - David Fairen-Jimenez
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Alexander Rowland Lowe
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Mirosław Chorążewski
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Juscelino B. Leao
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Craig M. Brown
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Chemical
and Biochemical Department, University of
Delaware, Newark, Delaware 19716, United
States
| | - Markus Bleuel
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department
of Materials Science and Engineering, University
of Maryland, College Park, Maryland 20742-2115, United States
| | - Victor Stoudenets
- Laboratory
of Thermomolecular Energetics, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Pr.
Peremogy 37, 03056 Kyiv, Ukraine
| | - Carlo Massimo Casciola
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - María Echeverría
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Francisco Bonilla
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Giulia Grancini
- Department
of Chemistry & INSTM University of Pavia, Via Taramelli 14, Pavia I-27100, Italy
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche
(DipSCF), Università degli Studi
di Ferrara (Unife), Via
Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Yaroslav Grosu
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
19
|
Michel L, Ludescher L, Cristiglio V, Charlaix E, Paris O, Picard C. Bowtie-Shaped Deformation Isotherm of Superhydrophobic Cylindrical Mesopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:211-220. [PMID: 34964631 DOI: 10.1021/acs.langmuir.1c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deformation of superhydrophobic cylindrical mesopores is studied during a cycle of forced water filling and spontaneous drying by in situ small-angle neutron scattering. A high-pressure setup is put forward to characterize the deformation of ordered mesoporous silanized silica up to 80 MPa. Strain isotherms of individual pores are deduced from the shift of the Bragg spectrum associated with the deformation of the hexagonal pore lattice. Due to their superhydrophobic nature, pore walls are not covered with a prewetting film. This peculiarity gives the ability to use a simple mechanical model to describe both filled and empty pore states without the pitfall of disjoining pressure effects. By fitting our experimental data with this model, we measure both the Young's modulus and the Poisson ratio of the nanometric silica wall. The measurement of this latter parameter constitutes a specificity offered by superhydrophobic nanopores with respect to hydrophilic ones.
Collapse
Affiliation(s)
- Loïc Michel
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Lukas Ludescher
- Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
| | | | | | - Oskar Paris
- Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
| | - Cyril Picard
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
20
|
Wolanin J, Michel L, Tabacchioni D, Zanotti JM, Peters J, Imaz I, Coasne B, Plazanet M, Picard C. Heterogeneous Microscopic Dynamics of Intruded Water in a Superhydrophobic Nanoconfinement: Neutron Scattering and Molecular Modeling. J Phys Chem B 2021; 125:10392-10399. [PMID: 34492185 DOI: 10.1021/acs.jpcb.1c06791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With their strong confining porosity and versatile surface chemistry, zeolitic imidazolate frameworks-including the prototypical ZIF-8-display exceptional properties for various applications. In particular, the forced intrusion of water at high pressure (∼25 MPa) into ZIF-8 nanopores is of interest for energy storage. Such a system reveals also ideal to study experimentally water dynamics and thermodynamics in an ultrahydrophobic confinement. Here, we report on neutron scattering experiments to probe the molecular dynamics of water within ZIF-8 nanopores under high pressure up to 38 MPa. In addition to an overall confinement-induced slowing down, we provide evidence for strong dynamical heterogeneities with different underlying molecular dynamics. Using complementary molecular simulations, these heterogeneities are found to correspond to different microscopic mechanisms inherent to vicinal molecules located in strongly adsorbing sites (ligands) and other molecules nanoconfined in the cavity center. These findings unveil a complex microscopic dynamics, which results from the combination of surface residence times and exchanges between the cavity surface and center.
Collapse
Affiliation(s)
- J Wolanin
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - L Michel
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - D Tabacchioni
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - J M Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - J Peters
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.,Institut Laue Langevin, 38042 Grenoble, France
| | - I Imaz
- Catalan Insitute of Nanoscience and Nanotechnology, 08193 Barcelona, Spain
| | - B Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - M Plazanet
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - C Picard
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
21
|
Zajdel P, Chorążewski M, Leão JB, Jensen GV, Bleuel M, Zhang HF, Feng T, Luo D, Li M, Lowe AR, Geppert-Rybczynska M, Li D, Grosu Y. Inflation Negative Compressibility during Intrusion-Extrusion of a Non-Wetting Liquid into a Flexible Nanoporous Framework. J Phys Chem Lett 2021; 12:4951-4957. [PMID: 34009998 DOI: 10.1021/acs.jpclett.1c01305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.
Collapse
Affiliation(s)
- Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Juscelino B Leão
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Grethe V Jensen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States
| | - Hai-Feng Zhang
- Department of Chemistry, Shantou University, Guangdong 515063, China
| | - Tong Feng
- Department of Chemistry, Shantou University, Guangdong 515063, China
| | - Dong Luo
- Department of Chemistry, Shantou University, Guangdong 515063, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Mian Li
- Department of Chemistry, Shantou University, Guangdong 515063, China
| | | | | | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yaroslav Grosu
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|