1
|
Sa N, Qu S, Xu J, Nie K, Wang JO, Kang J, Zheng JC, Wu M, Huang S, Wang HQ. Ionic liquid gating-induced defect passivation and enhanced photocatalytic performance in graphitic carbon nitride (g-C 3N 4) semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:235305. [PMID: 40345220 DOI: 10.1088/1361-648x/add6fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/09/2025] [Indexed: 05/11/2025]
Abstract
Ionic liquid gating (ILG) is an emergent technique for controlling multiple types of ionic doping and leads to numerous attractive physical properties in quantum materials. This study widens its intriguing applications in metal-free graphitic carbon nitride (g-C3N4) semiconductor which is distinct by various extrinsic defects (vacancies, interlayer defects, etc) and intrinsic defects (irregular melon chains, dangling bonds, etc.). Here, the efficient passivation of defects is realized in g-C3N4through combined electrostatic and electrochemical mechanisms. By optimizing the ionic liquid concentration and applying a negative electric field, the gated g-C3N4exhibit a changed local bonding environment, an increased bandgap, as well as a suppression of photoluminescence (PL) intensity over 80%. Our results demonstrate that the charged ions from the mixed electrolyte passivate the charged defect centers, redistribute the charges within the g-C3N4framework, leading to the improved photogenerated carries separation, which is verified by the enhanced photocatalytic efficiency of treated g-C3N4. In particular, the changes of the density of states near the Fermi level reflect ionic interaction induced defect passivation in g-C3N4, which plays a key role in regulating its PL properties. These findings provide novel insights in ILG mechanisms in layered porous materials and shed light on its potential prospects in other semiconductors with controlled defect engineering.
Collapse
Affiliation(s)
- Na Sa
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shanzhi Qu
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jinfeng Xu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Junyong Kang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jin-Cheng Zheng
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- Department of Physics, and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Meng Wu
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shengli Huang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hui-Qiong Wang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- Department of Physics, and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| |
Collapse
|
2
|
Mei T, Chen F, Huang T, Feng Z, Wan T, Han Z, Li Z, Hu L, Lin CH, Lu Y, Cheng W, Qi DC, Chu D. Ion-Electron Interactions in 2D Nanomaterials-Based Artificial Synapses for Neuromorphic Applications. ACS NANO 2025; 19:17140-17172. [PMID: 40297996 DOI: 10.1021/acsnano.5c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
With the increasing limitations of conventional computing techniques, particularly the von Neumann bottleneck, the brain's seamless integration of memory and processing through synapses offers a valuable model for technological innovation. Inspired by biological synapse facilitating adaptive, low-power computation by modulating signal transmission via ionic conduction, iontronic synaptic devices have emerged as one of the most promising candidates for neuromorphic computing. Meanwhile, the atomic-scale thickness and tunable electronic properties of van der Waals two-dimensional (2D) materials enable the possibility of designing highly integrated, energy-efficient devices that closely replicate synaptic plasticity. This review comprehensively analyzes advancements in iontronic synaptic devices based on 2D materials, focusing on electron-ion interactions in both iontronic transistors and memristors. The challenges of material stability, scalability, and device integration are evaluated, along with potential solutions and future research directions. By highlighting these developments, this review offers insights into the potential of 2D materials in advancing neuromorphic systems.
Collapse
Affiliation(s)
- Tingting Mei
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tianxu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zijian Feng
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Zhi Li
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 0200, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Chen Q, Yan C, Lan C, Song Q, Yan Y, Wang S. Enhanced Backgate Tunability on Interfacial Carrier Concentration in Ionic Liquid-Gated MoS 2 Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501428. [PMID: 40263923 DOI: 10.1002/smll.202501428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/30/2025] [Indexed: 04/24/2025]
Abstract
The periodic spatial modulation potential arising from the zig-zag distribution of ions at large gate voltage in an ionic liquid-gated device may enable functionalities in a similar way as nanopatterning and moiré engineering. However, the inherent coupling between periodic modulation potential and carrier concentration in ionic liquid devices has hindered further exploration. Here, the feasibility of decoupling manipulation on periodic modulation potential and carrier density in an ionic liquid device is demonstrated by using a conventional backgate. The backgate is found to have a tunability on carrier concentration comparable to that of ionic gating, especially at large ionic liquid gate voltage, by activating the bulk channels mediated back tunneling between the trapped bands and interfacial channel.
Collapse
Affiliation(s)
- Qiao Chen
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengyu Yan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Changshuai Lan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiyang Song
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Yan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Yue D, Tang C, Wu J, Luo X, Chen H, Qian Y. Potassium hydroxide treatment of layered WSe 2 with enhanced electronic performances. NANOSCALE 2024; 16:8345-8351. [PMID: 38606457 DOI: 10.1039/d3nr05432b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
2D WSe2-based electronic devices have received much research interest. However, it is still a challenge to achieve high electronic performance in WSe2-based devices. In this work, we report greatly enhanced performances of different thickness WSe2 ambipolar transistors and demonstrate homogeneous WSe2 inverter devices, which are obtained by using a semiconductor processing-compatible layer removal technique via chemical removal of the surface top WOx layer formed by O2 plasma treatment. Importantly, monolayer WSe2 was realised after several consecutive removal processes, demonstrating that the single layer removal is accurate and reliable. After subsequent removal of the top layer WOx by KOH, the fabricated WSe2 field-effect transistors exhibit greatly enhanced electronic performance along with the high electron and hole mobilities of 40 and 85 cm2 V-1 s-1, respectively. Our work demonstrates that the layer removal technique is an efficient route to fabricate high performance 2D material-based electronic devices.
Collapse
Affiliation(s)
- Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Cheng Tang
- Graduate School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jiajing Wu
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xiaohui Luo
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321007, P. R. China.
| | - Hongyu Chen
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China.
| | - Yongteng Qian
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321007, P. R. China.
| |
Collapse
|
5
|
Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S, Yang H. Phase Engineering of 2D Materials. Chem Rev 2023; 123:11230-11268. [PMID: 37589590 DOI: 10.1021/acs.chemrev.3c00132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juhi Pandey
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woohyun Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungyeon Lee
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Suyeon Cho
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
6
|
Hu X, Jiang H, Lu LX, Zhao SX, Li Y, Zhen L, Xu CY. Revisiting the Hetero-Interface of Electrolyte/2D Materials in an Electric Double Layer Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301798. [PMID: 37357158 DOI: 10.1002/smll.202301798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas-Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton-exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2 Al2 SiP2 TiO13 ) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.
Collapse
Affiliation(s)
- Xin Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Hao Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang-Xing Lu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shou-Xin Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
7
|
Ding D, Qu Z, Han X, Han C, Zhuang Q, Yu XL, Niu R, Wang Z, Li Z, Gan Z, Wu J, Lu J. Multivalley Superconductivity in Monolayer Transition Metal Dichalcogenides. NANO LETTERS 2022; 22:7919-7926. [PMID: 36173038 DOI: 10.1021/acs.nanolett.2c02947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In transition metal dichalcogenides (TMDs), Ising superconductivity with an antisymmetric spin texture on the Fermi surface has attracted wide interest due to the exotic pairing and topological properties. However, it is not clear whether the Q valley with a giant spin splitting is involved in the superconductivity of heavily doped semiconducting 2H-TMDs. Here by taking advantage of a high-quality monolayer WS2 on hexagonal boron nitride flakes, we report an ionic-gating induced superconducting dome with a record high critical temperature of ∼6 K, accompanied by an emergent nonlinear Hall effect. The nonlinearity indicates the development of an additional high-mobility channel, which (corroborated by first principle calculations) can be ascribed to the population of Q valleys. Thus, multivalley population at K and Q is suggested to be a prerequisite for developing superconductivity. The involvement of Q valleys also provides insights to the spin textured Fermi surface of Ising superconductivity in the large family of transition metal dichalcogenides.
Collapse
Affiliation(s)
- Dongdong Ding
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuangzhuang Qu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiangyan Han
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunrui Han
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Zhuang
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiang-Long Yu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Ruirui Niu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhiyu Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuoxian Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zizhao Gan
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jiansheng Wu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Jianming Lu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Tiede DO, Saigal N, Ostovar H, Döring V, Lambers H, Wurstbauer U. Exciton Manifolds in Highly Ambipolar Doped WS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3255. [PMID: 36145043 PMCID: PMC9504948 DOI: 10.3390/nano12183255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The disentanglement of single and many particle properties in 2D semiconductors and their dependencies on high carrier concentration is challenging to experimentally study by pure optical means. We establish an electrolyte gated WS2 monolayer field-effect structure capable of shifting the Fermi level from the valence into the conduction band that is suitable to optically trace exciton binding as well as the single-particle band gap energies in the weakly doped regime. Combined spectroscopic imaging ellipsometry and photoluminescence spectroscopies spanning large n- and p-type doping with charge carrier densities up to 1014 cm-2 enable to study screening phenomena and doping dependent evolution of the rich exciton manifold whose origin is controversially discussed in literature. We show that the two most prominent emission bands in photoluminescence experiments are due to the recombination of spin-forbidden and momentum-forbidden charge neutral excitons activated by phonons. The observed interband transitions are redshifted and drastically weakened under electron or hole doping. This field-effect platform is not only suitable for studying exciton manifold but is also suitable for combined optical and transport measurements on degenerately doped atomically thin quantum materials at cryogenic temperatures.
Collapse
Affiliation(s)
- David Otto Tiede
- Institute of Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Nihit Saigal
- Institute of Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Hossein Ostovar
- Institute of Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Vera Döring
- Institute of Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Hendrik Lambers
- Institute of Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Ursula Wurstbauer
- Institute of Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|