1
|
Kim D, Lee J, Kim G, Ma J, Kim HM, Han JH, Jeong HH. Proton-Assisted Assembly of Colloidal Nanoparticles into Wafer-Scale Monolayers in Seconds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313299. [PMID: 38267396 DOI: 10.1002/adma.202313299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Underwater adhesion processes in nature promise controllable assembly of functional nanoparticles for industrial mass production; However, their artificial strategies have faced challenges to uniformly transfer nanoparticles into a monolayer, particularly those below 100 nm in size, over large areas. Here a scalable "one-shot" self-limiting nanoparticle transfer technique is presented, enabling the efficient transport of nanoparticles from water in microscopic volumes to an entire 2-inch wafer in a remarkably short time of 10 seconds to reach near-maximal surface coverage (≈40%) in a 2D mono-layered fashion. Employing proton engineering in electrostatic assembly accelerates the diffusion of nanoparticles (over 50 µm2/s), resulting in a hundredfold faster coating speed than the previously reported results in the literature. This charge-sensitive process further enables "pick-and-place" nanoparticle patterning at the wafer scale, with large flexibility in surface materials, including flexible metal oxides and 3D-printed polymers. As a result, the fabrication of wafer-scale disordered plasmonic metasurfaces in seconds is successfully demonstrated. These metasurfaces exhibit consistent resonating colors across diverse material and geometrical platforms, showcasing their potential for applications in full-color painting and optical encryption devices.
Collapse
Affiliation(s)
- Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - JuHyeong Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jiyeong Ma
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun Min Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Liu H, Zhang Z, Wu C, Su K, Kan X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. MICROMACHINES 2023; 14:1216. [PMID: 37374801 DOI: 10.3390/mi14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main superhydrophobic effects have been identified: the "lotus leaf effect" and the "rose petal effect", both showing water contact angles larger than 150°, but with differing contact angle hysteresis values. In recent years, numerous strategies have been developed to fabricate superhydrophobic materials, among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise construction of complex materials in a facile way. In this minireview, we provide a comprehensive overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-modification, and bulk material printing, and applications ranging from liquid manipulation and oil/water separation to drag reduction. Additionally, we discuss the challenges and future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Haishuo Liu
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Zipeng Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Kang Su
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Li X, Yang K, Yuan Z, Liu S, Du J, Li C, Meng S. Recent Advances on the Abrasion Resistance Enhancements and Applications of Superhydrophobic Materials. CHEM REC 2023; 23:e202200298. [PMID: 36779511 DOI: 10.1002/tcr.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Indexed: 02/14/2023]
Abstract
Researches on superhydrophobicity have been overwhelming and have shown great advantages in various fields. However, the abrasion resistance of superhydrophobic structures was usually poor, and they were easily damaged by external force or harsh environment, which greatly limited the applications of superhydrophobic surfaces. Much attention has been paid to improving the abrasion resistance of superhydrophobic materials by researchers. In this review, aimed at the advances on improving the abrasion resistance of superhydrophobic surfaces, it was summarized and compared three enhancement strategies including the reasonably design of micro-nano structures, the adoption of adhesives, and the preparation of self-healing surface. Finally, the applications of typical superhydrophobic materials with abrasion resistance were reviewed in various fields. In order to broaden the application fields of superhydrophobic materials, the abarasion resistance should be further improved. Therefore, we proposed the ideas for the future development of superhydrophobic materials with higher abrasion resistance. We hope that this review will provide a new approach to the preparation and development of stable superhydrophobic surfaces with higher abrasion resistance.
Collapse
Affiliation(s)
- Xinyi Li
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Kangli Yang
- Department of Teaching, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Zhiqing Yuan
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shujuan Liu
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Juan Du
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Cancheng Li
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shoutong Meng
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
4
|
Wan J, Xu J, Zhu S, Li J, Wang B, Zeng J, Li J, Chen K. Eco-Friendly Superhydrophobic Composites with Thermostability, UV Resistance, and Coating Transparency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61681-61692. [PMID: 34913682 DOI: 10.1021/acsami.1c20419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the market demand for biofiber assemblies endowed with superhydrophobicity being huge, the current approaches to their production are complicated, time-consuming, and even pose a serious threat to the environment. Here, we report a simple surface treatment strategy to prepare environmentally friendly superhydrophobic biofiber composites. The obtained samples have certain UV resistance properties, which are mainly determined by the titanium dioxide (TiO2) dosage. Additionally, the sample has excellent thermal stability, and the contact angle is maintained at 153.26° after heat treatment at 140 °C for 1 h. Quite encouragingly, thermal annealing of samples can transform translucent coatings into transparent structures and increase the tensile strength. The results also showed that this strategy could be integrated into the mass production process of other biofiber components as coating, such as coated paper, pulp boards, cotton gauzes, tissues, and so forth. Due to the facile preparation and environment-friendliness, this sustainable paper-based product can be used in diversified applications: packaging and storage of liquid food, protection of ancient books, UV- and rain-proof materials, and teaching demonstrations relevant to bionics, among others.
Collapse
Affiliation(s)
- Jinming Wan
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Shiyun Zhu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
5
|
Yang Y, Zhang Y, Hu Y, Li G, Zhang C, Song Y, Li L, Ni C, Dai N, Cai Y, Li J, Wu D, Chu J. Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation. NANO LETTERS 2021; 21:9301-9309. [PMID: 34709839 DOI: 10.1021/acs.nanolett.1c03506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural organisms can create various microstructures via a spontaneous growth mode. In contrast, artificial protruding microstructures are constructed by subtractive methods that waste materials and time or by additive methods that require additional materials. Here, we report a facile and straightforward strategy for a laser-induced self-growing mushroom-like microstructure on a flat surface. By simply controlling the localized femtosecond laser heating and ablation on the poly(ethylene terephthalate) tape/heat-shrinkable polystyrene bilayer surface, it is discovered that a mushroom-like architecture can spontaneously and rapidly grow out from the original surface within 0.36 s. The dimension of the re-entrant micropillar array (cap diameter, pillar spacing, and height) can be accurately controlled through the intentional control of laser scanning. Followed by a fluorination and spray coating, the obtained surface can realize the repellency and manipulation of oil droplets. This work provides new opportunities in the fields of microfabrication, microfluidics, microreactor engineering, and wearable antifouling electronics.
Collapse
Affiliation(s)
- Yi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yachao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Guoqiang Li
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuegan Song
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Longfu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Caiding Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Nianwei Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yong Cai
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|