1
|
Liu W, Feng J, Wang H, Wang P, Zheng D, Shi W, Wu F, Deng T, Cao X. Restricting Two-Electron Oxygen Reduction via Secondary Coordinated Sulfur Enabling Ultralong-Lifespan Zn-Air Batteries. Angew Chem Int Ed Engl 2025:e202506762. [PMID: 40285496 DOI: 10.1002/anie.202506762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The direct four-electron oxygen reduction reaction (4e- ORR) critically governs efficiency and lifespan in metal-air batteries and fuel cells, yet selectively suppressing competitive 2e- and stepwise 2e-pathways that generate corrosive hydrogen peroxide remains a major challenge. Herein, we demonstrate the strategic incorporation of secondary coordinated sulfur atoms into transition metal-N-C electrocatalysts to effectively promote direct 4e- ORR and simultaneously suppress undesirable 2e- pathways. Density functional theory (DFT) calculations and operando spectroscopy reveal that enhanced adsorption of key intermediate *OOH facilitates efficient O─O bond cleavage, underpinning altered catalytic selectivity. Importantly, this approach is universally applicable to various carbon-based catalysts, including Co─N@C, Ni─N@C, Mn─N@C, and N@C. Specifically, a sulfur-mediated Co─N/Co@C catalyst, comprising Co─N4 sites and Co nanoparticles, dramatically lowers the 2e- O2-to-H2O2 rate constant to merely 0.05-fold of its original value at 0.78 V. Consequently, Zn-air batteries using Co─N/Co@C-S as cathode exhibits an outstanding peak power density of 220 mW cm-2, remarkable lifespan over 2500 h, and outstanding rate performance from 5 to 50 mA cm-2. This work paves a generalizable route for designing highly active and selective electrocatalysts suitable for advanced long-life energy storage devices.
Collapse
Affiliation(s)
- Wenxian Liu
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Jinxiu Feng
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Henan Wang
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Pu Wang
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Dong Zheng
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Wenhui Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Fangfang Wu
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Tianqi Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Xiehong Cao
- State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
2
|
Jin H, Yu R, Ji P, Zeng W, Li Z, He D, Mu S. Sharply expanding single-atomically dispersed Fe-N active sites through bidirectional coordination for oxygen reduction. Chem Sci 2024; 15:7259-7268. [PMID: 38756823 PMCID: PMC11095370 DOI: 10.1039/d4sc01329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
For Fe-NC systems, high-density Fe-N sites are the basis for high-efficiency oxygen reduction reaction (ORR), and P doping can further lower the reaction energy barrier, especially in the form of metal-P bonding. However, limited to the irregular agglomeration of metal atoms at high temperatures, Fe-P bonds and high-density Fe-N cannot be guaranteed simultaneously. Here, to escape the random and violent agglomeration of Fe species during high-temperature carbonization, triphenylphosphine and 2-methylimidazole with a strong metal coordination capability are introduced together to confine Fe growth. With the aid of such bidirectional coordination, the high-density Fe-N site with Fe-P bonds is realized by in situ phosphorylation of Fe in an Fe-NC system (Fe-P-NC) at high temperatures. Impressively, the content of single-atomically dispersed Fe sites for Fe-P-NC dramatically increases from 2.8% to 65.3% compared with that of pure Fe-NC, greatly improving the ORR activity in acidic and alkaline electrolytes. The theoretical calculation results show that the generated Fe2P can simultaneously facilitate the adsorption of intermediates to Fe-N4 sites and the electron transfer, thereby reducing the reaction energy barrier and obtaining superior ORR activity.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
3
|
Wang Y, Wei M, Ding Q, Li H, Ma W. Identification of Intersite Distance Effects in Au-Ag Single-Atom Alloy Catalysts Using Single Nanoparticle Collision Electrochemistry. NANO LETTERS 2024. [PMID: 38620010 DOI: 10.1021/acs.nanolett.3c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Regulating the atomic density of single-atom alloys (SAAs) promotes the potential to significantly enhance the electrocatalytic activity. However, conventional methods for study on the electrocatalytic performance of SAAs versus the intersite distance demand exhaustive experiments and characterization. Herein, we present a combinatorial synthesis and analysis method to investigate the intersite distance effect of SAA electrocatalysts. We employ single-nanoparticle collision electrochemistry to realize in situ electrodeposition of a precisely tunable Au atomic density onto individual parent Ag nanoparticles, followed by instantaneous electrocatalytic measurement of the newborn Au-Ag SAAs. In this work, the utility of our method is confirmed by the identification of intersite distance effects of Au-Ag SAAs toward the oxygen reduction reaction. When the site distance between two neighboring Au atoms is 1.9 nm, Au-Ag SAAs exhibit optimal activity. This work provides a simple and efficient method for screening other SAA electrocatalysts with ideal intersite distance at the single-nanoparticle level.
Collapse
Affiliation(s)
- Yixiao Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mengdan Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Huimin Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
4
|
Abstract
Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Chinchilla L, Manzorro R, Olmos C, Chen X, Calvino JJ, Hungría AB. Temperature-driven evolution of ceria-zirconia-supported AuPd and AuRu bimetallic catalysts under different atmospheres: insights from IL-STEM studies. NANOSCALE 2023; 16:284-298. [PMID: 38059659 DOI: 10.1039/d3nr02304d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The evolution of the structure and composition of the system of particles in two Ce0.62Zr0.38O2-supported bimetallic catalysts based on Au and a 4d metal (Ru or Pd) under high temperature conditions and different reducing and oxidizing environments has been followed by means of Identical Location Scanning Transmission Electron Microscopy (IL-STEM). As an alternative to in situ microscopy, this technique offers valuable insights into the structural modifications occurring in chemical environments with the characteristics of a macro-scale reactor. By tracking exactly the same areas on a large number of metallic entities, it has been possible to reveal the influence of particle size and the nature of the redox environment on the temperature-driven mobilization of the different metals involved. Thus, oxidizing environments evidenced a much higher capacity to mobilize the three metals, preferentially Au. Moreover, the typical storage conditions (under air) of catalysts during the prolonged exposure time has been proved to induce significant modifications in these bimetallic systems, even at room temperature. Regardless of the type of redox environment, bimetallic systems showed better thermal resistance, which demonstrates a beneficial effect of the second metal. In summary, IL-STEM is an invaluable and complementary methodology for characterizing heterogeneous catalysts under realistic reaction conditions and is within the reach of most laboratories.
Collapse
Affiliation(s)
- Lidia Chinchilla
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Ramón Manzorro
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Carol Olmos
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - José J Calvino
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Ana B Hungría
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| |
Collapse
|
6
|
Tao L, Wang K, Lv F, Mi H, Lin F, Luo H, Guo H, Zhang Q, Gu L, Luo M, Guo S. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis. Nat Commun 2023; 14:6893. [PMID: 37898629 PMCID: PMC10613207 DOI: 10.1038/s41467-023-42514-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
Ligand effect, induced by charge transfer between catalytic surface and substrate in core/shell structure, was widely proved to benefit Pt-catalyzed oxygen reduction reaction by tuning the position of d-band center of Pt theoretically. However, ligand effect is always convoluted by strain effect in real core/shell nanostructure; therefore, it remains experimentally unknown whether and how much the ligand effect solely contributes electrocatalytic activity improvements. Herein, we report precise synthesis of a kind of Pd3Ru1/Pt core/shell nanoplates with exclusive ligand effect for oxygen reduction reaction. Layer-by-layer growth of Pt overlayers onto Pd3Ru1 nanoplates can guarantee no lattice mismatch between core and shell because the well-designed Pd3Ru1 has the same lattice parameters as Pt. Electron transfer, due to the exclusive ligand effect, from Pd3Ru1 to Pt leads to a downshift of d-band center of Pt. The optimal Pd3Ru1/Pt1-2L nanoplates achieve excellent activity and stability for oxygen reduction reaction in alkaline/acid electrolyte.
Collapse
Affiliation(s)
- Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hongtian Mi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hongyu Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Liu H, Liu W, Xue G, Tan T, Yang C, An P, Chen W, Zhao W, Fan T, Cui C, Tang Z, Li G. Modulating Charges of Dual Sites in Multivariate Metal-Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. J Am Chem Soc 2023; 145:11085-11096. [PMID: 37162302 DOI: 10.1021/jacs.3c00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective aerobic epoxidation of alkenes without any additives is of great industrial importance but still challenging because the competitive side reactions including C═C bond cleavage and isomerization are difficult to avoid. Here, we show fabricating Cu(I) single sites in pristine multivariate metal-organic frameworks (known as CuCo-MOF-74) via partial reduction of Cu(II) to Cu(I) ions during solvothermal reaction. Impressively, CuCo-MOF-74 is characteristic with single Cu(I), Cu(II), and Co(II) sites, and they exhibit the substantially enhanced selectivity of styrene oxide up to 87.6% using air as an oxidant at almost complete conversion of styrene, ∼25.8% selectivity increased over Co-MOF-74, as well as good catalytic stability. Contrast experiments and theoretical calculation indicate that Cu(I) sites contribute to the substantially enhanced selectivity of epoxides catalyzed by Co(II) sites. The adsorption of two O2 molecules on dual Co(II) and Cu(I) sites is favorable, and the projected density of state of the Co-3d orbital is closer to the Fermi level by modulating with Cu(I) sites for promoting the activation of O2 compared with dual-site Cu(II) and Co(II) and Co(II) and Co(II), thus contributing to the epoxidation of the C═C bond. When other kinds of alkenes are used as substrates, the excellent selectivity of various epoxides is also achieved over CuCo-MOF-74. We also prove the universality of fabricating Cu(I) sites in other MOF-74 with various divalent metal nodes.
Collapse
Affiliation(s)
- Hanlin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ting Tan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chengqian Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
He C, Liu Q, Wang H, Xia C, Li FM, Guo W, Xia BY. Regulating Reversible Oxygen Electrocatalysis by Built-in Electric Field of Heterojunction Electrocatalyst with Modified d-Band. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207474. [PMID: 36604992 DOI: 10.1002/smll.202207474] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Collapse
Affiliation(s)
- Chaohui He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Qingqing Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Hongming Wang
- Institute for Advanced Study, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Okatenko V, Loiudice A, Newton MA, Stoian DC, Blokhina A, Chen AN, Rossi K, Buonsanti R. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO 2 Reduction Reaction. J Am Chem Soc 2023; 145:5370-5383. [PMID: 36847799 DOI: 10.1021/jacs.2c13437] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anastasia Blokhina
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
10
|
Abstract
Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
11
|
Heterostructure engineering of NiCo layered double hydroxide@NiCo2S4 for solid-state rechargeable zinc-air batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhang J, Cao X, Jiang YF, Hung SF, Liu W, Yang HB, Xu CQ, Li DS, Zhang T, Li Y, Li J, Liu B. Surface enrichment of Ir on the IrRu alloy for efficient and stable water oxidation catalysis in acid. Chem Sci 2022; 13:12114-12121. [PMID: 36349089 PMCID: PMC9601389 DOI: 10.1039/d2sc03947h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/15/2022] [Indexed: 10/03/2024] Open
Abstract
Inducing the surface enrichment of active noble metal can not only help to stabilize the catalyst but also modify the catalytic performance of the catalyst through electronic and geometric effects. Herein, we report the in situ surface enrichment of Ir on IrRu alloy during the oxygen evolution reaction (OER). The surface enrichment of Ir was probed by ex situ high-resolution transmission electron microscopy (HRTEM), in situ X-ray absorption spectroscopy (XAS), and electrochemical Cu stripping, leading to complementary characterizations of the dynamic reconstruction of the IrRu alloy during OER. Guided by the density functional theory (DFT), an IrRu alloy with low Ir content (20 wt%) was constructed, which displayed a low overpotential of only 230 mV to deliver an OER current density of 10 mA cm-2 in 0.1 M HClO4 solution and maintained stable performance for over 20 h. To investigate the practical application potential, a proton exchange membrane (PEM) water electrolyzer using the IrRu alloy as the anode catalyst was assembled, which required a low cell voltage of only 1.48 V to generate a current density of 1 A cm-2.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Xueli Cao
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Ya-Fei Jiang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Wei Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hong Bin Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 China
| | - Tianyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University Beijing 100083 China
| | - Yujing Li
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University Beijing 100084 China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| |
Collapse
|
13
|
Qian N, Ji L, Li X, Huang J, Li J, Wu X, Yang D, Zhang H. Pt-Sn alloy shells with tunable composition and structure on Au nanoparticles for boosting ethanol oxidation. Front Chem 2022; 10:993894. [PMID: 36110140 PMCID: PMC9469013 DOI: 10.3389/fchem.2022.993894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Combining the core-shell structure with the optimization of surface composition and structure in the shell is a fantastic strategy to enhance the electrocatalytic performances. Here, we synthesized trimetallic Au@PtxSny core-shell nanoparticles (NPs) with tunable composition and structure of Pt-Sn alloyed shells. Impressively, the Au@PtSn core-shell NPs with hexagonal PtSn alloyed shells exhibited the highest mass activity and specific activity toward ethanol oxidation reaction (EOR) in alkaline electrolyte, which are 13.0 and 12.7 times higher than those of the commercial Pt/C. In addition, the Au@PtSn core-shell NPs displayed the best stability compared to commercial Pt/C, with only 44.8% loss vs. 86.8% loss in mass activity after 1,000 s due to the stronger anti-poisoning ability for reaction intermediates. The theory calculations reveal that the introduction of Au core and alloying Pt with Sn both endow Pt with an appropriate d-band center, and thus effectively boosting the EOR activity.
Collapse
Affiliation(s)
- Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Hui Zhang, ; Xingqiao Wu,
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
- *Correspondence: Hui Zhang, ; Xingqiao Wu,
| |
Collapse
|
14
|
Zhang J, He R, Zhuang Q, Ma X, You C, Hao Q, Li L, Cheng S, Lei L, Deng B, Li X, Lin H, Wang J. Tuning 4f-Center Electron Structure by Schottky Defects for Catalyzing Li Diffusion to Achieve Long-Term Dendrite-Free Lithium Metal Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202244. [PMID: 35673962 PMCID: PMC9376855 DOI: 10.1002/advs.202202244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Lithium metal is considered as the most prospective electrode for next-generation energy storage systems due to high capacity and the lowest potential. However, uncontrollable spatial growth of lithium dendrites and the crack of solid electrolyte interphase still hinder its application. Herein, Schottky defects are motivated to tune the 4f-center electronic structures of catalysts to provide active sites to accelerate Li transport kinetics. As experimentally and theoretically confirmed, the electronic density is redistributed and affected by the Schottky defects, offering numerous active catalytic centers with stronger ion diffusion capability to guide the horizontal lithium deposition against dendrite growth. Consequently, the Li electrode with artificial electronic-modulation layer remarkably decreases the barriers of desolvation, nucleation, and diffusion, extends the dendrite-free plating lifespan up to 1200 h, and improves reversible Coulombic efficiency. With a simultaneous catalytic effect on the conversions of sulfur species at the cathodic side, the integrated Li-S full battery exhibits superior rate performance of 653 mA h g-1 at 5 C, high long-life capacity retention of 81.4% at 3 C, and a high energy density of 2264 W h kg-1 based on sulfur in a pouch cell, showing the promising potential toward high-safety and long-cycling lithium metal batteries.
Collapse
Affiliation(s)
- Jing Zhang
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Rong He
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Quan Zhuang
- Inner Mongolia Key Laboratory of Carbon NanomaterialsNano Innovation Institute (NII)College of Chemistry and Materials ScienceCollege of Mathematics and PhysicsInner Mongolia Minzu UniversityTongliao028000China
| | - Xinjun Ma
- Inner Mongolia Key Laboratory of Carbon NanomaterialsNano Innovation Institute (NII)College of Chemistry and Materials ScienceCollege of Mathematics and PhysicsInner Mongolia Minzu UniversityTongliao028000China
| | - Caiyin You
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Qianqian Hao
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Linge Li
- i‐Lab and CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123China
| | - Shuang Cheng
- i‐Lab and CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123China
| | - Li Lei
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Bo Deng
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Xifei Li
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Hongzhen Lin
- i‐Lab and CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123China
| | - Jian Wang
- i‐Lab and CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123China
- Helmholtz Institute Ulm (HIU)UlmD89081Germany
| |
Collapse
|
15
|
Alkynyl ligands-induced growth of ultrathin nanowires arrays. J Colloid Interface Sci 2022; 627:640-649. [PMID: 35878458 DOI: 10.1016/j.jcis.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
Ligands are almost essential in the synthesis of nanostructures. In this work, we introduce the alkynyl ligands into the synthesis of ultrathin gold (Au) nanowires arrays. The strong binding affinity of the alkynyl ligands enables one-dimensional (1D) growth via the active surface growth mechanism. The scope of the ligand generality was systematically investigated, and the alkynyl ligand-induced nanowire growth processes were compared and contrasted with those involving thiolated ligands. While strong ligands are usually difficult to dissociate from the nanostructure surface and therefore problematic for post-synthetic processing, the alkynyl ligands are readily dissociable, making the alkynyl ligand-stabilized Au nanowires potentially more modifiable and applicable. As a demonstration, direct palladium (Pd) deposition on the Au nanowires was successfully carried out without any ligand exchange process.
Collapse
|
16
|
Wu X, Liu X, He Y, Lei L, Hao S, Zhang X. A ternary PdNiMo alloy as a bifunctional nanocatalyst for the oxygen reduction reaction and hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mo0.2Pd3Ni/NC shows superior electrochemical performances for both ORR and HER due to the charge redistribution among Ni, Pd, and Mo, tuning the electronic structure of Pd.
Collapse
Affiliation(s)
- Xiao Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiangnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|