1
|
Yao X, Liu G, Huang Y, Huang C, Chen X, Xuan Z, Shi M, Yang Y, Huang X, Chen Y, Lan YQ. Interweavable Metalloporphyrin-Based Fibers for Indirect Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417439. [PMID: 39473190 DOI: 10.1002/anie.202417439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/22/2024]
Abstract
The applications of indirect electrocatalysis toward potential industrial processes are drastically limited by the utilization or processing forms of electrocatalysts. The remaining challenges of electrocatalysts like the recycling in homogeneous systems or pulverization in heterogeneous systems call for advanced processing forms to meet the desired requirements. Here, we report a series of metalloporphyrin-based polymer fibers (M-PF, M=Ni, Cu and Zn) through a rigid-flexible polymerization strategy based on rigid metalloporphyrin and flexible thiourea units that can be applied as heterogeneous redox-mediators in indirect electrocatalysis. These functional fibers with high strength and flexibility exhibit interweavable and designable functions that can be processed into different fiber-forms like knotted, two-spiral, three-ply, five-ply fibers or even interweaved networks. Interestingly, they can be readily applied in S-S bond cleaving/cyclization reaction or extended oxidative self-coupling reaction of thiols with high efficiency. Remarkably, it enables the scale-up production (1.25 g in a batch-experiment) under laboratory conditions.
Collapse
Affiliation(s)
- Xiaoman Yao
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Gang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yingying Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Caier Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xuanxu Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhe Xuan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mingjin Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yiwen Yang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yifa Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Yang Z, Yang Y, Huang Y, Shao Y, Hao H, Yao S, Xi Q, Guo Y, Tong L, Jian M, Shao Y, Zhang J. Wet-spinning of carbon nanotube fibers: dispersion, processing and properties. Natl Sci Rev 2024; 11:nwae203. [PMID: 39301072 PMCID: PMC11409889 DOI: 10.1093/nsr/nwae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 09/22/2024] Open
Abstract
Owing to the intrinsic excellent mechanical, electrical, and thermal properties of carbon nanotubes (CNTs), carbon nanotube fibers (CNTFs) have been expected to become promising candidates for the next-generation of high-performance fibers. They have received considerable interest for cutting-edge applications, such as ultra-light electric wire, aerospace craft, military equipment, and space elevators. Wet-spinning is a broadly utilized commercial technique for high-performance fiber manufacturing. Thus, compared with array spinning from drawable CNTs vertical array and direct dry spinning from floating catalyst chemical vapor deposition (FCCVD), the wet-spinning technique is considered to be a promising strategy to realize the production of CNTFs on a large scale. In this tutorial review, we begin with a summative description of CNTFs wet-spinning process. Then, we discuss the high-concentration CNTs wet-spinning dope preparation strategies and corresponding non-covalent adsorption/charge transfer mechanisms. The filament solidification during the coagulation process is another critical procedure for determining the configurations and properties for derived CNTFs. Next, we discuss post-treatment, including continuous drafting and thermal annealing, to further optimize the CNTs orientation and compact configuration. Finally, we summarize the physical property-structure relationship to give insights for further performance promotion in order to satisfy the prerequisite for detailed application. Insights into propelling high-performance CNTFs production from lab-scale to industry-scale are proposed, in anticipation of this novel fiber having an impact on our lives in the near future.
Collapse
Affiliation(s)
- Zhicheng Yang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yinan Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yufei Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanyan Shao
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, China
| | - He Hao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shendong Yao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China
| | - Qiqing Xi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yinben Guo
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yuanlong Shao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jin Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
3
|
Zhang X, Lei X, Jia X, Sun T, Luo J, Xu S, Li L, Yan D, Shao Y, Yong Z, Zhang Y, Wu X, Gao E, Jian M, Zhang J. Carbon nanotube fibers with dynamic strength up to 14 GPa. Science 2024; 384:1318-1323. [PMID: 38900888 DOI: 10.1126/science.adj1082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
High dynamic strength is of fundamental importance for fibrous materials that are used in high-strain rate environments. Carbon nanotube fibers are one of the most promising candidates. Using a strategy to optimize hierarchical structures, we fabricated carbon nanotube fibers with a dynamic strength of 14 gigapascals (GPa) and excellent energy absorption. The dynamic performance of the fibers is attributed to the simultaneous breakage of individual nanotubes and delocalization of impact energy that occurs during the high-strain rate loading process; these behaviors are due to improvements in interfacial interactions, nanotube alignment, and densification therein. This work presents an effective strategy to utilize the strength of individual carbon nanotubes at the macroscale and provides fresh mechanism insights.
Collapse
Affiliation(s)
- Xinshi Zhang
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xudong Lei
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzheng Jia
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Tongzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiajun Luo
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Shichen Xu
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Lijun Li
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Dan Yan
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yuanlong Shao
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Xianqian Wu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jin Zhang
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
4
|
Hu Z, Sun X, Zhang X, Jia X, Feng X, Cui M, Gao E, Qian L, Gao X, Zhang J. Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers. J Am Chem Soc 2024. [PMID: 38600631 DOI: 10.1021/jacs.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With impressive individual properties, carbon nanotubes (CNTs) show great potential in constructing high-performance fibers. However, the tensile strength of as-prepared carbon nanotube fibers (CNTFs) by floating catalyst chemical vapor deposition (FCCVD) is plagued by the weak intertube interaction between the essential CNTs. Here, we developed a chlorine (Cl)/water (H2O)-assisted length furtherance FCCVD (CALF-FCCVD) method to modulate the intertube interaction of CNTs and enhance the mechanical strength of macroscopic fibers. The CNTs acquired by the CALF-FCCVD method show an improvement of 731% in length compared to that by the conventional iron-based FCCVD system. Moreover, CNTFs prepared by CALF-FCCVD spinning exhibit a high tensile strength of 5.27 ± 0.27 GPa (4.62 ± 0.24 N/tex) and reach up to 5.61 GPa (4.92 N/tex), which outperforms most previously reported results. Experimental measurements and density functional theory calculations show that Cl and H2O play a crucial role in the furtherance of CNT growth. Cl released from the decomposition of methylene dichloride greatly accelerates the growth of the CNTs; H2O can remove amorphous carbon on the floating catalysts to extend their lifetime, which further modulates the growth kinetics and improves the purity of the as-prepared fibers. Our design of the CALF-FCCVD platform offers a powerful way to tune CNT growth kinetics in direct spinning toward high-strength CNTFs.
Collapse
Affiliation(s)
- Zuncheng Hu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiucai Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xinshi Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiangzheng Jia
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xueting Feng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingwei Cui
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Liu Qian
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xin Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
5
|
Gao Z, Xu L, Jiao X, Li X, He C, Wang HZ, Sun C, Hou PX, Liu C, Cheng HM. Strong Connection of Single-Wall Carbon Nanotube Fibers with a Copper Substrate Using an Intermediate Nickel Layer. ACS NANO 2023; 17:18290-18298. [PMID: 37706683 DOI: 10.1021/acsnano.3c05374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.
Collapse
Affiliation(s)
- Zhaoqing Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Lele Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xinyu Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xin Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chengjian He
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hao-Zike Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chunyang Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|