1
|
Gogoi S, Das S, Gupta R, Verma SD. Tuning Hot-Carrier Temperature in CsPbBr 3 Perovskite Nanoplatelets through Metal Halide Passivation. J Phys Chem Lett 2025; 16:3832-3839. [PMID: 40198812 DOI: 10.1021/acs.jpclett.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
High carrier temperature and slow carrier cooling make perovskite nanostructures potential candidates for hot-carrier solar cells. Here, using time-resolved photoluminescence spectroscopy, hot-carrier dynamics is reported in strongly confined three-monolayer quasi-2D CsPbBr3 perovskite nanoplatelets characterized by sharp excitonic peaks in the absorption spectrum and narrow emission peaks in the blue region. Treatment with a PbBr2-ligand solution resulted in a remarkable seven-fold increase in photoluminescence intensity, attributed to effective passivation of surface defects due to lead(II) and bromide vacancies. Further investigations using time-resolved emission spectroscopy revealed consistent carrier cooling times of ∼300 fs for both pristine and treated nanoplatelets, indicating similar fundamental hot-carrier cooling processes. Notably, treated nanoplatelets exhibited higher carrier temperature (∼700 K), linked to increased radiative carrier density after defect passivation. This work demonstrates that treatment of quasi-2D CsPbBr3 perovskite nanoplatelets with metal halides substantially improves the optoelectronic properties. Notably, hot-carrier temperatures can be increased significantly while preserving the cooling time.
Collapse
Affiliation(s)
- Srimanta Gogoi
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Saikat Das
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ruchir Gupta
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Sachin Dev Verma
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Shi W, Yang P, Zhang X. Blue-Emitting CsPbBr 3 Nanocrystals: Synthesis Progress and Bright Photoluminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5762-5781. [PMID: 40008989 DOI: 10.1021/acs.langmuir.4c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
All-inorganic perovskite (CsPbX3, X = Cl, Br, I) nanomaterials as novel optoelectronic semiconductors have attracted much attention due to their unique photoelectric properties in lighting, display, and photovoltaic applications. Meanwhile, green and red light-emitting diodes (LEDs) based on bromine and iodine groups have developed rapidly, in which the high external quantum efficiency (EQE) is close to that of the current commercial green and red LEDs. However, the EQE of perovskite-based blue LEDs is far behind. Blue LEDs are often made by CsPbCl3 and CsPb(Cl/Br)3 nanocrystals (NCs) with low photoluminescence (PL) quantum yields. Their phase segregation seriously limits their practical applications. The PL peak of CsPbBr3 NCs is usually located in the green region. In the case of a strong quantum confinement effect, blue PL can be observed from CsPbBr3 NCs. Therefore, blue emitting CsPbBr3 NCs have become a hot topic. This review focused on the synthesis, ligand selection, and morphology control of blue emitting CsPbBr3 NCs, in which the microstructure, luminescence, and synthesis method were first discussed. In addition, the influence of capping ligands on the PL properties and stability is indicated. Furthermore, the size and morphology adjustment are also discussed. Finally, the application and existing problems of blue-emitting CsPbBr3 in blue LEDs are summarized. This review aims to provide new insights into the preparation of efficient and stable blue-emitting CsPbBr3 and the design-based manufacturing of blue LEDs.
Collapse
Affiliation(s)
- Wenbin Shi
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiao Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Zhu Y, Luo S, Zhang Y, Liu Y, He Y, Li T, Chi Z, Guo L. Modulating hot carrier relaxation and trapping dynamics in lead halide perovskite nanoplatelets by surface passivation. NANOSCALE 2024; 17:584-591. [PMID: 39576023 DOI: 10.1039/d4nr02560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Two-dimensional (2D) lead halide perovskite (LHP) nanoplatelets (NPLs) have recently emerged as promising materials for solar cells and light-emitting devices. The reduction of LHP dimensions introduces an abundance of surface defects, which can strongly influence the photophysical properties of these materials. However, an insightful understanding of the effect of surface defects on hot carrier (HC) relaxation, one of the important properties of LHP NPLs, is still inadequate. Herein, the HC relaxation and trapping dynamics in pristine and surface passivated two-layer (2L) CsPbBr3 NPLs have been investigated by using time-resolved spectroscopy. The results reveal that surface defects can trap HCs directly before they relax to the band edge, which accounts for the absence of the hot-phonon bottleneck (HPB) effect in LHP NPLs. After healing surface defects with a passivation agent, the relaxation time of HCs is extended from ∼73 to ∼130 fs in 2L CsPbBr3 NPLs, indicating that the channel of HCs trapped by the surface defects can be effectively blocked. Accordingly, the HPB effect is activated in surface-passivated CsPbBr3 NPLs. The finding of surface defect-related HC relaxation dynamics is important for guiding the development of high-performance LHP NPL devices related to HCs through surface defect engineering.
Collapse
Affiliation(s)
- Yanshen Zhu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Shida Luo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yuting Zhang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yanping Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Tianfeng Li
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Lijun Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Wang L, Zhu J, Wang J, Wu K. Hot Electron Cooling in n-Doped Colloidal Nanoplatelets Following Near-Infrared Intersubband Excitation. NANO LETTERS 2024; 24:10691-10698. [PMID: 39158185 DOI: 10.1021/acs.nanolett.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Intersubband transition was recently discovered in colloidal nanoplatelets, but the associated intersubband carrier relaxation dynamics remains poorly understood. In particular, it is crucial to selectively excite the intersubband transition and to follow the hot electron dynamics in the absence of valence-band holes. This is achieved herein by exciting the predoped electrons in CdSe/ZnS nanoplatelets using near-infrared femtosecond pulses and monitoring nonequilibrium electron dynamics using broad-band visible pulses. We find that the n = 2 electrons relax to the n = 1 subband and establish a Fermi-Dirac distribution within 200 fs, and finally reach an equilibrium with the lattice within a few ps. The cooling dynamics depend mainly on the excitation fluence but weakly on the doping density and the lattice temperature. These characteristics are well captured by our numerical simulation that explicitly accounts for the state occupation effect and optical phonon scattering.
Collapse
Affiliation(s)
- Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
6
|
Lv J, Liu A, Shi D, Li M, Liu X, Wan Y. Hot Carrier Trapping and It's Influence to the Carrier Diffusion in CsPbBr 3 Perovskite Film Revealed by Transient Absorption Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403507. [PMID: 38733084 PMCID: PMC11267283 DOI: 10.1002/advs.202403507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The defects in perovskite film can cause charge carrier trapping which shortens carrier lifetime and diffusion length. So defects passivation has become promising for the perovskite studies. However, how defects disturb the carrier transport and how the passivating affects the carrier transport in CsPbBr3 are still unclear. Here the carrier dynamics and diffusion processes of CsPbBr3 and LiBr passivated CsPbBr3 films are investigated by using transient absorption spectroscopy and transient absorption microscopy. It's found that there is a fast hot carrier trapping process with the above bandgap excitation, and the hot carrier trapping would decrease the population of cold carriers which are diffusible, then lower the carrier diffusion constant. It's proved that LiBr can passivate the defect and lower the trapping probability of hot carriers, thus improve the carrier diffusion rate. The finding demonstrates the influence of hot carrier trapping to the carrier diffusion in CsPbBr3 film.
Collapse
Affiliation(s)
- Jianchang Lv
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Ao Liu
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Danli Shi
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Minjie Li
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xi Liu
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yan Wan
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
7
|
Liu J, Lu R, Yu A. Origin of the low-energy tail in the photoluminescence spectrum of CsPbBr 3 nanoplatelets: a femtosecond transient absorption spectroscopic study. Phys Chem Chem Phys 2024; 26:12179-12187. [PMID: 38591257 DOI: 10.1039/d4cp00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
CsPbBr3 nanoplatelets (NPLs), as some of the two-dimensional lead halide perovskites, have been intensively investigated due to their outstanding photophysical and photoelectric properties. However, there remain unclear fundamental issues on their carrier kinetics and the low-energy tail in their photoluminescence (PL) spectrum. In this paper, we synthesized CsPbBr3 NPLs with five [PbBr6]4- monolayers and performed comprehensive studies by using steady-state absorption, PL, and femtosecond transient absorption (fs-TA) spectroscopic measurements. We determined both the biexciton Auger recombination time (7 ± 2 ps) and trapped exciton lifetime (110 ± 15 ps) of the five monolayer CsPbBr3 NPLs. We also investigated the origin of the low-energy tail emission in their PL spectrum. More importantly, we found that a negative ΔA feature in the energy range of 2.45-2.55 eV appears in their fs-TA spectrum at 2, 4 and 10 ps delay times, which could help them act as a laser gain medium. The low-energy tail emission in their PL spectrum overlaps well with the negative ΔA feature in the energy range of 2.45-2.55 eV in their fs-TA spectrum at 2, 4 and 10 ps delay times.
Collapse
Affiliation(s)
- Jinwei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Rong Lu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Anchi Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
8
|
Fang J, Li P, Zhang L, Li X, Zhang J, Qin C, Debnath T, Huang W, Chen R. Stimulating Phonon Bottleneck Effect in Organic Semiconductors by Charge-Transfer-Mediated J-Aggregation. J Am Chem Soc 2024; 146:961-969. [PMID: 38157246 DOI: 10.1021/jacs.3c11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hot carriers rapidly lose kinetic energies on a subpicosecond time scale, posing significant limitations on semiconductors' photon-conversion efficiencies. To slow the hot carrier cooling, the phonon bottleneck effect is constructed prevalently in quantum-confined structures with discrete energy levels. However, the maximum energy separation (ΔEES) between the energy levels is in a range of several hundred meV, leading to unsatisfactory cooling time. To address this, we design a novel organic semiconductor capable of forming intermolecular charge transfer (CT) in J-aggregates, where the lowest singlet excited state (S1) splits into two states due to the significant interplay between the Coulomb interaction and intermolecular CT coupling. The ΔEES between the two states can be adjusted up to 1.02 eV, and an extremely slow carrier cooling process of ∼72.3 ps was observed by femtosecond transient absorption spectroscopy. Moreover, the phonon bottleneck effect was identified in organic materials for the first time, and CT-mediated J-aggregation with short-range interactions was found to be the key to achieving large ΔEES. The significantly prolonged carrier cooling time, compared to <100 fs in the isolated molecule (10-6 M), highlights the potential of organic molecules with diversified aggregation structures in achieving long-lived hot carriers. These findings provide valuable insights into the intrinsic photophysics of electron-phonon scattering in organic semiconductors.
Collapse
Affiliation(s)
- Jiawen Fang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Longyan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiuzhi Li
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Zhao J, Zhang Q, Sui L, Niu G, Zhang Y, Wu G, Yu S, Yuan K, Yang X. Evidence of Surface-Mediated Carrier-Phonon Scattering in MXene. ACS NANO 2023. [PMID: 38009540 DOI: 10.1021/acsnano.3c07431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In a two-dimensional (2D) metallic nanostructure, when a sample's thickness is shorter than a carrier mean free path, the ultrathin thickness may influence carrier and energy transport, owing to surface scattering. However, to date, for metallic 2D transition-metal carbides (MXenes), experiments and calculations related to surface scattering have not been performed. The contribution of ultrathin structures to carrier surface scattering in MXene is yet to be explored. Herein, to reveal this effect, we design various models, including metal/MXene, dielectric/MXene, and bulk structure, and analyze their carrier dynamics via ultrafast spectroscopy. The results related to carrier dynamics indicate that the influence of the dielectric/MXene interface and the temperature is negligible. In contrast, the carrier dynamic lifetimes are prolonged owing to weakened surface scattering in metal/MXene, which is supported by ab initio calculations. These results suggest that the carrier-phonon scattering is dominated by surface scattering. These findings can help guide effective energy transport and enhance energy conversion and catalysis.
Collapse
Affiliation(s)
- Jie Zhao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yutong Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Brosseau P, Ghosh A, Seiler H, Strandell D, Kambhampati P. Exciton-polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J Chem Phys 2023; 159:184711. [PMID: 37962451 DOI: 10.1063/5.0173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Metal halide perovskite nanocrystals have been under intense investigation for their promise in optoelectronic devices due to their remarkable physics, such as liquid/solid duality. This liquid/solid duality may give rise to their defect tolerance and other such useful properties. This duality means that the electronic states are fluctuating in time, on a distribution of timescales from femtoseconds to picoseconds. Hence, these lattice induced energy fluctuations that are connected to polaron formation are also connected to exciton formation and dynamics. We observe these correlations and dynamics in metal halide perovskite nanocrystals of CsPbI3 and CsPbBr3 using two-dimensional electronic (2DE) spectroscopy, with its unique ability to resolve dynamics in heterogeneously broadened systems. The 2DE spectra immediately reveal a previously unobserved excitonic splitting in these 15 nm NCs that may have a coarse excitonic structure. 2D lineshape dynamics reveal a glassy response on the 300 fs timescale due to polaron formation. The lighter Br system shows larger amplitude and faster timescale fluctuations that give rise to dynamic line broadening. The 2DE signals enable 1D transient absorption analysis of exciton cooling dynamics. Exciton cooling within this doublet is shown to take place on a slower timescale than within the excitonic continuum. The energy dissipation rates are the same for the I and Br systems for incoherent exciton cooling but are very different for the coherent dynamics that give rise to line broadening. Exciton cooling is shown to take place on the same timescale as polaron formation, revealing both as coupled many-body excitation.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
11
|
Marjit K, Ghosh G, Ghosh S, Ghosh D, Medda A, Patra A. Electron Transfer Dynamics from CsPbBr 3 Nanocrystals to Au 144 Clusters. ACS PHYSICAL CHEMISTRY AU 2023; 3:348-357. [PMID: 37520319 PMCID: PMC10375896 DOI: 10.1021/acsphyschemau.2c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 08/01/2023]
Abstract
Lead halide perovskite nanocrystals have received significant attention as an absorber material for designing efficient optoelectronic devices. The fundamental understanding of the hot carrier (HC) dynamics as well as its extraction in hybrid systems is essential to further boost the performance of solar cells. Herein, we have explored the electron transfer dynamics in the CsPbBr3-Au144 cluster hybrid using ultrafast transient absorption spectroscopy. Our analysis reveals faster HC cooling time (from 515 to 334 fs) and a significant drop in HC temperature from 1055 to 860 K in hybrid, suggesting the hot electron transfer from CsPbBr3 nanocrystals to the Au nanoclusters (NCs). Eventually, we observe a much faster hot electron transfer compared to the band-edge electron transfer, and 45% hot-electron transfer efficiency was achieved at 0.64 eV, above band-edge photoexcitation. Furthermore, the significant enhancement of the photocurrent to the dark current ratio in this hybrid system confirms the charge separation via the electron transfer from CsPbBr3 nanocrystals to Au144 NCs. These findings on HC dynamics could be beneficial for optoelectronic devices.
Collapse
Affiliation(s)
- Kritiman Marjit
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Goutam Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Srijon Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debarati Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anusri Medda
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amitava Patra
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute
of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
12
|
Carwithen BP, Hopper TR, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan MA, Frost JM, Leo K, Vaynzof Y, Bodnarchuk MI, Kovalenko MV, Bakulin AA. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. ACS NANO 2023; 17:6638-6648. [PMID: 36939330 PMCID: PMC10100565 DOI: 10.1021/acsnano.2c12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.
Collapse
Affiliation(s)
- Ben P. Carwithen
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ziyuan Ge
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Rozana Mazlumian
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Franziska Krieg
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Georgian Nedelcu
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Martin Kroll
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, 01069 Dresden, Germany
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Miguel Albaladejo Siguan
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarvist M. Frost
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Karl Leo
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
13
|
Colin-Ulloa E, Fitzgerald A, Montazeri K, Mann J, Natu V, Ngo K, Uzarski J, Barsoum MW, Titova LV. Ultrafast Spectroscopy of Plasmons and Free Carriers in 2D MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208659. [PMID: 36369973 DOI: 10.1002/adma.202208659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti3 C2 , Mo2 Ti2 C3 , and Nb2 C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti3 C2 , that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.
Collapse
Affiliation(s)
- Erika Colin-Ulloa
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Andrew Fitzgerald
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kiana Montazeri
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Javery Mann
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Varun Natu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India
| | - Ken Ngo
- US Army DEVCOM Soldier Center, Natick, MA, 01760, USA
| | | | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lyubov V Titova
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
14
|
Hong E, Li Z, Yan T, Fang X. Surface-Tension-Dominant Crystallization of 2D Perovskite Single Crystals for Vertically Oriented Hetero-/Homo-Structure Photodetectors. NANO LETTERS 2022; 22:8662-8669. [PMID: 36314926 DOI: 10.1021/acs.nanolett.2c03262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
2D halide perovskites feature solution processability and tunable optoelectronic properties for optoelectronic applications. However, the controllable fabrication of halide perovskite heterojunction still remains a challenge. Herein, through controlling surface tension and nucleation driving force, a fast and facile aqueous floating growth is demonstrated to obtain a series of large-area single-crystalline 2D perovskite microplates at room temperature. The optoelectronic performance of 2D perovskites can be tuned by composition engineering, and the best performance is realized for quantum well index n = 4, including a suppressed dark current with boosted photocurrent and an on/off ratio up to 3.5 orders of magnitude. Benefiting from a convenient transfer method onto arbitrary substrates, vertically oriented 2D perovskite hetero-/homo-junctions are gently stacked, which exhibit improved self-powered characteristics. This straightforward growth strategy is an universal solution-processed method for growing 2D perovskites, laying the foundation of the 2D perovskite hetero-/homo-junction for future miniaturization and functionalization of next-generation optoelectronics.
Collapse
Affiliation(s)
- Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai200433, P. R. China
| |
Collapse
|
15
|
Chen R, Guan W, Zhou W, Wang Z, Zhang G, Qin C, Hu J, Xiao L, Jia S. The role of atmospheric conditions in the nonradiative recombination in individual CH 3NH 3PbI 3 perovskite crystals. NANOSCALE ADVANCES 2022; 4:4838-4846. [PMID: 36381513 PMCID: PMC9642354 DOI: 10.1039/d2na00541g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Organic-inorganic metal halide perovskites have been emerging as potential candidates for lightweight photovoltaic applications in space. However, fundamental physics concerning the effect of atmosphere on the radiative and nonradiative recombination in perovskites remains far from well understood. Here, we investigate the creation and annihilation of nonradiative recombination centers in individual CH3NH3PbI3 perovskite crystals by controlling the atmospheric conditions. We find that the photoluminescence (PL) of individual perovskite crystals can be quenched upon exposure from air to vacuum, while the subsequent PL enhancement in air shows a pressure dependence. Further analysis attributes the PL decline in vacuum to the activation of nonradiative trap sites, which is likely due to the lattice distortion caused by the variation of local strain on perovskites. With a gradual increase of the air pressure, the light-assisted chemisorption of oxygen on perovskite will passivate these nonradiative trap sites while simultaneously restoring the lattice imperfection, leading to PL enhancement. The present findings suggest that placing the perovskite in an environment with moderate oxygen content can protect the material from photophysical losses that can be pronounced under inert conditions.
Collapse
Affiliation(s)
- Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Wenling Guan
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Wenjin Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Zixin Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Jianyong Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan Shanxi 030006 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
16
|
Kaur G, Shukla A, Babu KJ, Ghosh HN. Chemically Engineered Avenues: Opportunities for Attaining Desired Carrier Cooling in Perovskites. CHEM REC 2022; 22:e202200106. [PMID: 35882519 DOI: 10.1002/tcr.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Hot carrier extraction-based devices are presently being persuaded as the most revolutionary means of surpassing the theoretical thermodynamic conversion efficiency limit (∼67 % for a model hot carrier solar cell). However, for practical realisation, there stand various hurdles that need to be surmounted, a major among all being the rapid hot carrier cooling rate. Though, the perovskite family has already demonstrated itself to exhibit slower cooling in contrast to the prototypical semiconductors. Decelerating this entire process of cooling further can prove to be a crucial stride in this regard. Quite contrarily, for the optoelectronic applications the situation is entirely conflicting where quick rate of cooling is a chief prerequisite. In the recent times, there have been various key developments that have targeted altering this cooling rate by various chemically engineered strategies. This review highlights such blueprints that can be utilized towards the advantageous alteration of the carrier cooling in accordance with the device requirements.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Ayushi Shukla
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India.,RPC Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India
| |
Collapse
|
17
|
Marjit K, Ghosh G, Biswas RK, Ghosh S, Pati SK, Patra A. Modulating the Carrier Relaxation Dynamics in Heterovalently (Bi 3+) Doped CsPbBr 3 Nanocrystals. J Phys Chem Lett 2022; 13:5431-5440. [PMID: 35679509 DOI: 10.1021/acs.jpclett.2c01270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Manipulation of intrinsic carrier relaxation is crucial for designing efficient lead halide perovskite nanocrystal (NC) based optoelectronic devices. The influence of heterovalent Bi3+ doping on the ultrafast carrier dynamics and hot carrier (HC) cooling relaxation of CsPbBr3 NCs has been studied using femtosecond transient absorption spectroscopy and first-principles calculations. The initial HC temperature and LO phonon decay time point to a faster HC relaxation rate in the Bi3+-doped CsPbBr3 NCs. The first-principles calculations disclose the acceleration of carrier relaxation in Bi3+-doped CsPbBr3 NCs due to the appearance of localized bands (antitrap states) within the conduction band. The higher Born effective charges (Z*) and higher soft energetic optical phonon density of states cause higher electron-phonon scattering rates in the Bi-doped CsPbBr3 system, which is responsible for the faster HC cooling rate in doped systems.
Collapse
Affiliation(s)
- Kritiman Marjit
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Goutam Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Raju K Biswas
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Srijon Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|