1
|
Wang Z, Fan C, Chen Y, Yuan Y, Xue J, Yu N, Feng J, Yu L, Dong L. NaCl-Assisted electrospinning of bifunctional carbon fibers for High-Performance flexible zinc-air batteries. J Colloid Interface Sci 2025; 690:137325. [PMID: 40101624 DOI: 10.1016/j.jcis.2025.137325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
With the increasing demand for flexible, rechargeable zinc-air batteries (ZABs), developing efficient oxygen electrocatalysts is challenging. A large specific surface area and porous structure are critical for electrochemical performance but can compromise mechanical strength and flexibility. Herein, a novel strategy with NaCl-assisted electrospinning and pyrolysis has been proposed to fabricate self-supported carbon fibers with a solid core and mesoporous shell as bifunctional oxygen electrocatalysts for flexible ZABs. The fibers incorporate NaCl and ZnCo-ZIFs via coaxial electrospinning. NaCl enhances both the electrospinning process and ZIF carbonization, creating a porous surface on robust carbon fibers that balances surface exposure with structural stability. Experimental data and density functional theory calculations confirm that cobalt atoms anchored on the carbon surface are the primary active sites, boosting electrocatalytic performance. Zinc facilitates the formation of structural defects and porosity during volatilization at high temperatures, promoting NaCl molten salt infiltration, ZIF decomposition, and large pore formation. The resulting cross-linked porous structure increases active site exposure, enhancing catalytic efficiency. The synthesized ZN3-CNFs-900 exhibit remarkable catalytic activity, achieving an oxygen reduction reaction half-wave potential of 0.834 V and an oxygen evolution reaction overpotential of 1.695 V at 10 mA cm-2. ZABs assembled with these carbon fibers demonstrate an open-circuit voltage of 1.43 V, a peak power density of 111 mW cm-2, and cycling stability beyond 400 h. The carbon fiber-based solid-state ZABs show a high open circuit voltage of 1.39 V, a power density of 81.7 mW cm-2 and a cycle life of 33 h.
Collapse
Affiliation(s)
- Zhixin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanjun Fan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Provincial Engineering Research Center of Functional Ceramic Materials, Shandong Sinocera Functional Materials Co. Ltd., Dongying 257091, China.
| | - Ye Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jishun Xue
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Na Yu
- Shandong Provincial Engineering Research Center of Functional Ceramic Materials, Shandong Sinocera Functional Materials Co. Ltd., Dongying 257091, China
| | - Jianguang Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Physics, Hamline University, St. Paul 55104, USA.
| |
Collapse
|
2
|
Liu Y, Liu H, Li L, Tang Y, Sun Y, Zhou J. Construction of Asymmetric Fe-N 3P 1 Sites on Freestanding Nitrogen/Phosphorus Co-Doped Carbon Nanofibers for Boosting Oxygen Electrocatalysis and Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501495. [PMID: 40159761 DOI: 10.1002/smll.202501495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Indexed: 04/02/2025]
Abstract
The construction of freestanding carbon nanofiber membrane with single-atomic metal active sites and interconnected microchannels as air electrodes is vital for boosting the performance of zinc-air batteries (ZABs). Herein, single-atomic Fe sites is prepared on freestanding hierarchical nitrogen/phosphorus co-doped carbon nanofibers (Fe SACs@PNCNFs) by loading Fe-doped zeolitic imidazolate framework-8 with leaf-like structures on electrospun polyacrylonitrile (PAN) nanofibers with subsequent multi-step pyrolysis in the presence of sodium monophosphate, which are confirmed to be in the form of Fe-N3P1 by X-ray adsorption spectra. The asymmetric N/P coordinated Fe sites is theoretically demonstrated to boost the ORR performance with a half-wave potential of 0.89 V due to the weakened *O adsorption while stabilizing *OOH adsorption arising from the increased charge density of Fe sites compared to symmetric N coordinated Fe sites with Fe-N4. Moreover, when liquid and quasi-solid ZABs are assembled, excellent battery performance is also achieved with peak power density of 163 and 72 mW cm-2 as well as good stability for more than 190 and 65 h, respectively.
Collapse
Affiliation(s)
- Yuanjian Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Haocheng Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201204, China
| | - Yan Tang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
3
|
Chen S, Zhang L, Liu Z, Chen Y, Li S, Zhang Y, Chen J, Yan J. Constructing Stable Bifunctional Electrocatalyst of Co─Co 2Nb 5O 14 with Reversible Interface Reconstitution Ability for Sustainable Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413796. [PMID: 40066787 PMCID: PMC12061240 DOI: 10.1002/advs.202413796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Indexed: 05/10/2025]
Abstract
Transition metal and metal oxide heterojunctions have been widely studied as bifunctional oxygen reduction/evolution reaction (ORR/OER) electrocatalysts for Zn-air batteries, but the dynamic changes of transition metal oxides and the interface during catalysis are still unclear. Here, bifunctional electrocatalyst of Co─Co2Nb5O14 is reported, containing lattice interlocked Co nanodots and Co2Nb5O14 nanorods, which construct a strong metal-support interaction (SMSI) interface. Unlike the recognition that transition metals mainly serve as ORR active sites and metal oxides as OER active sites, it is found that both ORR/OER sites originate from Co2Nb5O14, while Co acts as an electronic regulatory unit. The SMSI interface promotes dynamic electron transfer between Co/Co2Nb5O14, and the reversible active sites of Nb4+/Nb5+ realize bidirectional adsorption/migration of intermediates, thereby achieving dynamic reversible interface reconstitution. The electrocatalyst shows a high ORR half-wave potential of 0.84 V, a low OER overpotential of 296.3 mV, and great cycling stability over 30000 s. The ZAB shows a high capacity of 850.6 mA h·gZn-1 and can stably run 2050 cycles at 10 mA·cm⁻2. Moreover, the constructed solid-state ZAB also shows leading cycling stability in comparison with the previous studies.
Collapse
Affiliation(s)
- Shuo Chen
- College of TextilesDonghua UniversityShanghai201620China
| | - Liang Zhang
- College of TextilesDonghua UniversityShanghai201620China
| | - Zheng Liu
- College of TextilesDonghua UniversityShanghai201620China
| | - Yuehui Chen
- College of TextilesDonghua UniversityShanghai201620China
| | - Shouzhu Li
- Xinjiang Key Laboratory of New Energy and Energy Storage TechnologyXinjiang Institute of TechnologyAkesu843100China
| | - Yuanyuan Zhang
- College of Textiles & ClothingQingdao UniversityQingdao266071China
| | - Junyu Chen
- College of Textiles & GarmentsHebei University of Science and TechnologyShijiazhuang050018China
| | - Jianhua Yan
- College of TextilesDonghua UniversityShanghai201620China
- Xinjiang Key Laboratory of New Energy and Energy Storage TechnologyXinjiang Institute of TechnologyAkesu843100China
| |
Collapse
|
4
|
Zou J, Bao L, Sun Q, Bao C, Chen H, Liu H. Oxygen Reduction Reaction Catalysts for Zinc-Air Batteries Featuring Single Cobalt Atoms in a Nitrogen-Doped 3D-Interconnected Porous Graphene Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409506. [PMID: 39811938 DOI: 10.1002/smll.202409506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs. In this 3D NrGO, the Co-N4 sites endow high-efficiency ORR activity, and the 3D-interconnected porous architectures of NrGOs guarantee numberous active sites accessibility. Compared to commercial Pt/C catalyst (≈5.8 mA cm-2), as-prepared Co-NrGO-SACs presents considerable limiting current density of ≈5.9 mA cm-2, prominent half-wave potential of ≈0.84 V, onset potential of ≈1.05 V, and as well as superior methanol resistance. Particularly, ZABs with Co-NrGO-SACs deliver remarkable power density (≈240 mW cm-2), super durability of over 233 h at 5 mA cm-2, outperforming noble-metal-based benchmarks. This work provides an effective noble-metal free carbon-based SAC nano-engineering for superdurable ZABs.
Collapse
Affiliation(s)
- Jiaxin Zou
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Lishi Bao
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Qifeng Sun
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Chenguang Bao
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Advanced Carbon Materials Research Institute in Hunan Province, Changsha, Hunan, 410082, China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Advanced Carbon Materials Research Institute in Hunan Province, Changsha, Hunan, 410082, China
| |
Collapse
|
5
|
Li Z, Liu H, Wang YH, Ji S, Zhang Y, Liu Y, Lu X, Teng H, Horton JH, Wang Y, Ma X, Tang YJ. Electronic Structure Modulation Induced by the Synergy of Cobalt Low-Nuclearity Clusters and Mononuclear Sites for Efficient Oxygen Electrocatalysis. ACS NANO 2025; 19:1600-1610. [PMID: 39727208 DOI: 10.1021/acsnano.4c15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The development of high-performance bifunctional single-atom catalysts for use in applications, such as zinc-air batteries, is greatly impeded by mild oxygen reduction and evolution reactions (ORR and OER). Herein, we report a bifunctional oxygen electrocatalyst designed to overcome these limitations. The catalyst consists of well-dispersed low-nuclearity Co clusters and adjacent Co single atoms over a nitrogen-doped carbon matrix (CoSA+C/NC). The precisely tailored asymmetric electronic structures are achieved with strong electronic interactions between these Co species. The Co clusters optimize the adsorption/desorption strength of oxygenated intermediates on single-atomic Co sites to endow exceptional activity under alkaline conditions with a half-wave potential (E1/2) of 0.91 V and an overpotential (η) of 340 mV at 10 mA cm-2. In addition, a zinc-air battery assembled with CoSA+C/NC achieves a high power density of 284.1 mW cm-2 and a long operational lifespan of 400 h, superior to those of the benchmark Pt/C + RuO2. Experimental findings and theoretical analysis reveal that the enhanced bifunctional activity stems from the synergistic interactions between Co clusters and single-atomic Co sites. Consequently, the overbinding of *OH is suppressed with accelerated *OH removal. This work establishes the design principle of advanced electrocatalysts with multiphase metal species bearing strong electronic interactions.
Collapse
Affiliation(s)
- Zhijun Li
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Hongxue Liu
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Yu-Hao Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Siqi Ji
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Yuqi Zhang
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Yuesong Liu
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, PR China
| | - Xue Lu
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Huiya Teng
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - J Hugh Horton
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xinzhi Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| |
Collapse
|
6
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
7
|
Song CY, Huang CJ, Xu HM, Zhang ZJ, Shuai TY, Zhan QN, Li GR. High-Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries: Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402761. [PMID: 38953299 DOI: 10.1002/smll.202402761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.
Collapse
Affiliation(s)
- Chen-Yu Song
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
9
|
Luo G, Song M, Zhang Q, An L, Shen T, Wang S, Hu H, Huang X, Wang D. Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters. NANO-MICRO LETTERS 2024; 16:241. [PMID: 38980634 PMCID: PMC11233490 DOI: 10.1007/s40820-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts. Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance, simultaneously provide a radical analysis of the interrelationship between structure and activity. In this review, the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized. Firstly, the synthetic strategies, characterization, dynamics and types of single atoms coupled with clusters/nanoparticles are introduced, and then the key factors controlling the structure of the composite catalysts are discussed. Next, several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated. Eventually, the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.
Collapse
Affiliation(s)
- Guanyu Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hanyu Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
10
|
Zhang S, Tao Z, Xu M, Kan L, Guo C, Liu J, He L, Du M, Zhang Z. Single-Atom Co─O 4 Sites Embedded in a Defective-Rich Porous Carbon Layer for Efficient H 2O 2 Electrosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310468. [PMID: 38213023 DOI: 10.1002/smll.202310468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The production of hydrogen peroxide (H2O2) via the two-electron electrochemical oxygen reduction reaction (2e- ORR) is an essential alteration in the current anthraquinone-based method. Herein, a single-atom Co─O4 electrocatalyst is embedded in a defective and porous graphene-like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e- ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface-sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d-band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H-cell and flow cell assembled using Co─O4@PC as the cathode present long-term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g-1 cat h-1 at 0.6 V can be obtained by the flow cell. The in situ-generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Zheng Tao
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Mingyang Xu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Lun Kan
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Jiameng Liu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Linghao He
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Shi H, Gao S, Liu X, Wang Y, Zhou S, Liu Q, Zhang L, Hu G. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309557. [PMID: 38705855 DOI: 10.1002/smll.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Indexed: 05/07/2024]
Abstract
This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.
Collapse
Affiliation(s)
- Haiyang Shi
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Sanshuang Gao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Yin Wang
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Lei Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
12
|
Lu T, Sun Q, He J, Li R, Huang C. In situ Construction of Multistage Core-Shell Nanostructure as Bifunctional Catalyst for Ultrastable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309255. [PMID: 38148298 DOI: 10.1002/smll.202309255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Many efforts have been devoted to obtaining excellent cathode catalysts for Zinc air batteries (ZABs), but the inevitable use of binder will damage the catalytic activity and weaken long-term stability, inefficient mass transfer of oxygen is also chargable for the limited activity. Herein, in situ grown hydrogen substituted graphdiyne (HGDY) on carbon paper has been prepared and used as cathode catalyst layer in ZABs. Multiple catalytic sites are firmly combined and end with the boosted bifunctional catalytic activity of oxygen reduction and oxygen evolution. Moreover, the specific surface area, sufficient active sites, multilevel pore nanostructure and robust conductivity are fully exposed to establish efficient catalytic interface and skeleton. Cu/Co nanoparticles are uniformly distributed and warped by HGDY network, which can stably exist during the catalytic process. As a result, a current density of 18.75 mA cm-2 and a Tafel slope of 61.06 mV dec-1 for oxygen reduction and a ultralong operation for more than 2300 h in aqueous ZAB have been achieved, which is beyond many reported bifunctional catalysts in ZAB system.
Collapse
Affiliation(s)
- Tiantian Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Quanhu Sun
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University, Shanghai, 200092, China
| | - Jianjiang He
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ru Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Huang H, Deng L, Zhang L, Zhang Q, Ren X, Li Y. Well-dispersed Pt/Nb 2O 5on zeolitic imidazolate framework derived nitrogen-doped carbon for efficient oxygen reduction reaction. NANOTECHNOLOGY 2024; 35:295401. [PMID: 38593763 DOI: 10.1088/1361-6528/ad3c4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
In this work, an advanced hybrid material was constructed by incorporating niobium pentoxide (Nb2O5) nanocrystals with nitrogen-doped carbon (NC) derived from ZIF-8 dodecahedrons, serving as a support, referred to as Nb2O5/NC. Pt nanocrystals were dispersed onto Nb2O5/NC using a simple impregnation reduction method. The obtained Pt/Nb2O5/NC electrocatalyst showed high oxygen reduction reaction (ORR) activity due to three-phase mutual contacting structure with well-dispersed Pt and Nb2O5NPs. In addition, the conductive NC benefits electron transfer, while the induced Nb2O5can regulate the electronic structure of Pt element and anchor Pt nanocrystals, thereby enhancing the ORR activity and stability. The half-wave potential (E1/2) for Pt/Nb2O5/NC is 0.886 V, which is higher than that of Pt/NC (E1/2= 0.826 V). The stability examinations demonstrated that Pt/Nb2O5/NC exhibited higher electrocatalytic durability than Pt/NC. Our work provides a new direction for synthesis and structural design of precious metal/oxides hybrid electrocatalysts.
Collapse
Affiliation(s)
- Hongying Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
14
|
Allwyn N, Gokulnath S, Sathish M. In-Situ Nanoarchitectonics of Fe/Co LDH over Cobalt-Enriched N-Doped Carbon Cookies as Facile Oxygen Redox Electrocatalysts for High-Rate Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38619401 DOI: 10.1021/acsami.3c19483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The reality of long-term rechargeable and high-performance zinc-air batteries relies majorly on cost-effective and eminent bifunctional electrocatalysts, which can perform both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Herein, we demonstrate a new approach for the synthesis of in-situ-grown layered double hydroxide of iron and cobalt over a cobalt nanoparticle-enriched nitrogen-doped carbon frame (CoL 2:1) by a simple coprecipitation reaction with facile scale-up and explore its electrocatalytic ORR and OER activity for an electrically rechargeable zinc-air battery. Consequently, the developed composite displays excellent ORR and OER activity with an ORR half-wave potential of 0.84 V, a limiting current density of 5.85 mA/cm2, and an OER overpotential of 320 mV with exceptional stability. The outstanding bifunctionality index of the catalyst (ΔE = 0.72 V) inspired us to utilize it as a cathode catalyst in an in-house developed prototype zinc-air battery. The battery could easily supply a specific capacity of 804 mAh/g with a maximum peak power density of 161 mW/cm2. The battery exhibits an attractive charge-discharge profile with a lesser voltage gap of 0.76 V at 10 mA/cm2 with durability for a period of 200 h and a voltage efficiency of 97%, which surpassed the corresponding Pt/C + RuO2-based zinc-air battery. Further, a maximum load of 50 mA/cm2 could easily be sustained during cycling, revealing its outstanding stability. A series-connected two CoL 2:1-based zinc-air batteries effortlessly enlighten a pinwheel fan and LED panel simultaneously, revealing its practicality. The high electrical conductivity and greater specific surface area of Co/N-C and its robust attachment with Fe/Co LDH preserves both active sites, thereby resulting in exceptional performance. Our method is capable of being flexible enough to create various bifunctional Co/N-C-based composite electrodes, opening up a feasible pathway to rechargeable zinc-air batteries with maximum energy density.
Collapse
Affiliation(s)
- Nadar Allwyn
- Electrochemical Power Sources Division, CSIR-CECRI, Karaikudi 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subramaniam Gokulnath
- Electrochemical Power Sources Division, CSIR-CECRI, Karaikudi 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Marappan Sathish
- Electrochemical Power Sources Division, CSIR-CECRI, Karaikudi 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Pei Z, Zhang H, Guo Y, Luan D, Gu X, Lou XWD. Atomically Dispersed Fe Sites Regulated by Adjacent Single Co Atoms Anchored on N-P Co-Doped Carbon Structures for Highly Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306047. [PMID: 37496431 DOI: 10.1002/adma.202306047] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Manipulating the coordination environment and electron distribution for heterogeneous catalysts at the atomic level is an effective strategy to improve electrocatalytic performance but remains challenging. Herein, atomically dispersed Fe and Co anchored on nitrogen, phosphorus co-doped carbon hollow nanorod structures (FeCo-NPC) are rationally designed and synthesized. The as-prepared FeCo-NPC catalyst exhibits significantly boosted electrocatalytic kinetics and greatly upshifts the half-wave potential for the oxygen reduction reaction. Furthermore, when utilized as the cathode, the FeCo-NPC catalyst also displays excellent zinc-air battery performance. Experimental and theoretical results demonstrate that the introduction of single Co atoms with Co-N/P coordination around isolated Fe atoms induces asymmetric electron distribution, resulting in the suitable adsorption/desorption ability for oxygen intermediates and the optimized reaction barrier, thereby improving the electrocatalytic activity.
Collapse
Affiliation(s)
- Zhihao Pei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
16
|
Zhao Y, Guo X, Sun H, Tao L. Recent Advances in Flexible Wearable Technology: From Textile Fibers to Devices. CHEM REC 2024; 24:e202300361. [PMID: 38362667 DOI: 10.1002/tcr.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Smart textile fabrics have been widely investigated and used in flexible wearable electronics because of their unique structure, flexibility and breathability, which are highly desirable with integrated multifunctionality. Recent years have witnessed the rapid development of textile fiber-based flexible wearable devices. However, the pristine textile fibers still can't meet the high standards for practical flexible wearable devices, which calls for the development of some effective modification strategies. In this review, we summarize the recent advances in the flexible wearable devices based on the textile fibers, putting special emphasis on the design and modifications of textile fibers. In addition, the applications of textile fibers in various fields and the critical role of textile fibers are also systematically discussed, which include the supercapacitors, sensors, triboelectric nanogenerators, thermoelectrics, and other self-powered electronic devices. Finally, the main challenges that should be overcome and some effective solutions are also manifested, which will guide the future development of more effective textile fiber-based flexible wearable devices.
Collapse
Affiliation(s)
- Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
- Jiangsu Key Laboratory of High Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Jiangsu Province, Changzhou, 213164, China
- Jiangsu Ruilante New Materials Co., Ltd., Jiangsu Province, YangZhou, 211400, China
| | - Xuefeng Guo
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
| | - Hong Sun
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
| | - Lei Tao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
- Jiangsu Ruilante New Materials Co., Ltd., Jiangsu Province, YangZhou, 211400, China
| |
Collapse
|
17
|
He Y, Tan P. "Bubble-Diode" Breathable Electrodes for Fast Gas Transport. Chemistry 2024; 30:e202303477. [PMID: 38091241 DOI: 10.1002/chem.202303477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/04/2024]
Abstract
Bubbles arising from wild gas evolution commonly exist in electrochemical systems, particularly in water electrolysis and rechargeable aqueous batteries (e. g., Zn-air batteries). Substantial energy dissipation occurs due to the obstruction of active sites and ion-conducting pathways by evolving bubbles. Efforts are made to elucidate effective strategies for fast gas transport, most of which focus on minimizing bubble size and facilitating their timely detachment through complex techniques such as constructing super-hydrophilic nano-structure electrodes, flowing electrolytes, and ultrasonic oscillation. Recently, an innovative, facile, and highly efficient method utilizing a breathable electrode design to promote gaseous molecules to the external environment emerges as a promising approach since it avoids remarkable bubble accumulation while remaining free of additional accessories. This paper highlights the origin and evolution of this promising design. Starting with introducing the basic concept of traditional breathable electrodes based on hydrophobic polymer networks and discussing the current progress made in underlying mechanisms, a detailed description of the advanced design inspired by a "bubble-diode" concept with superior breathability follows. This Concept aims to contribute to a deep understanding of this technology and paves the way for further advancements in this renewable energy era.
Collapse
Affiliation(s)
- Yi He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui, China
| | - Peng Tan
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui, China
| |
Collapse
|
18
|
Li L, Xu J, Zhu Q, Meng X, Xu H, Han M. Non-noble metal single-atoms for oxygen electrocatalysis in rechargeable zinc-air batteries: recent developments and future perspectives. Dalton Trans 2024; 53:1915-1934. [PMID: 38192245 DOI: 10.1039/d3dt03249c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Ever-growing demands for zinc-air batteries (ZABs) call for the development of advanced electrocatalysts. Single-atom catalysts (SACs), particularly those for isolating non-noble metals (NBMs), are attracting great interest due to their merits of low cost, high atom utilization efficiency, structural tunability, and extraordinary activity. Rational design of advanced NBM SACs relies heavily on an in-depth understanding of reaction mechanisms. To gain a better understanding of the reaction mechanisms of oxygen electrocatalysis in ZABs and guide the design and optimization of more efficient NBM SACs, we herein organize a comprehensive review by summarizing the fundamental concepts in the field of ZABs and the recent advances in the reported NBM SACs. Moreover, the selection of NBM elements and supports of SACs and some effective strategies for enhancing the electrochemical performance of ZABs are illustrated in detail. Finally, the challenges and future direction in this field of ZABs are also discussed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Jixing Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Xiangjun Meng
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Hongliang Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| |
Collapse
|
19
|
Zhao S, Huang F. Weakly Solvating Few-Layer-Carbon Interface toward High Initial Coulombic Efficiency and Cyclability Hard Carbon Anodes. ACS NANO 2024; 18:1733-1743. [PMID: 38175544 DOI: 10.1021/acsnano.3c11171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The carbonaceous anodes in sodium ion batteries suffer from low initial Coulombic efficiency (ICE) and poor cyclability due to rampant solid electrolyte interface (SEI) growth. The concept of the weakly solvating electrolyte (WSE) has been popularized for SEI regulation on the anode by adjusting the cation solvation structure. Nevertheless, the effects on the solvation sheath from the electrode/electrolyte interface are ignored in most WSE applications. In this work, we extend the WSE from the bulk electrolyte to the electrolyte/carbon interface. By recycling asphalt wastes into sp2 C enriched few-layer carbon on hard carbon, a weakly solvating interface is fabricated with lower adsorption energy to electrolyte solvent molecules than a pristine anode (-0.89 vs -1.08 eV for Na/diglyme). Accordingly, more anionic groups are attracted into the solvent-weakened solvation sheath during sodiation (2.30 vs 1.96 coordination number for PF6-). The anion-mediated contact ion pairs facilitate a thin, inorganic-rich SEI layer with a homogeneous distribution, which confers a high ICE of 97.9% and a high capacity of 335.6 mA h g-1 at 1 C (89.5% retention, 1000 cycles). The full battery also manifests an energy density of 209 W h kg-1. This interfacial design is applicable in both ether- and ester-based electrolytes, which is promising in cost-effective modification for carbonaceous electrodes.
Collapse
Affiliation(s)
- Siwei Zhao
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, China
| |
Collapse
|
20
|
Park MG, Hwang J, Deng YP, Lee DU, Fu J, Hu Y, Jang MJ, Choi SM, Feng R, Jiang G, Qian L, Ma Q, Yang L, Jun YS, Seo MH, Bai Z, Chen Z. Longevous Cycling of Rechargeable Zn-Air Battery Enabled by "Raisin-Bread" Cobalt Oxynitride/Porous Carbon Hybrid Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311105. [PMID: 38085968 DOI: 10.1002/adma.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 12/20/2023]
Abstract
Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel. Based on synchrotron-based characterizations, this hybrid provides oxygen vacancies and Co-Nx -C sites as the active sites, resulting from a strong coupling between CoOx Ny nanoparticles and 3D conductive carbon scaffolds. Compared to the oxide reference, it performs enhanced stability in harsh electrocatalytic environments, highlighting the benefits of the oxynitride. Furthermore, the 3D conductive scaffolds improve charge/mass transportation and boost durability of these active sites. Density functional theory calculations reveal that the introduced N species into hybrid can synergistically tune the d-band center of cobalt and improve its bifunctional activity. As a result, the obtained air cathode exhibits bifunctional overpotential of 0.65 V and a battery lifetime exceeding 1350 h, which sets a new record for rechargeable Zn-air battery reported so far.
Collapse
Affiliation(s)
- Moon Gyu Park
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jeemin Hwang
- Fuel Cell Research & Demonstration Center, Hydrogen Energy Research Division, Korea Institute of Energy Research (KIER), Buan-gun, 56332, Republic of Korea
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dong Un Lee
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jing Fu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 0×4, Canada
| | - Myeong Je Jang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sung Mook Choi
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Renfei Feng
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 0×4, Canada
| | - Gaopeng Jiang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lanting Qian
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
| | - Yun Seok Jun
- College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Min Ho Seo
- College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
21
|
Feng YS, Li YN, Wang P, Guo ZP, Cao FF, Ye H. Work-Function-Induced Interfacial Electron/Ion Transport in Carbon Hosts toward Dendrite-Free Lithium Metal Anodes. Angew Chem Int Ed Engl 2023; 62:e202310132. [PMID: 37713281 DOI: 10.1002/anie.202310132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Coupled electron/ion transport is a decisive feature of Li plating/stripping, wherein the compatibility of electron/ion transport rates determines the morphology of deposited Li. Local Li+ hotspots form due to inhomogeneous interfacial charge transfer and lead to uncontrolled Li deposition, which decreases the Li utilization rate and safety of Li metal anodes. Herein, we report a method to obtain dendrite-free Li metal anodes by driving electron pumping and accumulating and boosting Li ion diffusion by tuning the work function of a carbon host using cobalt-containing catalysts. The results reveal that increasing the work function provides an electron deviation from C to Co, and electron-rich Co shows favorable binding to Li+ . The Co catalysts boost Li+ diffusion on the carbon fiber scaffolds without local aggregation by reducing the Li+ migration barrier. The as-obtained dendrite-free Li metal anode exhibits a Coulombic efficiency of 99.0 %, a cycle life of over 2000 h, a Li utilization rate of 50 %, and a capacity retention of 83.4 % after 130 cycles in pouch cells at a negative/positive capacity ratio of 2.5. These findings provide a novel strategy to stabilize Li metal by regulating the work function of materials using electrocatalysts.
Collapse
Affiliation(s)
- Yu-Shuai Feng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yun-Nuo Li
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Pei Wang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zai-Ping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Fei-Fei Cao
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huan Ye
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
22
|
Luo Y, Wen M, Zhou J, Wu Q, Wei G, Fu Y. Highly-Exposed Co-CoO Derived from Nanosized ZIF-67 on N-Doped Porous Carbon Foam as Efficient Electrocatalyst for Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302925. [PMID: 37356070 DOI: 10.1002/smll.202302925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Non-precious-metal based electrocatalysts with highly-exposed and well-dispersed active sites are crucially needed to achieve superior electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) toward zinc-air battery (ZAB). Herein, Co-CoO heterostructures derived from nanosized ZIF-67 are densely-exposed and strongly-immobilized onto N-doped porous carbon foam (NPCF) through a self-sacrificial pyrolysis strategy. Benefited from the high exposure of Co-CoO heterostructures and the favorable mass and electron transfer ability of NPCF, the Co-CoO/NPCF electrocatalyst exhibits remarkable performance for both ORR (E1/2 = 0.843 V vs RHE) and OER (Ej = 10 mA cm-2 = 1.586 V vs RHE). Further application of Co-CoO/NPCF as the air-cathode in rechargeable ZAB achieves superior performance for liquid-state ZAB (214.1 mW cm-2 and 600 cycles) and flexible all-solid-state ZAB (93.1 mW cm-2 and 140 cycles). Results from DFT calculations demonstrate that the electronic metal-support interactions between Co-CoO and NPCF via abundant C-Nx sites is favorable for electronic structure modulation, accounting for the remarkable performance.
Collapse
Affiliation(s)
- Yixing Luo
- School of Chemical Science and Engineering, The State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Ming Wen
- School of Chemical Science and Engineering, The State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Jian Zhou
- School of Chemical Science and Engineering, The State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, The State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Guangfeng Wei
- School of Chemical Science and Engineering, The State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE99, UK
| |
Collapse
|
23
|
Tang Z, Xu L, Xie C, Guo L, Zhang L, Guo S, Peng J. Synthesis of CuCo 2S 4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat Commun 2023; 14:5951. [PMID: 37741860 PMCID: PMC10517935 DOI: 10.1038/s41467-023-41697-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023] Open
Abstract
The remarkable advantages of heterointerface and defect engineering and their unique electromagnetic characteristics inject infinite vitality into the design of advanced carbon-matrix electromagnetic wave absorbers. However, understanding the interface and dipole effects based on microscopic and macroscopic perspectives, rather than semi-empirical rules, can facilitate the design of heterointerfaces and defects to adjust the impedance matching and electromagnetic wave absorption of the material, which is currently lacking. Herein, CuCo2S4@Expanded Graphite heterostructure with multiple heterointerfaces and cation defects are reported, and the morphology, interfaces and defects of component are regulated by varying the concentration of metal ions. The results show that the 3D flower-honeycomb morphology, the crystal-crystal/amorphous heterointerfaces and the abundant cation defects can effectively adjust the conductive and polarization losses, achieve the impedance matching balance of carbon materials, and improve the absorption of electromagnetic wave. For the sample CEG-6, the effective absorption of Ku band with RLmin of -72.28 dB and effective absorption bandwidth of 4.14 GHz is realized at 1.4 mm, while the filler loading is only 7.0 wt. %. This article reports on the establishment of potential relationship between crystal-crystal/amorphous heterointerfaces, cation defects, and the impedance matching of carbon materials.
Collapse
Affiliation(s)
- Zhimeng Tang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Lei Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China.
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China.
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, 650093, PR China.
| | - Cheng Xie
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Lirong Guo
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Shenghui Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Jinhui Peng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China.
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China.
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, 650093, PR China.
| |
Collapse
|
24
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
25
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
26
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
27
|
Zhang W, Zheng J, Wang R, Huang L, Wang J, Zhang T, Liu X. Water-Trapping Single-Atom Co-N 4 /Graphene Triggering Direct 4e - LiOH Chemistry for Rechargeable Aprotic Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301391. [PMID: 37086134 DOI: 10.1002/smll.202301391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Lithium-oxygen (Li-O2 ) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2 O2 , LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li-O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e- electrochemical reactions. Here, a metal organic framework-derived "water-trapping" single-atom-Co-N4 /graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e- catalytic reaction of LiOH in the aprotic Li-O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e- formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2 O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li-O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g-1 . Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li-O2 batteries.
Collapse
Affiliation(s)
- Wenjing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruoyu Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Huang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junkai Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianran Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
28
|
Hu H, Zhang P, Xiao BB, Mi JL. Substrate Strain Engineering of Single-Atomic Sn-N 4 Sites Embedded in Various Carbon Matrixes for Bifunctional Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23170-23184. [PMID: 37141049 DOI: 10.1021/acsami.3c02232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It is still a great challenge to design and synthesize high-efficiency and low-cost single-atom catalysts (SACs) as promising bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Herein, theoretical insights into Sn-N4 embedded carbon nanotubes, graphene quantum dots, and graphene nanosheets (denoted as Sn-N4-CNTs, Sn-N4-GQDs, and Sn-N4-Gra, respectively) for the ORR/OER are systematically provided. These results show that the protruding Sn atom creates a Sn-N4 pyramid and induces varied strain transfer between Sn-N4 and different carbon substrates prior to adsorption of O intermediates, resulting in the opposite response of the adsorption strengths of O intermediates to the substrate curvature of Sn-N4-CNTs and Sn-N4-GQDs. The torsional strain induced by OH* and OOH* on the Sn atom of Sn-N4-CNTs breaks the scaling relations between the adsorption strengths of O intermediates. Consequently, Sn-N4-CNTs with suitable curvature achieve outstanding ORR performance with very low overpotentials (0.28 V). Furthermore, the increase of curvature boosts the OER activity of Sn-N4-CNTs. For Sn-N4-GQDs, high curvature contributes to promoted OER activity but reduced ORR activity. The electronic interactions reveal the electron transfer from the s/p-bands of Sn to the half-filled β states of the frontier orbitals of O intermediates.
Collapse
Affiliation(s)
- Hao Hu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Bei-Bei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Jian-Li Mi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
29
|
Wang Z, Jin X, Xu R, Yang Z, Ma S, Yan T, Zhu C, Fang J, Liu Y, Hwang SJ, Pan Z, Fan HJ. Cooperation between Dual Metal Atoms and Nanoclusters Enhances Activity and Stability for Oxygen Reduction and Evolution. ACS NANO 2023; 17:8622-8633. [PMID: 37129379 DOI: 10.1021/acsnano.3c01287] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have achieved the synthesis of dual-metal single atoms and atomic clusters that co-anchor on a highly graphitic carbon support. The catalyst comprises Ni4 (and Fe4) nanoclusters located adjacent to the corresponding NiN4 (and FeN4) single-atom sites, which is verified by systematic X-ray absorption characterization and density functional theory calculations. A distinct cooperation between Fe4 (Ni4) nanoclusters and the corresponding FeN4 (NiN4) atomic sites optimizes the adsorption energy of reaction intermediates and reduces the energy barrier of the potential-determining steps. This catalyst exhibits enhanced oxygen reduction and evolution activity and long-cycle stability compared to counterparts without nanoclusters and commercial Pt/C. The fabricated Zn-air batteries deliver a high power density and long-term cyclability, demonstrating their prospects in energy storage device applications.
Collapse
Affiliation(s)
- Zhe Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ruojie Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhenbei Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shidong Ma
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, China
| | - Jian Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhijuan Pan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
30
|
Diao L, Zhou W, Zhang B, Shi C, Miao Z, Zhou J, He C. NaCl sealing Strategy-Assisted synthesis CoO-Co heterojunctions as efficient oxygen electrocatalysts for Zn air batteries. J Colloid Interface Sci 2023; 645:329-337. [PMID: 37150006 DOI: 10.1016/j.jcis.2023.04.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Developing highly efficient, low-cost, and stable bifunctional oxygen electrocatalysts is essential for the wide popularization of rechargeable Zn-air batteries. Combining zero-dimensional metal nanoparticles with two-dimensional metal oxide nanosheets is an appealing strategy to balance performance and cost. However, the precise construction of these composites remains a great challenge, and their interaction mechanisms lack thorough study. Herein, a cobalt-oxide-based bifunctional oxygen electrocatalyst comprising a rich Co-CoO heterointerface (CoO/Co@NG) was synthesized via a NaCl sealing-assisted pyrolysis strategy. The NaCl crystals played the role of a closed nanoreactor, which facilitated the formation of a CoO-Co heterojunction. Experimental results and theoretical calculations confirmed that the ingeniously constructed heterojunction expedited the oxygen reduction reaction and oxygen evolution reaction kinetics, which is superior to Pt/C. When serving as the air electrode in an assembled liquid-state Zn-air battery, the battery shows high power density (215 mW cm-2), specific capacity (710 mAh gzn-1), and outstanding durability (720 h at 10 mA cm-2). This work provides an innovative avenue to design high-performance heterojunction electrocatalysts for perdurable Zn-air batteries.
Collapse
Affiliation(s)
- Lechen Diao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, PR China
| | - Wei Zhou
- Department of Physics, School of Science, Tianjin University, Tianjin 300350, PR China.
| | - Biao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunsheng Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, PR China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| |
Collapse
|
31
|
Zhou Q, Zhang S, Zhou G, Pang H, Zhang M, Xu L, Sun K, Tang Y, Huang K. Interfacial Engineering of CoN/Co 3 O 4 Heterostructured Hollow Nanoparticles Embedded in N-Doped Carbon Nanowires as a Bifunctional Oxygen Electrocatalyst for Rechargeable Liquid and Flexible all-Solid-State Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301324. [PMID: 37005337 DOI: 10.1002/smll.202301324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The design of economical, efficient, and robust bifunctional oxygen electrocatalysts is greatly imperative for the large-scale commercialization of rechargeable Zn-air battery (ZAB) technology. Herein, the neoteric design of an advanced bifunctional electrocatalyst composed of CoN/Co3 O4 heterojunction hollow nanoparticles in situ encapsulated in porous N-doped carbon nanowires (denoted as CoN/Co3 O4 HNPs@NCNWs hereafter) is reported. The simultaneous implementation of interfacial engineering, nanoscale hollowing design, and carbon-support hybridization renders the synthesized CoN/Co3 O4 HNPs@NCNWs with modified electronic structure, improved electric conductivity, enriched active sites, and shortened electron/reactant transport pathways. Density functional theory computations further demonstrate that the construction of a CoN/Co3 O4 heterojunction can optimize the reaction pathways and reduce the overall reaction barriers. Thanks to the composition and architectural superiorities, the CoN/Co3 O4 HNPs@NCNWs exhibit distinguished oxygen reduction reaction and oxygen evolution reaction performance with a low reversible overpotential of 0.725 V and outstanding stability in KOH medium. More encouragingly, the homemade rechargeable liquid and flexible all-solid-state ZABs utilizing CoN/Co3 O4 HNPs@NCNWs as the air-cathode deliver higher peak power densities, larger specific capacities, and robust cycling stability, exceeding the commercial Pt/C + RuO2 benchmark counterparts. The concept of heterostructure-induced electronic modification herein may shed light on the rational design of advanced electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Qixing Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Sike Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guangyao Zhou
- College of Science, Jinling Institute ofTechnology, Nanjing, 211169, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
32
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|
33
|
Liu N, Liang Z, Yang F, Wang X, Zhong J, Gui X, Yang G, Zeng Z, Yu D. Flexible Solid-State Metal-Air Batteries: The Booming of Portable Energy Supplies. CHEMSUSCHEM 2023; 16:e202202192. [PMID: 36567256 DOI: 10.1002/cssc.202202192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rapid development of portable and wearable electronics has given rise to new challenges and provoked research in flexible, lightweight, and affordable energy storage devices. Flexible solid-state metal-air batteries (FSSMABs) are considered promising candidates, owing to their large energy density, mechanical flexibility, and durability. However, the practical applications of FSSMABs require further improvement to meet the demands of long-term stability, high power density, and large operating voltage. This Review presents a detailed discussion of innovative electrocatalysts for the air cathode, followed by a sequential overview of high-performance solid-state electrolytes and metal anodes, and a summary of the current challenges and future perspectives of FSSMABs to promote practical application and large-scale commercialization in the near future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, P. R. China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junjie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
34
|
Dual-atom Co-Fe catalysts for oxygen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
35
|
Ye C, Cheng H, Zheng L, Lin J, Xu Q, Qiu Y, Pan Z, Qiu Y. Tailoring Metal-Oxygen Bonds Boosts Oxygen Reaction Kinetics for High-Performance Zinc-Air Batteries. NANO LETTERS 2023; 23:1573-1581. [PMID: 36724081 DOI: 10.1021/acs.nanolett.3c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-oxygen bonds significantly affect the oxygen reaction kinetics of metal oxide-based catalysts but still face the bottlenecks of limited cognition and insufficient regulation. Herein, we develop a unique strategy to accurately tailor metal-oxygen bond structure via amorphous/crystalline heterojunction realized by ion-exchange. Compared with pristine amorphous CoSnO3-y, iron ion-exchange induced amorphous/crystalline structure strengthens the Sn-O bond, weakens the Co-O bond strength, and introduces additional Fe-O bond, accompanied by abundant cobalt defects and optimal oxygen defects with larger pore structure and specific surface area. The optimization of metal-oxygen bond structure is dominated by the introduction of crystal structure and further promoted by the introduction of Fe-O bond and rich Co defect. Remarkably, the Fe doped amorphous/crystalline catalyst (Co1-xSnO3-y-Fe0.021-A/C) demonstrates excellent oxygen evolution reaction and oxygen reduction reaction activities with a smaller potential gap (ΔE = 0.687 V), and the Zn-air battery based with Co1-xSnO3-y-Fe0.021-A/C exhibits excellent output power density, cycle performance, and flexibility.
Collapse
Affiliation(s)
- Changchun Ye
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| | - Hongfei Cheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jiajin Lin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| | - Qingshuai Xu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan523808, Guangdong, P. R. China
| | - Zhenghui Pan
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510000, Guangdong, P. R. China
| |
Collapse
|
36
|
Guo J, Li W, Xu Y, Mao Y, Mei Z, Li H, He Y, San X, Xu K, Liang X. Ionic Covalent Organic Frameworks-Derived Cobalt Single Atoms and Nanoparticles for Efficient Oxygen Electrocatalysis. SMALL METHODS 2023; 7:e2201371. [PMID: 36585369 DOI: 10.1002/smtd.202201371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Metal single atoms show outstanding electrocatalytic activity owing to the abundant atomic reactive sites and superior stability. However, the preparation of single atoms suffers from inexorable metal aggregation which is harmful to electrocatalytic activity. Here, ionic covalent organic frameworks (iCOFs) are employed as the sacrificial precursor to mitigate the metal aggregation and subsequent formation of bulky particles. Molecular dynamics simulation shows that iCOFs can trap and confine more Co ions as compared to neutral COFs, resulting in the formation of a catalyst composed of Co single atoms and uniformly distributed Co nanoparticles (CoSA &CoNP-10 ). However, the neutral COFs derive a catalyst composed of Co atomic clusters and large Co nanoparticles (CoAC &CoNP-25 ). The CoSA &CoNP-10 catalyst exhibits higher oxygen bifunctional electrocatalytic activities than CoAC &CoNP-25 , coinciding with the density functional theory results. Taking the CoSA &CoNP-10 as the air cathode in Zn-air batteries (ZABs), the aqueous ZAB presents a high power density of 181 mW cm-2 , a specific capacity of 811 mAh g-1 as well as a long cycle life of 407 h at a current density of 10 mA cm-2 , while the quasi-solid state ZAB displays a power density of 179 mW cm-2 and the cycle life of 30 h.
Collapse
Affiliation(s)
- Jiaming Guo
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Wenqiong Li
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Yuncun Xu
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Yanqi Mao
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Zhiwei Mei
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Haihan Li
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Yun He
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Xingyuan San
- Hebei Key Laboratory of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Kui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaoguang Liang
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
37
|
Yang Q, Liu R, Pan Y, Cao Z, Zuo J, Qiu F, Yu J, Song H, Ye Z, Zhang S. Ultrahigh-Loaded Fe Single Atoms and Fe 3C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5720-5731. [PMID: 36662519 DOI: 10.1021/acsami.2c21751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fe-based materials containing Fe-Nx sites have emerged as promising electrocatalysts in the oxygen reduction reaction (ORR), but they still suffer structural instability which may lead to loss of catalytic activity. Herein, a novel electrocatalyst Fe3C-FeSA@3DCN with the coexistence of Fe3C nanoparticles and Fe single atoms (FeSA) in a three-dimensional conductive network (3DCN) is prepared via lattice confinement and defect trapping strategies with an Fe atomic loading of as high as 4.36%. In the ORR process, the limiting current density of Fe3C-FeSA@3DCN reaches 5.72 mA cm-2, with an onset potential of 0.926 V and a Tafel slope of 66 mV/decade, showing better catalytic activity and stability than Pt/C catalysts. Notably, its assembled aqueous and solid-state Zn-air batteries (ZABs) achieve peak power densities of 166 and 56 mW cm-2, respectively, with a long service life of up to 200 h at a current density of 5 mA cm-2. In addition, the assembled ZAB can provide a constant voltage on activated carbon electrodes to perform capacitive deionization to adsorb different ions. The importance of the Fe species active sites generated by Fe3C and FeSA in the material for ORR activity to boost the electron transfer and mass transfer is demonstrated by a simple selective poisoning experiment.
Collapse
Affiliation(s)
- Qi Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Rumeng Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yanan Pan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zheng Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiabao Zuo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fan Qiu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jian Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing 210097, PR China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
38
|
Chen Y, Qiao S, Tang Y, Du Y, Zhang D, Wang W, Zhang H, Sun X, Liu C. Double-Faced Atomic-Level Engineering of Hollow Carbon Nanofibers as Free-Standing Bifunctional Oxygen Electrocatalysts for Flexible Zn-Air Battery. ACS NANO 2022; 16:15273-15285. [PMID: 36075101 DOI: 10.1021/acsnano.2c06700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible solid-state zinc-air batteries (ZABs) with low cost, excellent safety, and high energy density has been considered as one of ideal power sources for portable and wearable electronic devices, while their practical applications are still hindered by the kinetically sluggish cathodic oxygen reduction and oxygen evolution reactions (ORR/OER). Herein, a Janus-structured flexible free-standing bifunctional oxygen electrocatalyst, with OER-active O, N co-coordinated Ni single atoms and ORR-active Co3O4@Co1-xS nanosheet arrays being separately integrated at the inner and outer walls of flexible hollow carbon nanofibers (Ni-SAs/HCNFs/Co-NAs), is reported. Benefiting from the sophisticated topological structure and atomic-level-designed chemical compositions, Ni-SAs/HCNFs/Co-NAs exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V, representing the current state-of-the-art flexible free-standing bifunctional ORR/OER electrocatalyst. Impressively, the Ni-SAs/HCNFs/Co-NAs-based liquid ZAB show a high open-circuit potential (1.45 V), high capacity (808 mAh g-1 Zn), and extremely long life (over 200 h at 10 mA cm-2), and the assembled flexible all-solid-state ZABs have excellent cycle stability (over 80 h). This work provides an efficient strategy for developing high-performance bifunctional ORR/OER electrocatalysts for commercial applications.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Shanshan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yi Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
39
|
Wagh NK, Shinde SS, Lee CH, Kim SH, Kim DH, Um HD, Lee SU, Lee JH. Supramolecular Polymer Intertwined Free-Standing Bifunctional Membrane Catalysts for All-Temperature Flexible Zn-Air Batteries. NANO-MICRO LETTERS 2022; 14:190. [PMID: 36114911 PMCID: PMC9482563 DOI: 10.1007/s40820-022-00927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 05/28/2023]
Abstract
Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability, high efficiency, and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc-air batteries. Here, 3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated (referred to as PEMAC@NDCN) by a facile self-templated approach. PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability, which outperforms those of commercial Pt/C and RuO2. Theoretical calculations and control experiments reveal the boosted electron transfer, electrolyte mass/ion transports, and abundant active surface site preferences. Moreover, the constructed alkaline Zn-air battery with PEMAC@NDCN air-cathode reveals superb power density, capacity, and discharge-charge cycling stability (over 2160 cycles) compared to the reference Pt/C + RuO2. Solid-state Zn-air batteries enable a high power density of 211 mW cm-2, energy density of 1056 Wh kg-1, stable charge-discharge cycling of 2580 cycles for 50 mA cm-2, and wide temperature tolerance from - 40 to 70 °C with retention of 86% capacity compared to room-temperature counterparts, illustrating prospects over harsh operations.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Chi Ho Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Sung-Hae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Dong-Hyung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Han-Don Um
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
40
|
Jiao M, Zhang Q, Ye C, Gao R, Dai L, Zhou G, Cheng HM. Isolating Contiguous Fe Atoms by Forming a Co-Fe Intermetallic Catalyst from Spent Lithium-Ion Batteries to Regulate Activity for Zinc-Air Batteries. ACS NANO 2022; 16:13223-13231. [PMID: 35948069 DOI: 10.1021/acsnano.2c06826] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The recycling of spent lithium-ion batteries (LIBs) has become a necessity for recovering valuable resources and protecting the environment to support sustainable development. We report the design of a highly efficient CoFe/C catalyst by combining the Co and Fe wastes from spent LIBs with sawdust-derived carbon, which were cathode materials in zinc-air batteries (ZABs). As a result of the electrostatic attraction between the Co3+/Fe3+ cations and the hydroxyl groups in sawdust, CoFe nanoparticles are uniformly dispersed in the CoFe/C catalyst after annealing. The Fe atoms in the CoFe nanoparticles are all isolated into single sites by the Co atoms, which redistribute the electrons in the CoFe/C catalyst. The catalyst produced a Pt-like dissociative mechanism, contributing to an excellent oxygen reduction reaction performance. After assembly in ZABs, the CoFe/C catalyst cathode exhibits a long cycling stability of 350 h and an impressive power density of 199.2 mW cm-2. The CoFe/C catalyst cathode has also been used in flexible ZABs to power LEDs or charge a mobile phone. The work combines spent LIBs with sawdust to fabricate high-performance catalysts, which could reduce environmental pollution and realize high economic value.
Collapse
Affiliation(s)
- Miaolun Jiao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qi Zhang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Runhua Gao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lixin Dai
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
41
|
Wang K, Lu Z, Lei J, Liu Z, Li Y, Cao Y. Modulation of Ligand Fields in a Single-Atom Site by the Molten Salt Strategy for Enhanced Oxygen Bifunctional Activity for Zinc-Air Batteries. ACS NANO 2022; 16:11944-11956. [PMID: 35880812 DOI: 10.1021/acsnano.2c01748] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving full utilization of active sites and optimization of the electronic structure of metal centers is the key to improving the intrinsic activity of single-atom catalysts (SACs) but still remains a challenge to date. Herein, a versatile molten salt-assisted pyrolysis strategy was developed to construct ultrathin, porous carbon nanosheets supported Co SACs. Molten salts are capable of inducing the formation of a Co single-atom and porous graphene-like carbon, which facilitates full exposure of the active center and simultaneously endows the Co SACs with abundant defective Co-N4 configurations. The reported Co SACs deliver an excellent bifunctional activity and good stability for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, metal-air batteries (MABs) assembled with the Co SACs as air electrode also deliver excellent performance with high power densities of 160 mW·cm-2, large capacities of 760 mAh·g-1, and superior long-term charge/discharge stability, outperforming those of commercial Pt/C+RuO2. DFT theoretical calculation results show that the defects in the second coordination shell (CS) of Co SACs promote desorption of the OH* intermediate for the ORR and facilitate deprotonation of OH* for the OER, which can serve as the favorable active site for oxygen bifunctional catalysts. Our work provides an efficient strategy for the preparation of SACs with fully exposed active centers and optimized electronic structures.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, PR China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, PR China
| | - Jing Lei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, PR China
| | - Zhaoyang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, PR China
| | - Yizhao Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P.R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, PR China
| |
Collapse
|