1
|
Chen M, Liu B, Ren J, Zhang C, Ren Z, Guan ZH. Stretchable, Ultralong Room-Temperature Phosphorescence Poly(urethane-urea) Elastomer Resistant to Humidity and Heat. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504825. [PMID: 40434194 DOI: 10.1002/adma.202504825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Indexed: 05/29/2025]
Abstract
Polymeric room-temperature phosphorescence (RTP) materials exhibiting facile processability, high thermal stability, and environmental compatibility have garnered considerable attention. However, achieving excellent stretchability in simultaneity with ultralong RTP remains challenging because most RTP polymers rely on rigid structures with inherently poor tensile properties. Herein, a stretchable, ultralong RTP polyurethane is prepared through copolymerizing a novel phosphor dihydroxy-functionalized indolocarbazole, 4,4'-methylenedicyclohexyl diisocyanate (HMDI), poly(tetrahydrofuran) (PTMEG 2000), and adipic dihydrazide (AD). The phosphor is covalently bonded to the polyurethane backbone, which facilitates the stabilization of triplet excitons and achieves ultralong RTP. The obtained copolymers exhibit a maximum strain of 1400% and the longest phosphorescence lifetime of 1888 ms. Additionally, the polyurethanes exhibiting different afterglow colors are prepared by varying the molecular structure of the phosphor. Notably, the RTP polyurethane materials also display resistance to humidity and heat. This work may provide a new option for the development of stretchable, ultralong RTP materials.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science Northwest University, Xi'an, 710127, P. R. China
| | - Bowen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science Northwest University, Xi'an, 710127, P. R. China
| | - Jinping Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science Northwest University, Xi'an, 710127, P. R. China
| | - Chunchao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science Northwest University, Xi'an, 710127, P. R. China
| | - Zhihui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science Northwest University, Xi'an, 710127, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
2
|
Liang YC, Zhang SF, Cao Q, Jiang LY, Jiao YF, Wang Y, Zhang HL, Wang HY, Shan CX, Kuang LM, Jing H, Liu KK. Phosphorescent Elastomer through Carbon Nanodots Microphase Engineering for Diverse Applications. NANO LETTERS 2025; 25:8713-8722. [PMID: 40384215 DOI: 10.1021/acs.nanolett.5c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Stretchable phosphorescent elastomers possess great potential in flexible devices and wearable electronics. However, traditional room-temperature phosphorescent (RTP) materials exhibit poor stretchability, thereby presenting a challenge in reconciling the contradiction between RTP performance and stretchability. Here, we present carbon nanodots (CNDs) microphase engineering strategy that integrates CNDs with rigid microconfinement within a flexible matrix, demonstrating phosphorescent elastomers with high performance. The resultant elastomers exhibit a maximum stretchability of up to 97% and a phosphorescence lifetime of up to 1119 ms. Subsequently, the universality of this approach is further demonstrated by tuning the phosphorescence wavelength across the visible-light range. These elastomers maintain stable optical properties under diverse and complex conditions. Potential applications, including 3D art, anticounterfeiting, and flexible displays, showcase the versatility of this design. This work provides a new pathway for designing stretchable phosphorescent elastomers and expands the application potential of phosphorescent materials.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Si-Fan Zhang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Feng Jiao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan Wang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui-Lai Zhang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hai-Yan Wang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Nandi N, Sarkar P, Barnwal N, Sahu K. Intricacies of Carbon Dot Photoluminescence for Emerging Applications: A Review. Chem Asian J 2025; 20:e202401470. [PMID: 39907296 DOI: 10.1002/asia.202401470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Discovered only in 2004, carbon dots (CDs) have already traversed a long journey, generating many promising research directions. Its cheapness, ease of synthesis, high water-solubility, tunable emission, and excellent biocompatibility make it a single-point solution to many problems, and tremendous efforts were invested into understanding the structure-property-function relationship, which eases the engineering of the CD properties suitable for a desired application. From the usual random choice of precursors or carbon materials as a starting point in the early days, more systematic approaches are now available for choosing proper starting materials and appropriate experimental conditions (solvent medium, reaction temperature, reaction duration, pH, etc) to customize its photoluminescence. The presence of impurities has a crucial role in the outcome and applicability of photoluminescence. Recently, a significant focus has been on the long-wavelength emissive CDs, particularly in the red to near-infrared (NIR) regions, for better penetration into live cells and to circumvent autofluorescence problems. Proper design can harvest phosphorescence from CDs. Many excellent reviews are available, focusing on different facets of CD prospects. Hence, we will only highlight the importance of the optical properties of CDs and ways to modulate them. We will mention some of the new works that have appeared in the last five years.
Collapse
Affiliation(s)
- Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Neha Barnwal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
4
|
Wang Y, Zhou S, Zhao Y, Xiao H, Xing LB, Sun X, Zhou J, Lu S. Construction of Carbon Dot-Based Color-Tunable Circularly Polarized Long Afterglow via in Situ Phosphorescence Resonance Energy Transfer. NANO LETTERS 2025. [PMID: 40017324 DOI: 10.1021/acs.nanolett.5c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Carbon dots (CDs) with circularly polarized long afterglow (CPLA) properties have received increasing attention as a cutting-edge research field. However, because the CDs with both long afterglow and chirality are difficult to prepare and the afterglow color of most phosphorescent CDs is mainly concentrated in short wavelengths, it is still a formidable challenge to explore a facile route to achieve intrinsic CD-based color-tunable CPLA materials on a large scale. Herein, we developed a facile gram-scale synthesis method to prepare intrinsic CD-based color-tunable CPLA materials via a simple hydrothermal mixture of boric acid, arginine, and various fluorescent dyes. The tunable afterglow color is successfully achieved by engineering in situ phosphorescence resonance energy transfer (PRET) between the CDs formed by carbonization of arginine with some of the dyes and those uncarbonized dyes. Finally, the applications of CD composites in multimode advanced anti-counterfeiting and information encryption were explored.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yi Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Tang Z, Zeng J, Guan Z, Zheng Y, Liu X. Stable, Full-Color, Long-Lasting Aqueous Room-Temperature Phosphorescent Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408303. [PMID: 39676342 DOI: 10.1002/smll.202408303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Indexed: 12/17/2024]
Abstract
Ultralong room-temperature phosphorescent (URTP) materials have garnered significant attention in anti-counterfeiting, optoelectronic displays, and bio-imaging due to their unique optical properties. However, most URTP materials exhibit weak emission or are quenched in aqueous solutions. This study proposes a simple and effective strategy for preparing full-color aqueous URTP materials using a one-step microwave method. Guest molecules are embedded in a rigid cyanuric acid (CA) matrix formed from urea. By enhancing the conjugation of the guest molecules, a series of full-color URTP materials is successfully produced. These materials exhibit excellent phosphorescent properties, with a maximum phosphorescent lifetime of 7.96 s. Protected by the CA matrix, they retain phosphorescence even in aqueous environments, displaying an afterglow visible to the naked eye for over 30 s in water. Additionally, under low water content conditions, the materials exhibit exceptional water-enhanced properties, achieving a phosphorescence quantum yield (PhQY) of 40.4%. Importantly, these aqueous URTP materials can be prepared in just 5 min, showcasing great potential in information encryption and afterglow displays.
Collapse
Affiliation(s)
- Zhaorun Tang
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Jianwen Zeng
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Zhihao Guan
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Yuewei Zheng
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Xinghai Liu
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
6
|
Han C, Lee SH, Lee K, Chang H, Jo H, Seo S, Park H, Hahn SK, Kim YH, Kwon W. Long-Lived Room-Temperature Phosphorescence from Silica Nanoparticles with In Situ Generated Carbonaceous Defects for Blue Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65012-65023. [PMID: 39541242 DOI: 10.1021/acsami.4c14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, in situ formed silica nanoparticles (SNPs) emitting second-level phosphorescence at room temperature without a phosphorescent dopant have been achieved for the first time. This phosphorescence is achieved through the simple in situ formation of carbonaceous defects (CDs) within the SNPs, followed by passivation of the CDs by a robust silica matrix. The CD in the SNPs, termed CD@SNPs, are synthesized by cross-linking tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES), and these cross-linked components create a porous structure within the silica matrix. Upon calcination, the carbon-related structures within the pores deform, leading to the formation of CDs. Confined within a robust silica matrix, the molecular motion of the CD is restricted, facilitating the generation of a stable triplet state and suppressing nonradiative decay. Moreover, the robust silica matrix passivates the CD confined in the SNPs at a nanoscale. These comprehensive effects enable prolonged phosphorescence emission from the SNPs. In addition, these phosphorescence-emitting SNPs have been applied as dopants in the emissive layer of organic light-emitting diodes to realize blue light emission. This feature suggests the possibility of utilizing luminescent SNPs as light emitters in display technologies.
Collapse
Affiliation(s)
- Chaewon Han
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Su Hwan Lee
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kyurim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Heemin Chang
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
- Department of Materials Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo-gu, Tokyo 113-8656, Japan
| | - Hyunda Jo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Sejeong Seo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Hyeonjin Park
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Young-Hoon Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| |
Collapse
|
7
|
Xiang ZY, Cao Q, Hu YW, Song SY, Zhou Y, Gao CJ, Shan CX, Liu KK. Entropy-Dominated Triplet Exciton Emission in Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403917. [PMID: 39032004 DOI: 10.1002/smll.202403917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Phosphorescence in carbon dots (CDs) from triplet exciton radiative recombination at room temperature has achieved significant advancement. Confinement and nanoconfinement, serving as valuable techniques, are commonly utilized to brighten triplet exciton in CDs, thereby enhancing their phosphorescence. However, a comprehensive and universally applicable physical description of confinement-enhanced phosphorescence is still lacking, despite efforts to understand its underlying nature. In this study, the dominance of entropy is revealed in triplet exciton emission from CDs through the establishment of a microscopic vibration state model. CDs with varying entropy levels are studied, indicating that in a low entropy system, the multi-energy triplet exciton emission in CDs exhibits enhanced brightness, accompanied by a corresponding increase in their lifetimes. The product of lifetime and intensity in CDs serves as a descriptor for their phosphorescence properties. Moreover, an entropy-dependent information variation system based on the CDs is demonstrated. Specifically, in a low-entropy system, information is retained, whereas the corresponding information is erased in a high-entropy system. This work elucidates the underlying physical nature of confinement-enhanced triplet exciton emission, offering a deeper understanding of achieving ultralong phosphorescence in the future.
Collapse
Affiliation(s)
- Zhi-Yu Xiang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan-Wei Hu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Zhou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Jun Gao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| |
Collapse
|
8
|
Liang YC, Shao HC, Liu KK, Cao Q, Jiang LY, Shan CX, Kuang LM, Jing H. Thermally Enhanced Phosphorescent Carbon Nanodots for Monitoring Cold-Chain Logistics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312218. [PMID: 38716754 DOI: 10.1002/smll.202312218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/21/2024] [Indexed: 10/04/2024]
Abstract
Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hao-Chun Shao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
9
|
Liu M, Wu B, Baryshnikov GV, Shen S, Sun H, Gu X, Ågren H, Xu Y, Zou Q, Qu DH, Zhu L. Photo-controlled order-to-order host-guest self-assembly transfer for an afterglow effect with water resistance. Chem Sci 2024; 15:12569-12579. [PMID: 39118609 PMCID: PMC11304790 DOI: 10.1039/d4sc03451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Due to the general incompleteness of photochemical reactions, the photostationary structure in traditional photo-controlled host-guest self-assembly transfer is usually disordered or irregular. This fact readily affects the photoregulation or improvement of related material properties. Herein, a photoexcitation-induced aggregation molecule, hydroxyl hexa(thioaryl)benzene (HB), was grafted into β-cyclodextrin to form a host-guest system. Upon irradiation, the excited state conformational change of HB can drive an order-to-order phase transition of the system, enabling the transfer of the initial linear nanostructure to a photostationary worm-like nanostructure with orderliness and crystallinity capability. Along with the photoexcitation-controlled phase transition, an afterglow effect was obtained from the films prepared by doping the host-guest system into poly(vinyl alcohol). The afterglow effect had a superior water resistance, which successfully overcame the general sensitivity of doped materials with the afterglow effect to water vapor. These results are expected to provide new insights for pushing forward chemical self-assembly from the light perspective, towards materials with superior and stable properties under light treatment.
Collapse
Affiliation(s)
- Mouwei Liu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Bin Wu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Glib V Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Shen Shen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Hao Sun
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Xinyan Gu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516 Uppsala SE-751 20 Sweden
| | - Yifei Xu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Liangliang Zhu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| |
Collapse
|
10
|
Arefina IA, Erokhina DV, Ushakova EV. Influence of chemical treatment and interaction with matrix on room temperature phosphorescence of carbon dots. NANOTECHNOLOGY 2024; 35:365601. [PMID: 38806016 DOI: 10.1088/1361-6528/ad50e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
In this work, composite materials were formed based on various matrices (polymer and porous cellulose matrix) and carbon dots (CDs) with intense room-temperature phosphorescence (RTP). The effect of post-synthesis chemical treatment with citric acid or urea on the optical properties of composites was studied: the increase in carboxy and carbonyl groups led to an increase of RTP signals that could be seen with the naked eye over several seconds. The fabricated composites demonstrated good stability and reversibility of RTP signals by mild heating. Based on the developed CDs, luminescent inks were used for a simple demonstration of the data encryption on paper.
Collapse
Affiliation(s)
- Irina A Arefina
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia
| | - Daria V Erokhina
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia
- Secondary General School No. 598, Saint Petersburg 197372, Russia
| | - Elena V Ushakova
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong Special Administrative Region of China 999077, People's Republic of China
| |
Collapse
|
11
|
Liang YC, Shao HC, Liu KK, Cao Q, Deng Y, Hu YW, Yang K, Jiang LY, Shan CX, Kuang LM, Jing H. Visualizing Motion Trail via Phosphorescence Carbon Nanodots-Based Delay Display Array. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26643-26652. [PMID: 38716902 DOI: 10.1021/acsami.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hao-Chun Shao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Wei Hu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Zheng GS, Shen CL, Niu CY, Lou Q, Jiang TC, Li PF, Shi XJ, Song RW, Deng Y, Lv CF, Liu KK, Zang JH, Cheng Z, Dong L, Shan CX. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat Commun 2024; 15:2365. [PMID: 38491012 PMCID: PMC10943204 DOI: 10.1038/s41467-024-46668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.
Collapse
Affiliation(s)
- Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chun-Yao Niu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| | - Tian-Ci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Fan Lv
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Wang Y, Guo R, Wang F, Wu Y, Sun X, Zhou S, Zhou J. Chiral Aggregation-Induced Emission Carbon Dot-Based Multicolor and Near-Infrared Circularly Polarized Delayed Fluorescence via a Light-Harvesting System. J Phys Chem Lett 2024; 15:2049-2056. [PMID: 38350644 DOI: 10.1021/acs.jpclett.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Circularly polarized luminescence (CPL) materials are the research frontier of chiral luminescence. As a kind of luminescent carbon material, carbon dots (CDs) are expected to become excellent candidates for the construction of CPL materials. However, the construction of CD-based circularly polarized afterglow emission, especially multicolor and near-infrared emission, remains a great challenge due to aggregation-caused quenching and the instability of triplet excitons. In this work, we synthesized chiral CDs with aggregation-induced emission using dithiosalicylic acid and l/d-arginine as precursors through a one-step solvothermal method. Notably, the CDs exhibit green delayed fluorescence (DF) in poly(vinyl alcohol) films. Furthermore, multicolor and near-infrared circularly polarized delayed fluorescence is successfully realized via engineering a chiral light-harvesting system in which the CDs with green DF emission act as energy donors and fluorescent dyes with emission colors ranging from yellow to the near infrared serve as energy acceptors.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yushuang Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
14
|
Wang Y, Zhao WB, Li FK, Chang SL, Cao Q, Guo R, Song SY, Liu KK, Shan CX. Engineering Sizable and Broad-Spectrum Antibacterial Fabrics through Hydrogen Bonding Interaction and Electrostatic Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8321-8332. [PMID: 38330195 DOI: 10.1021/acsami.3c15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Long-lasting and highly efficient antibacterial fabrics play a key role in public health occurrences caused by bacterial and viral infections. However, the production of antibacterial fabrics with a large size, highly efficient, and broad-spectrum antibacterial performance remains a great challenge due to the complex processes. Herein, we demonstrate sizable and highly efficient antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction between surface groups of ZnO nanoparticles and fabric fibers. The production process can be carried out at room temperature and achieve a production rate of 300 × 1 m2 within 1 h. Under both visible light and dark conditions, the bactericidal rate against Gram-positive (S. aureus), Gram-negative (E. coli), and multidrug-resistant (MRSA) bacteria can reach an impressive 99.99%. Furthermore, the fabricated ZnO nanoparticle-decorated antibacterial fabrics (ZnO@fabric) show high stability and long-lasting antibacterial performance, making them easy to develop into variable antibacterial blocks for protection suits.
Collapse
Affiliation(s)
- Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Long Chang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Yuan T, Teng Q, Li C, Li J, Su W, Song X, Shi Y, Xu H, Han Y, Wei S, Zhang Y, Li X, Li Y, Fan L, Yuan F. The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. MATERIALS HORIZONS 2024; 11:102-112. [PMID: 37823244 DOI: 10.1039/d3mh01292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The significant features of carbon dots (CDs), such as bright and tunable photoluminescence, high thermal stability, and low toxicity, endow them with tremendous potential for application in next generation optoelectronics. Despite great progress achieved in the design of high-performance CDs so far, the practical applications in solid-state lighting and displays have been retarded by the aggregation-caused quenching (ACQ) effect ascribed to direct π-π interactions. This review provides a comprehensive overview of the recent progress made in solid-state CD emitters, including their synthesis, optical properties and applications in light-emitting diodes (LEDs). Their triplet-excited-state-involved properties, as well as their recent advances in phosphor-converted LEDs and electroluminescent LEDs, are mainly reviewed here. Finally, the prospects and challenges of solid-state CD-based LEDs are discussed with an eye on future development. We hope that this review will provide critical insights to inspire new exciting discoveries on solid-state CDs from both fundamental and practical standpoints so that the realization of their potential in optoelectronic areas can be facilitated.
Collapse
Affiliation(s)
- Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qian Teng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Chenhao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jinsui Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Huimin Xu
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
He X, Zheng Y, Hu C, Lei B, Zhang X, Liu Y, Zhuang J. The afterglow of carbon dots shining in inorganic matrices. MATERIALS HORIZONS 2024; 11:113-133. [PMID: 37856234 DOI: 10.1039/d3mh01034a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Kang C, Tao S, Yang F, Zheng C, Qu Z, Yang B. Enabling Carbonized Polymer Dots with Color-tunable Time-dependent Room Temperature Phosphorescence through Confining Carboxyl Dimer Association. Angew Chem Int Ed Engl 2024; 63:e202316527. [PMID: 37983665 DOI: 10.1002/anie.202316527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Developing a facile strategy to realize fine-tuning of phosphorescence color in time-dependent room temperature phosphorescence (RTP) materials is essential but both theoretically and practically rarely exploited. Through simultaneously confining carboxyl dimer association and isolated carboxyl into the particle via a simple hydrothermal treatment of polyacrylic acid, a dual-peak emission of red phosphorescence (645 nm) and green phosphorescence (550 nm) was observed from carbonized polymer dots (CPDs). The ratio of the two luminescent species can be well regulated by hydrochloric acid inhibiting the dissociation of carboxyl to promote hydrogen bond. Due to comparable but different lifetimes, color-tunable time-dependent RTP with color changing from yellow to green or orange to green were obtained. Based on the crosslinking enhanced emission effect, the phosphorescence visible time was even extended to 7 s through introducing polyethylenimide. This study not only proposes a novel and facile method for developing CPDs with color-tunable time-dependent RTP, but also provides a bran-new non-conjugated red phosphorescence unit and its definite structure.
Collapse
Affiliation(s)
- Chunyuan Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Chengyu Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| |
Collapse
|
18
|
Xu B, Jia Y, Ning H, Teng Q, Li C, Fang X, Li J, Zhou H, Meng X, Gao Z, Wang X, Wang Z, Yuan F. Visible Light-Activated Ultralong-Lived Triplet Excitons of Carbon Dots for White-Light Manipulated Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304958. [PMID: 37649163 DOI: 10.1002/smll.202304958] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Room temperature phosphorescence (RTP) has emerged as an interesting but rare phenomenon with multiple potential applications in anti-counterfeiting, optoelectronic devices, and biosensing. Nevertheless, the pursuit of ultralong lifetimes of RTP under visible light excitation presents a significant challenge. Here, new phosphorescent materials that can be excited by visible light with record-long lifetimes are demonstrated, realized through embedding nitrogen doped carbon dots (N-CDs) into a poly(vinyl alcohol) (PVA) film. The RTP lifetime of the N-CDs@PVA film is remarkably extended to 2.1 s excited by 420 nm, representing the highest recorded value for visible light-excited phosphorescent materials. Theoretical and experimental studies reveal that the robust hydrogen bonding interactions can effectively reduce the non-radiative decay rate and radiative transition rate of triplet excitons, thus dramatically prolong the phosphorescence lifetime. Notably, the RTP emission of N-CDs@PVA film can also be activated by easily accessible low-power white-light-emitting diode. More significantly, the practical applications of the N-CDs@PVA film in state-of-the-art anti-counterfeiting security and optical information storage domains are further demonstrated. This research offers exciting opportunities for utilizing visible light-activated ultralong-lived RTP systems in a wide range of promising applications.
Collapse
Affiliation(s)
- Bin Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuehan Jia
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Huiying Ning
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qian Teng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenhao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqi Fang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jie Li
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Heng Zhou
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
19
|
Zhao WB, Wang Y, Li FK, Guo R, Jiao FH, Song SY, Chang SL, Dong L, Liu KK, Shan CX. Highly Antibacterial and Antioxidative Carbon Nanodots/Silk Fibroin Films for Fruit Preservation. NANO LETTERS 2023; 23:11755-11762. [PMID: 38091579 DOI: 10.1021/acs.nanolett.3c03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 μm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Hang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Long Chang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
20
|
Sun C, Han J, Zhao Y, Liu X, Fan C, Lian K. Highly efficient and robust multi-color afterglow of ZnO nanoparticles. Dalton Trans 2023; 52:13278-13289. [PMID: 37668164 DOI: 10.1039/d3dt01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Room temperature phosphorescence (RTP) materials are widely used in various fields. However, the realization of multicolor RTP via facile approaches still remains a great challenge. In this study, we propose an in situ hydrolysis method using different solvents to synthesize blue, green, and yellow phosphorescence ZnO/SiO2 composites. By investigating the photoluminescence (PL) and phosphorescence mechanisms of ZnO/SiO2 composites, it is discovered that the solvents not only introduce impurities to ZnO but also affect the position of defect energy levels, leading to the variation in luminescent performance. Meanwhile, the as-synthesized ZnO/SiO2 composites exhibit stable PL and phosphorescence under extreme conditions. Specifically, the PL and phosphorescence properties of the composites are well maintained at high temperature (523 K) or underwater. Owing to the multicolor phosphorescence properties of these ZnO/SiO2 products, herein, we demonstrate that ZnO/SiO2 composites can act as new smart materials for information encryption, fingerprint identification, and white light-emitting diodes (WLEDs).
Collapse
Affiliation(s)
- Chun Sun
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Jiachen Han
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Yiwei Zhao
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Xiaohui Liu
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, P. R. China.
- Zhejiang Ruico Advanced Material Co., Ltd, No. 188 Liangshan Road, Huzhou, 313018, P. R. China
| | - Chao Fan
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Kai Lian
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| |
Collapse
|
21
|
Zhou S, Wang F, Feng N, Xu A, Sun X, Zhou J, Li H. Room Temperature Phosphorescence Carbon Dots: Preparations, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301240. [PMID: 37086135 DOI: 10.1002/smll.202301240] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Room temperature phosphorescence (RTP) materials have drawn considerable attention by virtue of their outstanding features. Compared with organometallic complexes and pure organic compounds, carbon dots (CDs) have emerged as a new type of RTP materials, which show great advantages, such as moderate reaction condition, low toxicity, low cost, and tunable optical properties. In this review, the important progress made in RTP CDs is summarized, with an emphasis on the latest developments. The synthetic strategies of RTP CDs will be comprehensively summarized, followed by detailed introduction of their performance regulation and potential applications in anti-counterfeiting, information encryption, sensing, light-emitting diodes, and biomedicine. Finally, the remaining major challenges for RTP CDs are discussed and new opportunities in the future are proposed.
Collapse
Affiliation(s)
- Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aoxue Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
22
|
Zhang Y, Zhang S, Liu G, Sun Q, Xue S, Yang W. Rational molecular and doping strategies to obtain organic polymers with ultralong RTP. Chem Sci 2023; 14:5177-5181. [PMID: 37206397 PMCID: PMC10189905 DOI: 10.1039/d3sc01276j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Organic-doped polymers and room-temperature phosphorescence (RTP) mechanisms have been widely reported. However, RTP lifetimes >3 s are rare and RTP-enhancing strategies are incompletely understood. Herein, we demonstrate a rational molecular doping strategy to obtain ultralong-lived, yet bright RTP polymers. The n-π* transitions of boron- and nitrogen-containing heterocyclic compounds can promote a triplet-state population, and the grafting of boronic acid onto polyvinyl alcohol can inhibit molecular thermal deactivation. However, excellent RTP properties were achieved by grafting 1-0.1% (N-phenylcarbazol-2-yl)-boronic acid rather than (2-/3-/4-(carbazol-9-yl)phenyl)boronic acids to afford record-breaking ultralong RTP lifetimes up to 3.517-4.444 s. These results showed that regulation of the interacting position between the dopant and matrix molecules to directly confine the triplet chromophore could more effectively stabilize triplet excitons, disclosing a rational molecular-doping strategy for achieving polymers with ultralong RTP. Based on the energy-donor function of blue RTP, an ultralong red fluorescent afterglow was demonstrated by co-doping with an organic dye.
Collapse
Affiliation(s)
- Yuefa Zhang
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology Qingdao China
| | - Shiguo Zhang
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology Qingdao China
| | - Guanyu Liu
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology Qingdao China
| | - Qikun Sun
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology Qingdao China
| | - Shanfeng Xue
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology Qingdao China
| | - Wenjun Yang
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology Qingdao China
| |
Collapse
|
23
|
Song SY, Liu KK, Mao X, Cao Q, Li N, Zhao WB, Wang Y, Liang YC, Zang JH, Li X, Lou Q, Dong L, Shan CX. Colorful Triplet Excitons in Carbon Nanodots for Time Delay Lighting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212286. [PMID: 36840606 DOI: 10.1002/adma.202212286] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Indexed: 05/26/2023]
Abstract
Time delay lighting offers an added period of buffer illumination for human eyes upon switching off the light. Long-lifetime emission from triplet excitons has outstanding potential, but the forbidden transition property due to the Pauli exclusion principle makes them dark, and it stays challenging to develop full-color and bright triplet excitons. Herein, triplet excitons emission from ultraviolet (UV) to near infrared (NIR) in carbon nanodots (CNDs) is achieved by confining multicolor CNDs emitters in NaCNO crystal. NaCNO crystal can isolate the CNDs, triplet excitons quenching caused by the excited state electrons aggregation induced energy transfer is suppressed, and the confinement crystal can furthermore promote phosphorescence of the CNDs by inhibiting the dissipation of the triplet excitons due to non-radiative transition. The phosphorescence from radiative recombination of triplet excitons in the CNDs covers the spectral region from 300 nm (UV) to 800 nm (NIR), the corresponding lifetimes can reach 15.8, 818.0, 239.7, 168.4, 426.4, and 127.6 ms. Furthermore, the eco-friendly luminescent lampshades are designed based on the multicolor phosphorescent CNDs, time delay light-emitting diodes are thus demonstrated. The findings will motivate new opportunities for the development of UV to NIR phosphorescent CNDs and time delay lighting applications.
Collapse
Affiliation(s)
- Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Mao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Chuang Liang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xing Li
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Mao X, Liu KK, Cao Q, Song SY, Liang YC, Hu YW, Chang SL, Liao J, Shan CX. Paper-Fiber-Activated Triplet Excitons of Carbon Nanodots for Time-Resolved Anti-counterfeiting Signature with Artificial Intelligence Authentication. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20302-20309. [PMID: 37042513 DOI: 10.1021/acsami.3c00414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The easy-to-imitate character of a personal signature may cause significant economy loss due to the lack of speed and strength information. In this work, we report a time-resolved anti-counterfeiting signature strategy with artificial intelligence (AI) authentication based on the designed luminescent carbon nanodot (CND) ink, whose triplet excitons can be activated by the bonding between the paper fibers and the CNDs. Paper fibers can bond with the CNDs through multiple hydrogen bonds, and the activated triplet excitons release photons for about 13 s; thus, the speed and strength of the signature are recorded through recording the changes in luminescence intensity over time. The background noise from commercial paper fluorescence is completely suppressed, benefiting from the long phosphorescence lifetime of the CNDs. In addition, a reliable AI authentication method with quick response based on a convolutional neural network is developed, and 100% identification accuracy of the signature based on the CND ink is achieved, which is higher than that of the signature with commercial ink (78%). This strategy can also be expanded for painting, calligraphy identification.
Collapse
Affiliation(s)
- Xin Mao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Chuan Liang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Wei Hu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Long Chang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Liao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Wu Y, Chen X, Wu W. Multiple Stimuli-Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206709. [PMID: 36642825 DOI: 10.1002/smll.202206709] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Optical information encryption and safety have aroused great attention since they are closely correlated to data protection and information safety. The development of multiple stimuli-response optical materials for constructing large-capacity information encryption and safety is very important for practical applications. Carbon dots (CDs) have many gratifying merits, such as polychromatic emission, diverse luminous categories, and stable physicochemical properties, and are considered as one of the most ideal candidates for information protection. Herein, carbon core, functional groups, solvents, and other crucial factors are reviewed for outputting polychromatic emission of multiple luminous categories. In particular, substrate engineering strategies have been emphasized for their critical role in yielding excellent optical features of multiple luminous categories. High-capacity information encryption and safety strategies are reviewed by relying on the rich optical properties of CDs, such as polychromatic emission, multiple luminous categories of fluorescence, afterglow, and upconversion, as well as external-stimuli-assisted optical changes. Some perspectives for preparing excellent CDs and further developing information security strategies are proposed. This review provides a good reference for the manipulation of polychromatic CDs and the development of next-generation information encryption and safety.
Collapse
Affiliation(s)
- Youfusheng Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao Chen
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
26
|
Shi H, Wu Y, Xu J, Shi H, An Z. Recent Advances of Carbon Dots with Afterglow Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207104. [PMID: 36810867 DOI: 10.1002/smll.202207104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) have gradually become a new generation of nano-luminescent materials, which have received extensive attention due to excellent optical properties, wide source of raw materials, low toxicity, and good biocompatibility. In recent years, there are many reports on the luminescent phenomenon of CDs, and great progress has been achieved. However,there are rarely systematic summaries on CDs with persistent luminescence. Here, a summary of the recent progress on persistent luminescent CDs, including luminous mechanism, synthetic strategies, property regulation, and potential applications, is given. First, a brief introduction is given to the development of CDs luminescent materials. Then, the luminous mechanism of afterglow CDs from room temperature phosphorescence (RTP), delayed fluorescence (DF), and long persistent luminescence (LPL) is discussed. Next, the constructed methods of luminescent CDs materials are summarized from two aspects, including matrix-free self-protected and matrix-protected CDs. Moreover, the regulation of afterglow properties from color, lifetime, and efficiency is presented. Afterwards, the potential applications of CDs, such as anti-counterfeiting, information encryption, sensing, bio-imaging, multicolor display, LED devices, etc., are reviewed. Finally, an outlook on the development of CDs materials and applications is proposed.
Collapse
Affiliation(s)
- Huixian Shi
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yang Wu
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Jiahui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
27
|
Marin-Beloqui JM, Congrave DG, Toolan DTW, Montanaro S, Guo J, Wright IA, Clarke TM, Bronstein H, Dimitrov SD. Generating Long-Lived Triplet Excited States in Narrow Bandgap Conjugated Polymers. J Am Chem Soc 2023; 145:3507-3514. [PMID: 36735862 PMCID: PMC9936540 DOI: 10.1021/jacs.2c12008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Narrow bandgap conjugated polymers are a heavily studied class of organic semiconductors, but their excited states usually have a very short lifetime, limiting their scope for applications. One approach to overcome the short lifetime is to populate long-lived triplet states for which relaxation to the ground state is forbidden. However, the triplet lifetime of narrow bandgap polymer films is typically limited to a few microseconds. Here, we investigated the effect of film morphology on triplet dynamics in red-emitting conjugated polymers based on the classic benzodithiophene monomer unit with the solubilizing alkyl side chains C16 and C2C6 and then used Pd porphyrin sensitization as a further strategy to change the triplet dynamics. Using transient absorption spectroscopy, we demonstrated a 0.45 ms triplet lifetime for the more crystalline nonsensitized polymer C2C6, 2-3 orders of magnitude longer than typically reported, while the amorphous C16 had only a 5 μs lifetime. The increase is partly due to delaying bimolecular electron-hole recombination in the more crystalline C2C6, where a higher energy barrier for charge recombination is expected. A triplet lifetime of 0.4 ms was also achieved by covalently incorporating 5% of Pd porphyrin into the C16 polymer, which introduced extra energy transfer steps between the polymer and porphyrin that delayed triplet dynamics and increased the polymer triplet yield by 7.9 times. This work demonstrates two synthetic approaches to generate the longest-lived triplet excited states in narrow bandgap conjugated polymers, which is of necessity in a wide range of fields that range from organic electronics to sensors and bioapplications.
Collapse
Affiliation(s)
- Jose M. Marin-Beloqui
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.,Department
of Physical-Chemistry, University of Málaga, Campus de Teatinos, Málaga, 29071 Málaga, Spain
| | - Daniel G. Congrave
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Daniel T. W. Toolan
- Department
of Chemistry, Dainton Building, The University
of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stephanie Montanaro
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Junjun Guo
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Iain A. Wright
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.,School of
Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Tracey M. Clarke
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.,
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.,
| | | |
Collapse
|
28
|
Yu X, Liu K, Wang B, Zhang H, Qi Y, Yu J. Time-Dependent Polychrome Stereoscopic Luminescence Triggered by Resonance Energy Transfer between Carbon Dots-in-Zeolite Composites and Fluorescence Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208735. [PMID: 36446033 DOI: 10.1002/adma.202208735] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Luminescence multiplexing shows promising application prospects in information security, yet even outstanding time division multiplexing can only carry limited luminescence information. Time-space division multiplexing can greatly expand the information capacity by simultaneously transferring luminescence information in both time and space dimensions. Herein, time-dependent polychrome stereoscopic luminescence system has been successfully developed by designing a 3D luminescence system based on resonance energy transfer (RET), in which afterglow lifetime easily regulated carbon dots-in-zeolite composites are used as energy donors and multicolor fluorescence quantum dots (QDs) as energy acceptors. Taking perovskite QDs (PeQDs) as example, by matching the energy donors with different afterglow lifetimes and the energy acceptors with different fluorescence colors, tunable afterglow emission of PeQDs with wavelength within 463-614 nm and lifetime within 232-1500 ms can be realized, in which the maximal RET efficiency reaches 95%. As a proof of concept, such novel luminescence system that carries eight layers of luminescence information involving four dimensions (time and 3D space) is successfully applied in advanced time-space division multiplexing. This work opens a new perspective for the application of time-space integrated luminescence systems in advanced information multiplexing.
Collapse
Affiliation(s)
- Xiaowei Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Kaikai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
29
|
Zou WS, Xu Y, Kong W, Wang Y, Zhang J, Li W, Yu HQ. One-Pot Three Carbon Dots with Various Lifetimes Rooted in Different Decarboxylation Degrees for Matrix-Free, Anti-Oxygen, and Time-Resolved Information Encryption and Cellular Imaging. Anal Chem 2023; 95:1985-1994. [PMID: 36607742 DOI: 10.1021/acs.analchem.2c04336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activating long-lived room temperature phosphorescence (RTP) in the aqueous environment and thus realizing matrix-free, anti-oxygen, and time-resolved information encryption and cellular imaging remain a great challenge. Here, we fabricated three types of carbon dots (C-dots), i.e., fluorescent C-dots (F-C-dots) and two types of phosphorescent C-dots denoted as Pw-C-dots and Py-C-dots by a one-pot strategy. Their formation was attributed to the difference in the decarboxylation degree at high temperatures using trimesic acid (TMA) as a sole precursor. Unexpectedly, the yield reached as high as ∼92%, and the proportions were ∼27% for F-C-dots, ∼17% for Pw-C-dots, and ∼56% for Py-C-dots. These nanomaterials could help implement carbon peaking and carbon neutrality. Both green RTP of the two C-dots resulted from the small energy gap (ΔEST). These two RTP C-dots had a long lifetime of over 270 ms with a relatively high quantum yield (4.5 and 6.2%). They exhibited excellent photostability and anti-photobleaching performances. The dry and wet powders of the RTP C-dots were applied to high-level information encryption. The lifelike patterns were greatly different from those of the original ones and could last for several seconds to the naked eye, demonstrating that the RTP C-dots could be potentially employed as anti-oxygen and time-resolved contrast reagents. Most significantly, the cellular imaging experiments showed that the biofriendly PVP-coated Py-C-dots could localize at lysosomes and sustain hundreds of milliseconds. This approach not only pioneers a time-resolved lysosome localization model but also opens up a promising door for anti-oxygen and time-resolved RTP cytoimaging.
Collapse
Affiliation(s)
- Wen-Sheng Zou
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Xu
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Weili Kong
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Yaqin Wang
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Weihua Li
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Wang K, Qu L, Yang C. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206429. [PMID: 36609989 DOI: 10.1002/smll.202206429] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a type of room temperature phosphorescence (RTP) material, carbon dots (CDs) always show short lifetime and low phosphorescence efficiency. To counter these disadvantages, several strategies, such as embedding in rigid matrix, introducing of heteroatom, crosslink-enhanced emission, etc., are well developed. Consequently, lots of CDs-based RTP materials are obtained. Doping of CDs into various matrix is the dominant method for preparation of long-lived CDs-based RTP materials so far. The desired CDs@matrix composites always display outstanding RTP performances. Meanwhile, matrix-free CDs and carbonized polymer dots-based RTP materials are also widely developed. Amounts of CDs possessing ultra-long lived, multiple colored, and dynamic RTP emission are successfully obtained. Herein, the recent progress achieved in CDs-based RTP materials as well as the corresponding efficient strategies and emission mechanisms are summarized and reviewed in detail. Due to CDs-based RTP materials possess excellent chemical stability, photostability and low biological toxicity, they exhibit great application potential in the fields of anti-counterfeiting, data encryption, and biological monitoring. The application of the CDs-based RTP materials is also introduced in this review. As a promising functional material, development of long wavelength RTP emitting CDs with long lifetime is still challengeable, especially for the red and near-infrared emitting RTP materials.
Collapse
Affiliation(s)
- Kaiti Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
31
|
Zhang X, Shi Y, Wang X, Liu Y, Zhang Y. Flexible and Transparent Ceramic Nanocomposite for Laboratory X-ray Imaging of Micrometer Resolution. ACS NANO 2022; 16:21576-21582. [PMID: 36441950 DOI: 10.1021/acsnano.2c10531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transparent nanocomposites have attracted considerable attention in many areas including X-ray imaging, wearable electronics, and volumetric display. However, both the transparency and the flexibility were largely jeopardized by the loading content of functional nanoparticles (NPs), posing a major challenge to material engineering. Herein, an ultra-high-loading-ceramic nanocomposite film was fabricated by a blade-coating technique. The film exhibited a high transparency over ∼89% in the whole visible region even with a fluoride-ceramic content up to ∼83 wt %. Based on a real-time investigation on the formation process of the film, the refractive-index difference between the nanoparticles and matrix was identified as the dominating factor to transparency. The transmittance spectra based on Rayleigh scattering theory were simulated to screen both nanoparticle radius and loading content, leading to the discovery of a transparency zone for film making. As a proof-of-concept experiment, the transparent film was used as an X-ray scintillation screen, which exhibited a comparable light yield to that of LYSO owing to the mitigated self-absorption effect. The homemade imager demonstrated a spatial resolution of 122 lp/mm, representing a record resolution of 4.1 μm for laboratory X-ray photography. Our work not only provided an experimental procedure to make high-loading functional films but also demonstrated a theoretical model to guide the search for gradients of transparent composites.
Collapse
Affiliation(s)
- Xiangzhou Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yihan Shi
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Xiaojia Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yeqi Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yuhai Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| |
Collapse
|
32
|
Cheng Q, Chen Z, Hu L, Song Y, Zhu S, Liu R, Zhu H. Spatial effect and resonance energy transfer for the construction of carbon dots composites with long-lived multicolor afterglow for advanced anticounterfeiting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Zhang Y, Li M, Lu S. Rational Design of Covalent Bond Engineered Encapsulation Structure toward Efficient, Long-Lived Multicolored Phosphorescent Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2206080. [PMID: 36436834 DOI: 10.1002/smll.202206080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Multicolored phosphorescent materials based on carbon dots (CDs) constructed using the same or similar precursors with long lifetimes are conducive to their wide range of practical applications due to the developed compatibility. Herein, a universal method is developed to prepare long-lived multicolored phosphorescent CD-based composites for which heavy-metal doping is not required. The multicolored CDs are encapsulated in silica via silane hydrolysis, which forms many covalent SiOC and SiC bonds; hence, the vibrations and rotations of the luminescent centers on the CD surfaces are hindered. The transformation of SiOC to a more rigid SiC moiety occurs during high-temperature calcination. Furthermore, during calcination, the silica collapses, resulting in more tightly encapsulated CDs. The synergistic effect of these two calcination phenomena produces blue, green, yellow, and red phosphorescence, at wavelengths spanning 465 to 680 nm and with lifetimes of up to 2.11 s. Taking advantage of their superior phosphorescence performances, the CD-based composites are successfully applied to 3D multichannel information storage and encryption.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Manyu Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|