1
|
Liu Y, Wang J, Qi P, Yuan X, Zhang D, Yang R, Yang Y, Tan X. Method for fabricating circular polarization beam splitters based on polarization holography. OPTICS LETTERS 2024; 49:4689-4692. [PMID: 39146136 DOI: 10.1364/ol.534102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Based on polarization holography, circular polarization beam splitters with separation angles of up to 100° have been fabricated. The left- and right-handed circularly polarized waves can be reconstructed by the two holograms that were designed by the tensor theory of polarization holography, respectively. In the fabrication of circular polarization beam splitters, two holograms were recorded only by the interference method in the same area of the polarization-sensitive material. This method is simple, inexpensive, and easy to adjust the separation angles and element size. The diffraction efficiency and the polarization state of the reconstructed waves were tested under different incident waves, and the experimental results are in good agreement with the theory. This work not only deepens our understanding of polarization holography but also expands the applications of polarization holography.
Collapse
|
2
|
Li M, Jiang L, Li X, Li T, Yi P, Li X, Zhang L, Li L, Wang Z, Zhang X, Wang A, Li J. Wide-Size Range and High Robustness Self-Assembly Micropillars for Capturing Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38684027 DOI: 10.1021/acsami.4c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Capillary force driven self-assembly micropillars (CFSA-MP) holds immense promise for the manipulation and capture of cells/tiny objects, which has great demands of wide size range and high robustness. Here, we propose a novel method to fabricate size-adjustable and highly robust CFSA-MP that can achieve wide size range and high stability to capture microspheres. First, we fabricate a microholes template with an adjustable aspect ratio using the spatial-temporal shaping femtosecond laser double-pulse Bessel beam-assisted chemical etching technique, and then the micropillars with adjustable aspect ratio are demolded by polydimethylsiloxane (PDMS). We fully demonstrated the advantages of the Bessel optical field by using the spatial-temporal shaping femtosecond laser double-pulse Bessel beams to broaden the height range of the micropillars, which in turn expands the size range of the captured microspheres, and finally achieving a wide range of capturing microspheres with a diameter of 5-410 μm. Based on the inverted mold technology, the PDMS micropillars have ultrahigh mechanical robustness, which greatly improves the durability. CFSA-MP has the ability to capture tiny objects with wide range and high stability, which indicates great potential applications in the fields of chemistry, biomedicine, and microfluidics.
Collapse
Affiliation(s)
- Min Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
- Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaowei Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Taoyong Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Yi
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xibiao Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Leyi Zhang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Luqi Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangyu Zhang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Andong Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Ali A, Kim H, Torati SR, Kang Y, Reddy V, Kim K, Yoon J, Lim B, Kim C. Magnetic Lateral Ladder for Unidirectional Transport of Microrobots: Design Principles and Potential Applications of Cells-on-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305528. [PMID: 37845030 DOI: 10.1002/smll.202305528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location. The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.
Collapse
Affiliation(s)
- Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Nanotechnology Research Center, SRKR Engineering College, Bhimavaram, Andhra Pradesh, 534204, India
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Wang C, Zhang C, Xue Y, Ye Z, Xu L, Hu Y, Li J, Chu J, Wu D. High-Throughput Two-Photon 3D Printing Enabled by Holographic Multi-Foci High-Speed Scanning. NANO LETTERS 2024; 24:2671-2679. [PMID: 38375804 DOI: 10.1021/acs.nanolett.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The emerging two-photon polymerization (TPP) technique enables high-resolution printing of complex 3D structures, revolutionizing micro/nano additive manufacturing. Various fast scanning and parallel processing strategies have been proposed to promote its efficiency. However, obtaining large numbers of uniform focal spots for parallel high-speed scanning remains challenging, which hampers the realization of higher throughput. We report a TPP printing platform that combines galvanometric mirrors and liquid crystal on silicon spatial light modulator (LCoS-SLM). By setting the target light field at LCoS-SLM's diffraction center, sufficient energy is acquired to support simultaneous polymerization of over 400 foci. With fast scanning, the maximum printing speed achieves 1.49 × 108 voxels s-1, surpassing the existing scanning-based TPP methods while maintaining high printing resolution and flexibility. To demonstrate the processing capability, functional 3D microstructure arrays are rapidly fabricated and applied in micro-optics and micro-object manipulation. Our method may expand the prospects of TPP in large-scale micro/nanomanufacturing.
Collapse
Affiliation(s)
- Leran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Yuhang Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhaohui Ye
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Liqun Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Darmawan BA, Park JO, Go G, Choi E. Four-Dimensional-Printed Microrobots and Their Applications: A Review. MICROMACHINES 2023; 14:1607. [PMID: 37630143 PMCID: PMC10456732 DOI: 10.3390/mi14081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Owing to their small size, microrobots have many potential applications. In addition, four-dimensional (4D) printing facilitates reversible shape transformation over time or upon the application of stimuli. By combining the concept of microrobots and 4D printing, it may be possible to realize more sophisticated next-generation microrobot designs that can be actuated by applying various stimuli, and also demonstrates profound implications for various applications, including drug delivery, cells delivery, soft robotics, object release and others. Herein, recent advances in 4D-printed microrobots are reviewed, including strategies for facilitating shape transformations, diverse types of external stimuli, and medical and nonmedical applications of microrobots. Finally, to conclude the paper, the challenges and the prospects of 4D-printed microrobots are highlighted.
Collapse
Affiliation(s)
- Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Liu X, Ding C, Gao X, Shen X, Tang M, Yang Z, Xu L, Kuang C, Liu X. High-resolution 3D nanoprinting based on two-step absorption via an integrated fiber-coupled laser diode. OPTICS LETTERS 2023; 48:4300-4303. [PMID: 37582017 DOI: 10.1364/ol.495286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Three-dimensional (3D) laser nanoprinting with high resolution and low cost is highly desirable for fabricating arbitrary 3D structures with fine feature size. In this work, we use a 405-nm integrated fiber-coupled continuous wave (cw) laser diode to establish an easy-to-build 3D nanoprinting system based on two-step absorption. Two-dimensional (2D) gratings with a sub-150-nm period and 3D woodpile nanostructures with a lateral period of 350 nm have been printed at a low speed. At a faster scan velocity of 1000 µm/s, 2D gratings with sub-200-nm resolution and sub-50-nm linewidth can still be fabricated with laser power less than 1 mW. The two-step absorption of the used benzil initiator enables us to use a second cw laser with 532-nm wavelength to enhance the polymerization with sub-100-nm feature size when starting with insufficient 405-nm laser power, which possess the potential to find applications in high-speed high-resolution parallel-writing and in situ manipulation.
Collapse
|
7
|
Xin C, Ren Z, Zhang L, Yang L, Wang D, Hu Y, Li J, Chu J, Zhang L, Wu D. Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing. Nat Commun 2023; 14:4273. [PMID: 37460571 DOI: 10.1038/s41467-023-40038-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Inspired by the flexible joints of humans, actuators containing soft joints have been developed for various applications, including soft grippers, artificial muscles, and wearable devices. However, integrating multiple microjoints into soft robots at the micrometer scale to achieve multi-deformation modalities remains challenging. Here, we propose a two-in-one femtosecond laser writing strategy to fabricate microjoints composed of hydrogel and metal nanoparticles, and develop multi-joint microactuators with multi-deformation modalities (>10), requiring short response time (30 ms) and low actuation power (<10 mW) to achieve deformation. Besides, independent joint deformation control and linkage of multi-joint deformation, including co-planar and spatial linkage, enables the microactuator to reconstruct a variety of complex human-like modalities. Finally, as a proof of concept, the collection of multiple microcargos at different locations is achieved by a double-joint micro robotic arm. Our microactuators with multiple modalities will bring many potential application opportunities in microcargo collection, microfluid operation, and cell manipulation.
Collapse
Affiliation(s)
- Chen Xin
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zhongguo Ren
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Leran Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Yang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Minde Building, Renai Road, 215123, Suzhou, P. R. China
| | - Dawei Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
8
|
Zhang X, Zhang XT, Ye JS, Feng SF, Wang XK, Han P, Sun WF, Zhang Y. Generation of stable propagation Bessel beams and axial multifoci beams with binary amplitude filters. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1425-1433. [PMID: 37706744 DOI: 10.1364/josaa.492573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/03/2023] [Indexed: 09/15/2023]
Abstract
The binary amplitude filter (BAF) is employed to generate stable propagation Bessel beams and axial multifoci beams, rather than the traditional continuous amplitude filter (CAF). We introduce a parameter along the azimuth direction, i.e., angular order of the BAF, to weaken transverse intensity asymmetry. Numerical simulations reveal that the BAF implements the same optical functionalities as the CAF. The BAF holds advantages over the traditional CAF: a simpler fabrication process, a lower cost, and a higher experimental accuracy. It is believed that the BAF should have many practical applications in future optical systems.
Collapse
|
9
|
Peng M, Zhao Q, Wang M, Du X. Reconfigurable scaffolds for adaptive tissue regeneration. NANOSCALE 2023; 15:6105-6120. [PMID: 36919563 DOI: 10.1039/d3nr00281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tissue engineering and regenerative medicine have offered promising alternatives for clinical treatment of body tissue traumas, losses, dysfunctions, or diseases, where scaffold-based strategies are particularly popular and effective. Over the decades, scaffolds for tissue regeneration have been remarkably evolving. Nevertheless, conventional scaffolds still confront grand challenges in bio-adaptions in terms of both tissue-scaffold and cell-scaffold interplays, for example complying with complicated three-dimensional (3D) shapes of biological tissues and recapitulating the ordered cell regulation effects of native cell microenvironments. Benefiting from the recent advances in "intelligent" biomaterials, reconfigurable scaffolds have been emerging, demonstrating great promise in addressing the bio-adaption challenges through altering their macro-shapes and/or micro-structures. This mini-review article presents a brief overview of the cutting-edge research on reconfigurable scaffolds, summarizing the materials for forming reconfigurable scaffolds and highlighting their applications for adaptive tissue regeneration. Finally, the challenges and prospects of reconfigurable scaffolds are also discussed, shedding light on the bright future of next-generation reconfigurable scaffolds with upgrading adaptability.
Collapse
Affiliation(s)
- Mingxing Peng
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, China
| | - Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| |
Collapse
|
10
|
Chan JYE, Ruan Q, Wang H, Wang H, Liu H, Yan Z, Qiu CW, Yang JKW. Full Geometric Control of Hidden Color Information in Diffraction Gratings under Angled White Light Illumination. NANO LETTERS 2022; 22:8189-8195. [PMID: 36227759 DOI: 10.1021/acs.nanolett.2c02741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Under white light illumination, gratings produce an angular distribution of wavelengths dependent on the diffraction order and geometric parameters. However, previous studies of gratings are limited to at least one geometric parameter (height, periodicity, orientation, angle of incidence) kept constant. Here, we vary all geometric parameters in the gratings using a versatile nanofabrication technique, two-photon polymerization lithography, to encode hidden color information through two design approaches. The first approach hides color information by decoupling the effects of grating height and periodicity under normal and oblique incidence. The second approach hides multiple sets of color information by arranging gratings in sectors around semicircular pixels. Different images are revealed with negligible crosstalk under oblique incidence and varying sample rotation angles. Our analysis shows that an angular separation of ≥10° between adjacent sectors is required to suppress crosstalk. This work has potential applications in information storage and security watermarks.
Collapse
Affiliation(s)
- John You En Chan
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen518055, People's Republic of China
| | - Hongtao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore138634, Singapore
| | - Zhiyuan Yan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore138634, Singapore
| |
Collapse
|