1
|
Stern ST, Affonso de Oliveira JF, Gatus J, Edmondson E, Neun BW, Dobrovolskaia MA, Steinmetz NF. Preclinical SC and IV repeat-dose toxicology of a cowpea mosaic virus - A cancer immunotherapy candidate. Toxicol Rep 2025; 14:102022. [PMID: 40276251 PMCID: PMC12019203 DOI: 10.1016/j.toxrep.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer immunotherapies focus on boosting the immune system to recognize and eliminate tumor cells. Amongst the various biologics under development for cancer immunotherapy, our team has focused on the study of plant viruses in this context. We have shown that intratumoral administration of cowpea mosaic virus (CPMV) relieves the immunosuppressive tumor microenvironment and elicits a potent, systemic and durable anti-tumor immune response. The potency of CPMV has been demonstrated in several tumor mouse models and in companion canine cancer patients. Toward clinical development, we here studied the pharmacology and safety of CPMV. The repeat-dose toxicity of CPMV was evaluated in female Sprague Dawley rats. Rats received three weekly treatments (subcutaneous or intravenous) of a fixed dose (∼20 mg/kg), and complete necropsy was performed either 24 hrs (acute toxicity group) or 14 day (recovery group) post-dose. All animals reached the scheduled euthanasia times, and no clinical abnormalities were noted during the study period. Important clinical chemistry, hematology and histopathology findings included decreased albumin/globulin ratio, leukocytosis, neutrophilia, monocytosis, and lymphoid hyperplasia (Dunnett's test, p<0.05) - these changes support the immunostimulatory mode of action for CPMV. All other changes were considered mild, within historical range for the model, and/or not biologically significant. Neither a maximum tolerated dose (MTD) nor a no-observable adverse effect level (NOAEL) was established in this study. Overall, data indicate a good safety profile for the CPMV cancer immunotherapy candidate.
Collapse
Affiliation(s)
- Stephan T. Stern
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Jamie Gatus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Elijah Edmondson
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Barry W. Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
3
|
Moreno-Gonzalez MA, Zhao Z, Caparco AA, Steinmetz NF. Combination of cowpea mosaic virus (CPMV) intratumoral therapy and oxaliplatin chemotherapy. MATERIALS ADVANCES 2024; 5:4878-4888. [PMID: 39634576 PMCID: PMC11615731 DOI: 10.1039/d4ma00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cowpea mosaic virus is a potent intratumoral immunotherapy agent that has shown promise in preclinical studies and canine cancer trials with tumor- and tissue-agnostic efficacy. As we move towards the clinic, it is imperative to investigate combination strategies that synergize to further improve the potency of the approach. Here, we combined CPMV with the clinically approved chemotherapeutic agent oxaliplatin. CPMV's ability to recruit and activate naive immune cells synergized with oxaliplatin's ability to induce immunogenic cell death in the ID8-Defb29/Vegf-A ovarian and B16F10 melanoma murine cancer models with an increase of median survival of 57.7% and 162.2%, respectively. The combination therapy outperformed the CPMV or oxaliplatin monotherapy, and achieved a percent difference in tumor burden of 26.1% and 170.6% in the ID8-Defb29/Vegf-A ovarian and B16F10 melanoma models, respectively. Immunofluorescence staining of treated tumor sections elucidated the role of damage associated molecular patterns (calreticulin and HMGB1), innate immune cells (myeloid cells - likely neutrophils, NK cells, and macrophages), and regulatory T cells (Tregs) as a function of the treatment regimen. Overall, our proposed combination therapy modulated the dormant tumor microenvironment which resulted in effective tumor cell death. This study demonstrates the potential for clinical combination of chemotherapy and CPMV intratumoral immunotherapy.
Collapse
Affiliation(s)
- Miguel A Moreno-Gonzalez
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| |
Collapse
|
4
|
Karan S, Jung E, Boone C, Steinmetz NF. Synergistic combination therapy using cowpea mosaic virus intratumoral immunotherapy and Lag-3 checkpoint blockade. Cancer Immunol Immunother 2024; 73:51. [PMID: 38349406 PMCID: PMC10864561 DOI: 10.1007/s00262-024-03636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor immune response, enhancing local immune activation, and mitigating T cell exhaustion.
Collapse
Affiliation(s)
- Sweta Karan
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Eunkyeong Jung
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christine Boone
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Nie W, Jiang A, Ou X, Zhou J, Li Z, Liang C, Huang LL, Wu G, Xie HY. Metal-polyphenol "prison" attenuated bacterial outer membrane vesicle for chemodynamics promoted in situ tumor vaccines. Biomaterials 2024; 304:122396. [PMID: 38043464 DOI: 10.1016/j.biomaterials.2023.122396] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
As natural adjuvants, the bacterial outer membrane vesicles (OMV) hold great potential in cancer vaccines. However, the inherent immunotoxicity of OMV and the rarity of tumor-specific antigens seriously hamper the clinical translation of OMV-based cancer vaccines. Herein, metal-phenolic networks (MPNs) are used to attenuate the toxicity of OMV, meanwhile, provide tumor antigens via the chemodynamic effect induced immunogenic cell death (ICD). Specifically, MPNs are assembled on the OMV surface through the coordination reaction between ferric ions and tannic acid. The iron-based "prison" is locally collapsed in the tumor microenvironment (TME) with both low pH and high ATP features, and thus the systemic toxicity of OMV is significantly attenuated. The released ferric ions in TME promote the ICD of cancer cells through Fenton reaction and then the generation of abundant tumor antigens, which can be used to fabricate in-situ vaccines by converging with OMV. Together with the immunomodulatory effect of OMV, potent tumor repression on a bilateral tumor model is achieved with good biosafety.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zijin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
6
|
Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater 2024; 31:63-86. [PMID: 37601277 PMCID: PMC10432724 DOI: 10.1016/j.bioactmat.2023.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Natural killer (NK) cells display a unique inherent ability to identify and eliminate virus-infected cells and tumor cells. They are particularly powerful for elimination of hematological cancers, and have attracted considerable interests for therapy of solid tumors. However, the treatment of solid tumors with NK cells are less effective, which can be attributed to the very complicated immunosuppressive microenvironment that may lead to the inactivation, insufficient expansion, short life, and the poor tumor infiltration of NK cells. Fortunately, the development of advanced nanotechnology has provided potential solutions to these issues, and could improve the immunotherapy efficacy of NK cells. In this review, we summarize the activation and inhibition mechanisms of NK cells in solid tumors, and the recent advances in NK cell-based tumor immunotherapy boosted by diverse nanomaterials. We also propose the challenges and opportunities for the clinical application of NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
7
|
Gama P, Juárez P, Rodríguez-Hernández AG, Vazquez-Duhalt R. Glucose oxidase virus-based nanoreactors for smart breast cancer therapy. Biotechnol J 2023; 18:e2300199. [PMID: 37417791 DOI: 10.1002/biot.202300199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor disease and the leading cause of female mortality. The evolution of nanomaterials science opens the opportunity to improve traditional cancer therapies, enhancing therapy efficiency and reducing side effects. METHODS AND MAJOR RESULTS Herein, protein cages conceived as enzymatic nanoreactors were designed and produced by using virus-like nanoparticles (VLPs) from Brome mosaic virus (BMV) and containing the catalytic activity of glucose oxidase (GOx) enzyme. The GOx enzyme was encapsulated into the BMV capsid (VLP-GOx), and the resulting enzymatic nanoreactors were coated with human serum albumin (VLP-GOx@HSA) for breast tumor cell targeting. The effect of the synthesized GOx nanoreactors on breast tumor cell lines was studied in vitro. Both nanoreactor preparations VLP-GOx and VLP-GOx@HSA showed to be highly cytotoxic for breast tumor cell cultures. Cytotoxicity for human embryonic kidney cells was also found. The monitoring of nanoreactor treatment on triple-negative breast cancer cells showed an evident production of oxygen by the catalase antioxidant enzyme induced by the high production of hydrogen peroxide from GOx activity. CONCLUSIONS AND IMPLICATIONS The nanoreactors containing GOx activity are entirely suitable for cytotoxicity generation in tumor cells. The HSA functionalization of the VLP-GOx nanoreactors, a strategy designed for selective cancer targeting, showed no improvement in the cytotoxic effect. The GOx containing enzymatic nanoreactors seems to be an interesting alternative to improve the current cancer therapy. In vivo studies are ongoing to reinforce the effectiveness of this treatment strategy.
Collapse
Affiliation(s)
- Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Patricia Juárez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Ana G Rodríguez-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| |
Collapse
|
8
|
Jung E, Chung YH, Steinmetz NF. TLR Agonists Delivered by Plant Virus and Bacteriophage Nanoparticles for Cancer Immunotherapy. Bioconjug Chem 2023; 34:1596-1605. [PMID: 37611278 PMCID: PMC10538388 DOI: 10.1021/acs.bioconjchem.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Toll-like receptors (TLRs) are promising targets in cancer immunotherapy due to their role in activating the immune system; therefore, various small-molecule TLR agonists have been tested in clinical applications. However, the clinical use of TLR agonists is hindered by their non-specific side effects and poor pharmacokinetics. To overcome these limitations, we used plant virus nanoparticles (VNPs) and bacteriophage virus-like particles (VLPs) as drug delivery systems. We conjugated TLR3 or TLR7 agonists to cowpea mosaic virus (CPMV) VNPs, cowpea chlorotic mottle virus (CCMV) VNPs, and bacteriophage Qβ VLPs. The conjugation of TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), resulted in the potent activation of immune cells and promoted the production of pro-inflammatory cytokine interleukin 6. We found that 1V209 conjugated to CPMV, CCMV, and Qβ reduced tumor growth in vivo and prolonged the survival of mice compared to those treated with free 1V209 or a simple admixture of 1V209 and viral particles. Nucleic acid-based TLR3 agonist, polyinosinic acid with polycytidylic acid (poly(I:C)), was also delivered by CPMV VNPs, resulting in enhanced mice survival. All our data suggest that coupling and co-delivery are required to enhance the anti-tumor efficacy of TLR agonists and simple mixing of the VLPs with the agonists does not confer a survival benefit. The delivery of 1V209 or poly(I:C) conjugated to VNPs/VLPs probably enhances their efficacy due to the multivalent presentation, prolongation of tumor residence time, and targeting of the innate immune cells mediated by the VNP/VLP carrier.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
9
|
Jung E, Chung YH, Mao C, Fiering SN, Steinmetz NF. The Potency of Cowpea Mosaic Virus Particles for Cancer In Situ Vaccination Is Unaffected by the Specific Encapsidated Viral RNA. Mol Pharm 2023; 20:3589-3597. [PMID: 37294891 PMCID: PMC10530639 DOI: 10.1021/acs.molpharmaceut.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-β and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Ghani MA, Bangar A, Yang Y, Jung E, Sauceda C, Mandt T, Shukla S, Webster NJG, Steinmetz NF, Newton IG. Treatment of Hepatocellular Carcinoma by Multimodal In Situ Vaccination Using Cryoablation and a Plant Virus Immunostimulant. J Vasc Interv Radiol 2023; 34:1247-1257.e8. [PMID: 36997021 PMCID: PMC10829876 DOI: 10.1016/j.jvir.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE To test the hypothesis that cryoablation combined with intratumoral immunomodulating nanoparticles from cowpea mosaic virus (CPMV) as an in situ vaccination approach induces systemic antitumoral immunity in a murine model of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Mice with bilateral, subcutaneous RIL-175 cell-derived HCCs were randomized to 4 groups: (a) phosphate-buffered saline (control), (b) cryoablation only (Cryo), (c) CPMV-treated only (CPMV), and (d) cryoablation plus CPMV-treated (Cryo + CPMV) (N = 11-14 per group). Intratumoral CPMV was administered every 3 days for 4 doses, with cryoablation performed on the third day. Contralateral tumors were monitored. Tumor growth and systemic chemokine/cytokine levels were measured. A subset of tumors and spleens were harvested for immunohistochemistry (IHC) and flow cytometry. One- or 2-way analysis of variance was performed for statistical comparisons. A P value of <.05 was used as the threshold for statistical significance. RESULTS At 2 weeks after treatment, the Cryo and CPMV groups, alone or combined, outperformed the control group in the treated tumor; however, the Cryo + CPMV group showed the strongest reduction and lowest variance (1.6-fold ± 0.9 vs 6.3-fold ± 0.5, P < .0001). For the untreated tumor, only Cryo + CPMV significantly reduced tumor growth compared with control (9.2-fold ± 0.9 vs 17.8-fold ± 2.1, P = .01). The Cryo + CPMV group exhibited a transient increase in interleukin-10 and persistently decreased CXCL1. Flow cytometry revealed natural killer cell enrichment in the untreated tumor and increased PD-1 expression in the spleen. Tumor-infiltrating lymphocytes increased in Cryo + CPMV-treated tumors by IHC. CONCLUSIONS Cryoablation and intratumoral CPMV, alone or combined, demonstrated potent efficacy against treated HCC tumors; however, only cryoablation combined with CPMV slowed the growth of untreated tumors, consistent with an abscopal effect.
Collapse
Affiliation(s)
- Mansur A Ghani
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Amandip Bangar
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Yunpeng Yang
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Eunkyeong Jung
- Department of NanoEngineering, University of California San Diego, La Jolla, California
| | - Consuelo Sauceda
- Department of Pharmacology, University of California San Diego, La Jolla, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Tyler Mandt
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California; Moores Cancer Center, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Nicole F Steinmetz
- Department of Radiology, University of California San Diego, La Jolla, California; Department of NanoEngineering, University of California San Diego, La Jolla, California; Moores Cancer Center, University of California San Diego, La Jolla, California; Department of Bioengineering, University of California San Diego, La Jolla, California; Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California; Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California
| | - Isabel G Newton
- Department of Radiology, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
11
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|