1
|
Chen X, Fan D, Lin X, Chen S, Yang J, Meng P, Shi H, Zheng W, Zhang Y, Yang Y, Wang D, Chen Q. Polypyrrole-decorated Vulcan XC-72R support enables a low platinum content PtRu catalyst toward alkaline hydrogen oxidation reaction. J Colloid Interface Sci 2025; 697:137908. [PMID: 40408953 DOI: 10.1016/j.jcis.2025.137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
PtRu alloys are promising catalysts for the hydrogen oxidation reaction (HOR) in alkaline hydroxide exchange membrane fuel cells (HEMFCs) for commercial application. However, there is a need to lower the loading of platinum while simultaneously increasing its activity. Herein, we successfully prepared a PtRu alloy catalyst featuring a precisely controlled Pt-to-Ru atomic ratio of 1:5, which is typically 1:1 or 1:3, supported on polypyrrole (Ppy) decorated Vulcan XC-72R (XC). The catalyst, named Pt1Ru5/Ppy-XC, exhibits a remarkable mass catalytic activity of 10.69 ± 1.40 mA μgPGM-1, which is 7.2-fold and 2.6-fold higher than those of commercial PtRu/C and Pt1Ru5 nanoparticles supported on raw XC, respectively. Moreover, the HEMFC with Pt1Ru5/Ppy-XC anode achieves a peak power density of 1.53 W cm-2 (0.15 mgPGM cmanode-2), outperforming that of Pt1Ru5/XC (1.26 W cm-2, 0.18 mgPGM cmanode-2). The combined experimental characterization and theoretical calculations reveal that Ppy significantly enhances the active site density due to the decrease in the proportion of micropores while optimizing the binding strength of *H and *OH species on Pt1Ru5/Ppy-XC, resulting in excellent catalytic performance even with a low Pt usage. This work provides a novel strategy for developing high-performance electrocatalysts by employing functionalized XC support to fine-tune catalyst/support interactions and control over the pore structure of carbon supports.
Collapse
Affiliation(s)
- Xingyan Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dingge Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xi Lin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Siyan Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pin Meng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongda Shi
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunlong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China; The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy, China.
| |
Collapse
|
2
|
Lu Y, Qiao Y, Bao H, Chen K, Wei Y, Zhao Q, Leon GK, Zhang H, Ling XY, Cai W. Machine Learning-Driven Surface Plasmon-Enhanced Dual Spectroscopies Improve Recognition and Real-Time Monitoring of Hazardous Chemicals. Anal Chem 2025; 97:8537-8544. [PMID: 40214208 DOI: 10.1021/acs.analchem.5c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
To address the challenges of precise identification and real-time monitoring of hazardous chemicals, this work proposes and develops surface-plasmon-enhanced dual spectroscopies (SPEDS). This technique combines highly recognizable surface-enhanced Raman spectroscopy (SERS) with real-time plasmon-mediated differential ultraviolet-visible spectroscopy (P-DUS). The feasibility of this technique is demonstrated by successfully acquiring SPEDS signals of thiourea with a plasmonic gold colloidal system. By combining SPEDS with machine learning algorithms, we achieve accurate identification and precise quantification of chemicals, with accuracies of 98.2 and 98.6%, respectively, significantly outperforming single P-DUS (63.2 and 95.1%) and SERS (80.3 and 86.5%). Additionally, we demonstrate the universality and expandability of SPEDS through other plasmonic nanostructures of various shapes and surface modifications. Using a CuS-coated Au nanoarray, we demonstrate multiple 8-h monitoring sessions of Hg2+ with good anti-interference and robust quantification, thereby highlighting the practical potential of SPEDS in real-world applications. These results position SPEDS as a cutting-edge and multifunctional chemical sensing platform, unlocking transformative possibilities for advancing environmental monitoring, industrial safety, and public health.
Collapse
Affiliation(s)
- Yanyan Lu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yu Qiao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Haoming Bao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Kang Chen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yi Wei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Guo Kang Leon
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
3
|
Wan C, Zhang Z, Wang S, Sun Q, Liu E, Pu H, Zhang A, Chen Z, Shah AH, Fu X, Alexandrova AN, Jia Q, Huang Y, Duan X. Reorganizing the Pt Surface Water Structure for Highly Efficient Alkaline Hydrogen Oxidation Reaction. J Am Chem Soc 2025; 147:12162-12169. [PMID: 40130907 DOI: 10.1021/jacs.5c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The hydrogen oxidation reaction (HOR) in alkaline electrolytes exhibits markedly slower kinetics than that in acidic electrolytes. This poses a critical challenge for alkaline exchange membrane fuel cells (AEMFCs). The slower kinetics in alkaline electrolytes is often attributed to the more sluggish Volmer step (hydrogen desorption). It has been shown that the alkaline HOR activity on the Pt surface can be considerably enhanced by the presence of oxophilic transition metals (TMs) and surface-adsorbed hydroxyl groups on TMs (TM-OHad), although the exact role of TM-OHad remains a topic of active debates. Herein, using single-atom Rh-tailored Pt nanowires as a model system, we demonstrate that hydroxyl groups adsorbed on the Rh sites (Rh-OHad) can profoundly reorganize the Pt surface water structure to deliver a record-setting alkaline HOR performance. In situ surface characterizations, together with theoretical studies, reveal that surface Rh-OHad could promote the oxygen-down water (H2O↓) that favors more hydrogen bond with Pt surface adsorbed hydrogen (H2O↓···Had-Pt) than the hydrogen-down water (OH2↓). The H2O↓ further serves as the bridge to facilitate the formation of an energetically favorable six-membered-ring transition structure with neighboring Pt-Had and Rh-OHad, thus reducing the Volmer step activation energy and boosting HOR kinetics.
Collapse
Affiliation(s)
- Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Qiang Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ershuai Liu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Heting Pu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Ao Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Zhengyue Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Xiaoyang Fu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Qingying Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Liu S, Wang X, Huang WH, Zhang Q, Han J, Zhang Y, Pao CW, Hu Z, Xu Y, Huang X. Solvation Effect-Determined Mechanisms of Cation Exchange Reactions for Efficient Multicomponent Nanocatalysts. Angew Chem Int Ed Engl 2025; 64:e202418248. [PMID: 39412955 DOI: 10.1002/anie.202418248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
Cation exchange (CE) reaction is a classical synthesis method for creating complex structures. A lock of study on intrinsic mechanism limits its understanding and practical application. Using X-ray absorption spectroscopy, we observed that the evolution from Ru-Cl to Ru-O/OH occurs during the CE between K2RuCl6 and CoSn(OH)6 in aqueous solution, while CE between K2PtCl6 and CoSn(OH)6 is inhibited due to the failure of structural evolution from Pt-Cl to Pt-O/OH. Theoretical simulations imply that the interaction between Ru-O and CoSn(OH)6 with Co vacancy (CoVCoSn(OH)6) endows the electron transfer, as a result of strengthened adsorption on CoVCoSn(OH)6. Moreover, this mechanism is validated for CE between K2RuCl6 and ASn(OH)6 (A=Mg, Ca, Mn, Co, Cu, Zn), and CE between K2PdCl6/Na3RhCl6/K2IrCl6 and CoSn(OH)6. Impressively, the Pt-free CoRuSn(OH)x produced via CE displays a mass activity and a power density of 15.0 A mgRu -1 and 11.6 W mgRu -1, respectively, for anion exchange membrane fuel cell (AEMFC) exceeding the values of commercial PtRu/C (11.8 A mgRu+Pt -1 and 9.0 W mgRu+Pt -1). This work, for the first time, reveals the intrinsic mechanism of CE as structural evolution of target ion breaking through the traditional classic etch-adsorption mechanism and will promote fundamental research and practical application in various fields.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Xiaocan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Qiugen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Yingtian Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Yong Xu
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
6
|
Su L, Wu H, Zhang S, Cui C, Zhou S, Pang H. Insight Into Intermediate Behaviors and Design Strategies of Platinum Group Metal-Based Alkaline Hydrogen Oxidation Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414628. [PMID: 39558771 DOI: 10.1002/adma.202414628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 11/20/2024]
Abstract
Hydrogen oxidation reaction (HOR) can effectively convert the hydrogen energy through the hydrogen fuel cells, which plays an increasingly important role in the renewable hydrogen cycle. Nevertheless, when the electrolyte pH changes from acid to base, even with platinum group metal (PGM) catalysts, the HOR kinetics declines with several orders of magnitude. More critically, the pivotal role of reaction intermediates and interfacial environment during intermediate behaviors on alkaline HOR remains controversial. Therefore, exploring the exceptional PGM-based alkaline HOR electrocatalysts and identifying the reaction mechanism are indispensable for promoting the commercial development of hydrogen fuel cells. Consequently, the fundamental understanding of the HOR mechanism is first introduced, with emphases on the adsorption/desorption process of distinct reactive intermediates and the interfacial structure during catalytic process. Subsequently, with the guidance of reaction mechanism, the latest advances in the rational design of advanced PGM-based (Pt, Pd, Ir, Ru, Rh-based) alkaline HOR catalysts are discussed, focusing on the correlation between the intermediate behaviors and the electrocatalytic performance. Finally, given that the challenges standing in the development of the alkaline HOR, the prospect for the rational catalysts design and thorough mechanism investigation towards alkaline HOR are emphatically proposed.
Collapse
Affiliation(s)
- Lixin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shaokun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Chenxi Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shengnan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
7
|
Liu J, Xiang Y, Fang S, Du Z, Li Z, Gao L, Fu F, Lv L, Gao X, Zhou J, Wu D, Jian X. Construction of Mo 2TiC 2T x MXene as a Superior Carrier to Support Ru-CuO Heterojunctions for Improving Alkaline Hydrogen Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70508-70519. [PMID: 39659232 DOI: 10.1021/acsami.4c14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The sluggish anodic hydrogen oxidation reaction (HOR) of the hydroxide exchange membrane fuel cell (HEMFC) is a significant barrier for practical implementation. Herein, we designed a catalyst of Mo2TiC2Tx MXene-supported Ru-CuO heterojunctions (named as Ru-CuO/MXene). The XPS spectra and the d-band center data of the different amounts of Cu of the Ru-CuO/MXene suggested that there existed a strongly electronic metal-support interaction between the active species and the substrate with MXene as the excellent carrier. Furthermore, the in situ electrochemical experimental results (operando electrochemical impedance spectroscopy and in situ electrochemical Raman spectroscopy) and density functional theory (DFT) calculations showed that Ru and CuO were the optimal adsorption sites for surface species *H and *OH, respectively, endowing Ru-CuO/MXene with the ability to weaken the hydrogen binding energy (HBE) and strengthen the hydroxide binding energy (OHBE). Remarkably, the optimized catalyst modified an impressive HOR activity in the 0.1 M KOH electrolyte with a kinetic and an exchange current density of 7.63 and 1.37 mA cm-2 at 50 mV overpotential (vs. RHE), respectively, which were 1.98- and 1.2-fold higher than those of commercial Pt/C (20 wt %). Finally, the as-prepared catalyst also exhibited superior durability and exceptional CO antipoisoning ability in 1000 ppm of the CO/H2-saturated 0.1 M KOH electrolyte. This work provides an inspiring strategy to design high-activity HOR electrocatalyst-based metallic Ru in alkaline environments.
Collapse
Affiliation(s)
- Juanjuan Liu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Yu Xiang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Sitao Fang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Zifu Du
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Zuosi Li
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Loujun Gao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Feng Fu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Lei Lv
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Xiaoming Gao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Jianzhang Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry for Solid Surface, Xiamen University, Xiamen, Fujian 361005, People Republic of China
| | - Deyin Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry for Solid Surface, Xiamen University, Xiamen, Fujian 361005, People Republic of China
| | - Xuan Jian
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| |
Collapse
|
8
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
9
|
Lee S, Zhao Q, Lee S, Choi I, Lee S, Jung I, Park S. Two- and Three-Dimensional Ag-Au Nanoalloying: Heterogeneous Building Blocks Enhancing Near-Field Focusing. ACS NANO 2024; 18:29880-29890. [PMID: 39410675 DOI: 10.1021/acsnano.4c10219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we report a strategy for fabricating binary surface-enhanced Raman scattering (SERS) substrates composed of plasmonic Pt@Ag and Pt@Au truncated-octahedral (TOh) dual-rim nanoframes (DNFs) functioning as a "nanoalloy." Pt TOh frameworks act as a scaffold to develop nanoarchitectures with surface decoration using plasmonically active materials (i.e., Au or Ag), resulting in identical sizes and shapes for the two distinct plasmonic elements, facilitating the fabrication of a "nanoalloy" blend of two shape-complex building blocks. The structural complexity from the dual-rim on (111) facets, combined with the mirror charge effect (i.e., enhanced polarization between Ag and Au) at the interface of heterogeneous components, significantly amplifies SERS activity. We carefully investigated near-field focusing of binary SERS substrates through single-particle and bulk SERS measurements corroborated by finite element method (FEM) calculations. Crucially, we developed free-standing superpowders (SPs) in which each heterogeneous building block formed micron-sized supercrystals with adjustable component ratios. These plasmonic SPs were applied to contaminated areas for analyte detection, demonstrating their potential for practical SERS applications.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inyoung Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seohyeon Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Youden B, Yang D, Carrier A, Oakes K, Servos M, Jiang R, Zhang X. Speciation Analysis of Metals and Metalloids by Surface Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250346 DOI: 10.1021/acs.est.4c06906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The presence of metalloids and heavy metals in the environment is of critical concern due to their toxicological impacts. However, not all metallic species have the same risk level. Specifically, the physical, chemical, and isotopic speciation of the metal(loids) dictate their metabolism, toxicity, and environmental fate. As such, speciation analysis is critical for environmental monitoring and risk assessment. In the past two decades, surface-enhanced Raman spectroscopy (SERS) has seen significant developments regarding trace metal(loid) sensing due to its ultrahigh sensitivity, readiness for in situ real-time applications, and cost-effectiveness. However, the speciation of metal(loid)s has not been accounted for in the design and application of SERS sensors. In this Perspective, we examine the potential of SERS for metal(loid) speciation analysis and highlight the advantages, progress, opportunities, and challenges of this application.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
11
|
Sun D, Zhang J, Wang H, Song Y, Du J, Meng G, Sun S, Deng W, Wang Z, Wang B. Discovering Facet-Dependent Formation Kinetics of Key Intermediates in Electrochemical Ammonia Oxidation by a Electrochemiluminescence Active Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402673. [PMID: 38923273 PMCID: PMC11348187 DOI: 10.1002/advs.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 06/28/2024]
Abstract
Facile evaluation of formation kinetics of key intermediate is crucial for a comprehensive understanding of electrochemical ammonia oxidation reaction (AOR) mechanisms and the design of efficient electrocatalysts. Currently, elucidating the formation kinetics of key intermediate associated with rate-determining step is still challenging. Herein, 4-phtalamide-N-(4'-methylcoumarin) naphthalimide (CF) is developed as a molecular probe to detect N2H4 intermediate during AOR via electrochemiluminescence (ECL) and further investigated the formation kinetics of N2H4 on Pt catalysts with different crystal planes. CF probe can selectively react with N2H4 to release ECL substance luminol. Thus, N2H4 intermediate as a key intermediate can be sensitively and selectively detected by ECL during AOR. For the first time, Pt(100) facet is discovered to exhibit faster N2H4 formation kinetics than Pt(111) facet, which is further confirmed by Density functional theory calculation and the finite element simulation. The AOR mechanism under the framework of Gerischer and Mauerer is further validated by examining N2H4 formation kinetics during the dimerization process (NH2 coupling). The developed ECL active probe and the discovered facet-dependent formation kinetics of key intermediates provide a promising new tool and strategy for the understanding of electrochemical AOR mechanisms and the design of efficient electrocatalysts.
Collapse
Affiliation(s)
- Dina Sun
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Jiaqi Zhang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Heng Wang
- School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou730000China
| | - Yanxia Song
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Jing Du
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Genping Meng
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Shihao Sun
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Weihua Deng
- School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou730000China
| | - Zhiyi Wang
- Spin‐X InstituteSchool of Chemistry and Chemical EngineeringState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou511442China
| | - Baodui Wang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| |
Collapse
|
12
|
Cao E, Cao Y, Sun M. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis. Anal Chem 2024; 96:11623-11638. [PMID: 38490972 DOI: 10.1021/acs.analchem.3c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
13
|
Du ZY, Wang K, Xie YM, Zhao Y, Qian ZX, Li SB, Zheng QN, Tian JH, Rudnev AV, Zhang YJ, Zhang H, Li JF. In situ Raman reveals the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts. J Chem Phys 2024; 161:021101. [PMID: 38973762 DOI: 10.1063/5.0213850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zi-Yu Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Yi-Meng Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Zheng-Xin Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Si-Bo Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Qing-Na Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31, 119071 Moscow, Russia
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
14
|
Fang Y, Wei C, Bian Z, Yin X, Liu B, Liu Z, Chi P, Xiao J, Song W, Niu S, Tang C, Liu J, Ge X, Xu T, Wang G. Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction. Nat Commun 2024; 15:1614. [PMID: 38388525 PMCID: PMC10884033 DOI: 10.1038/s41467-024-45873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
While Ru owns superior catalytic activity toward hydrogen oxidation reaction and cost advantages, the catalyst deactivation under high anodic potential range severely limits its potential to replace the Pt benchmark catalyst. Unveiling the deactivation mechanism of Ru and correspondingly developing protection strategies remain a great challenge. Herein, we develop atomic Pt-functioned Ru nanoparticles with excellent anti-deactivation feature and meanwhile employ advanced operando characterization tools to probe the underlying roles of Pt in the anti-deactivation. Our studies reveal the introduced Pt single atoms effectively prevent Ru from oxidative passivation and consequently preserve the interfacial water network for the critical H* oxidative release during catalysis. Clearly understanding the deactivation nature of Ru and Pt-induced anti-deactivation under atomic levels could provide valuable insights for rationally designing stable Ru-based catalysts for hydrogen oxidation reaction and beyond.
Collapse
Affiliation(s)
- Yanyan Fang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Wei
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zenan Bian
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xuanwei Yin
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bo Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaohui Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Chi
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Junxin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wanjie Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuwen Niu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chongyang Tang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaolin Ge
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tongwen Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Gongming Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
15
|
Huang Z, Hu S, Sun M, Xu Y, Liu S, Ren R, Zhuang L, Chan TS, Hu Z, Ding T, Zhou J, Liu L, Wang M, Huang YC, Tian N, Bu L, Huang B, Huang X. Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis. Nat Commun 2024; 15:1097. [PMID: 38321034 PMCID: PMC10847104 DOI: 10.1038/s41467-024-45369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru-1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt-1) and PtRu/C (1.24 A mgPt+Ru-1). More importantly, the peak power density and specific power density are as high as 1.84 W cm-2 and 18.4 W mgPt+Ru-1 with a low loading (0.1 mg cm-2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.
Collapse
Affiliation(s)
- Zhongliang Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengnan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yong Xu
- Nano-X Vacuum Interconnected Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
| | - Shangheng Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Renjie Ren
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Tianyi Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liangbin Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingmin Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Na Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, 361102, China.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.
| | - Xiaoqing Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
16
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
17
|
Mu X, Zhang X, Chen Z, Gao Y, Yu M, Chen D, Pan H, Liu S, Wang D, Mu S. Constructing Symmetry-Mismatched Ru xFe 3-xO 4 Heterointerface-Supported Ru Clusters for Efficient Hydrogen Evolution and Oxidation Reactions. NANO LETTERS 2024; 24:1015-1023. [PMID: 38215497 DOI: 10.1021/acs.nanolett.3c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Ru-related catalysts have shown excellent performance for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR); however, a deep understanding of Ru-active sites on a nanoscale heterogeneous support for hydrogen catalysis is still lacking. Herein, a click chemistry strategy is proposed to design Ru cluster-decorated nanometer RuxFe3-xO4 heterointerfaces (Ru/RuxFe3-xO4) as highly effective bifunctional hydrogen catalysts. It is found that introducing Ru into nanometric Fe3O4 species breaks the symmetry configuration and optimizes the active site in Ru/RuxFe3-xO4 for HER and HOR. As expected, the catalyst displays prominent alkaline HER and HOR performance with mass activity much higher than that of commercial Pt/C as well as robust stability during catalysis because of the strong interaction between the Ru cluster and the RuxFe3-xO4 support, and the optimized adsorption intermediate (Had and OHad). This work sheds light on a promsing approach to improving the electrocatalysis performance of catalysts by the breaking of atomic dimension symmetry.
Collapse
Affiliation(s)
- Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyue Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ziyue Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yun Gao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Yu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haozhe Pan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
18
|
Pan F, Fang L, Li B, Yang X, O'Carroll T, Li H, Li T, Wang G, Chen KJ, Wu G. N and OH-Immobilized Cu 3 Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO 2 Electromethanation in Bicontinuous Mesochannels. J Am Chem Soc 2024; 146:1423-1434. [PMID: 38171910 DOI: 10.1021/jacs.3c10524] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu-N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C-C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm-2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.
Collapse
Affiliation(s)
- Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
19
|
You X, Zhang D, Zhang XG, Li X, Tian JH, Wang YH, Li JF. Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy. NANO-MICRO LETTERS 2023; 16:53. [PMID: 38108934 PMCID: PMC10728385 DOI: 10.1007/s40820-023-01285-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
Collapse
Affiliation(s)
- Xueqiu You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Dongao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiangyu Li
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China.
| |
Collapse
|
20
|
Ke X, Zhou F, Chen Y, Zhao M, Yang Y, Jin H, Dong Y, Zou C, Chen X, Zhang L, Wang S. Modifying charge transfer between rhodium and ceria for boosted hydrogen oxidation reaction in alkaline electrolyte. J Colloid Interface Sci 2023; 650:1842-1850. [PMID: 37515974 DOI: 10.1016/j.jcis.2023.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline solution has restricted the rapid development of hydrogen economy. Constructing catalyst with metal-oxide heterostructures can enhance HOR performance; however, little studies concentrate on charge transfer between them, and the corresponding effects on reactions remain unclear. Herein, we report charge-transfer-adjustable CeO2/Rh interfaces uniformly dispersed on multiwalled carbon nanotube (CNT), which exhibit excellent alkaline HOR performance. Results confirm that the charge transfer from Rh to CeO2 could be conveniently tuned via thermal treatment. Consequently, the adsorption free energies of H* in Rh sites and OH* adsorption strength in CeO2 could be adjusted, as corroborated by density functional theory study. The optimized CeO2/Rh interfaces exhibit an exchange current density and a mass-specific kinetic current of 0.53 mA cmPGM-2 and 830 A gPGM-1 at an overpotential of 50 mV, respectively, which surpasses most of the advanced noble-metal-based electrocatalysts. This work provides a new insight of harnessing charge transfer of heterostructure to enhance catalytic activities.
Collapse
Affiliation(s)
- Xiaofeng Ke
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Feng Zhou
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, PR China.
| | - Yihuang Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Yun Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Youqing Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Chao Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China; Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, PR China.
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China; Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, PR China.
| |
Collapse
|
21
|
Sun H, Li C, Yang L, Han Y, Yu X, Li CP, Zhang Z, Yan Z, Cheng F, Du M. Directional electronic tuning of Ni nanoparticles by interfacial oxygen bridging of support for catalyzing alkaline hydrogen oxidation. Proc Natl Acad Sci U S A 2023; 120:e2308035120. [PMID: 37883417 PMCID: PMC10636332 DOI: 10.1073/pnas.2308035120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.
Collapse
Affiliation(s)
- Hongming Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Cha Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Le Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Yixuan Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Xueying Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou450001, China
| |
Collapse
|
22
|
Chen X, Wang XT, Le JB, Li SM, Wang X, Zhang YJ, Radjenovic P, Zhao Y, Wang YH, Lin XM, Dong JC, Li JF. Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat Commun 2023; 14:5289. [PMID: 37648700 PMCID: PMC10468501 DOI: 10.1038/s41467-023-41030-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.
Collapse
Affiliation(s)
- Xing Chen
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Xiao-Ting Wang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Jia-Bo Le
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shu-Min Li
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Xue Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yu-Jin Zhang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Petar Radjenovic
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Yu Zhao
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Yao-Hui Wang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China
| | - Xiu-Mei Lin
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China.
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, China.
| | - Jin-Chao Dong
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - Jian-Feng Li
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
23
|
Song X, Zhang XG, Deng YL, Nan ZA, Song W, Wang Y, Lü L, Jiang Q, Jin X, Zheng Y, Chen M, Xie Z, Li JF, Tian ZQ, Fan FR. Improving the Hydrogen Oxidation Reaction Rate of Ru by Active Hydrogen in the Ultrathin Pd Interlayer. J Am Chem Soc 2023. [PMID: 37268602 DOI: 10.1021/jacs.3c02604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enhancing the catalytic activity of Ru metal in the hydrogen oxidation reaction (HOR) potential range, improving the insufficient activity of Ru caused by its oxophilicity, is of great significance for reducing the cost of anion exchange membrane fuel cells (AEMFCs). Here, we use Ru grown on Au@Pd as a model system to understand the underlying mechanism for activity improvement by combining direct in situ surface-enhanced Raman spectroscopy (SERS) evidence of the catalytic reaction intermediate (OHad) with in situ X-ray diffraction (XRD), electrochemical characterization, as well as DFT calculations. The results showed that the Au@Pd@Ru nanocatalyst utilizes the hydrogen storage capacity of the Pd interlayer to "temporarily" store the activated hydrogen enriched at the interface, which spontaneously overflows at the "hydrogen-deficient interface" to react with OHad adsorbed on Ru. It is the essential reason for the enhanced catalytic activity of Ru at anodic potential. This work deepens our understanding of the HOR mechanism and provides new ideas for the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Xianmeng Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yong-Liang Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Zi-Ang Nan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Weishen Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanjie Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Linzhe Lü
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Qiaorong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xi Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Yang Y, Zhao L, Sun Y, Lin Y, Yang L, Mao K, Li C, Xu K. Tuning Electron Transfer in Atomic-Scale Pt-Supported Catalysts for the Alkaline Hydrogen Oxidation Reaction. Inorg Chem 2023; 62:5032-5039. [PMID: 36919994 DOI: 10.1021/acs.inorgchem.3c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Developing efficient atomic-scale metal-supported catalysts is of great significance for energy conversion technologies. However, the precise modulation of electron transfer between the metal and supporter in atomic-scale metal-supported catalysts to further improve the catalytic activity is still a major challenge. Herein, we show tunable electron transfer between atomic-scale Pt and tungsten nitride/oxide supports (namely, Pt/WN and Pt/W18O49). Pt/WN with modest electron exchange and Pt/W18O49 with aggressive electron exchange exhibit notably different catalytic activities for the alkaline hydrogen oxidation reaction (HOR), in which Pt/WN shows a 5.7-fold enhancement in HOR intrinsic catalytic performance in comparison to Pt/W18O49. Additionally, the tunable electronic transfer at the interface of Pt/WN and Pt/W18O49, as proven by the theoretical calculation, resulted in the discrepancy of the adsorption free energy of the reaction intermediates, as well as catalytic activity, for the HOR process. Our work provides new insights into the design of advanced atomic-scale metal-supported catalysts for electrocatalysis.
Collapse
Affiliation(s)
- Yisong Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Lei Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan 243032, Anhui, P. R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
25
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Dong J, Wu H, Cao Y, Yuan J, Han Q, Gao W, Zhang C, Qi J, Sun M. Capillary-force-assisted self-assembly of gold nanoparticles into highly ordered plasmonic thin films for ultrasensitive SERS. Phys Chem Chem Phys 2023; 25:1649-1658. [PMID: 36541051 DOI: 10.1039/d2cp05158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, a capillary device based on the surface plasmon-enhanced Raman scattering effect was prepared by a simple and easy method. First, the capillary was treated with APTES solution. Due to the electrostatic effect, gold nanoparticles could be easily and tightly assembled in the capillary inner wall. On this basis, the effects of changing the concentration of APTES, the concentration of colloids and the soaking time of the capillary in the colloids on the assembly of gold nanoparticles on the inner wall of the capillary were studied, and the SERS enhancement effect under different conditions was analyzed, and the optimal solution was successfully found. At the same time, the reason why the capillary substrate shows better SERS performance than the traditional planar substrate is deeply discussed. Since the nanoparticles can be attached to the upper and lower surfaces of the inner wall of the capillary, the utilization rate of nanoparticles and laser is improved, thereby achieving higher enhancement. For the detection of the probe molecule rhodamine 6G, it was proved that the substrate has good uniformity and the lowest detection limit can reach 10-10 M. Finally, the real-life pesticide thiram and the food additive aspartame were tested, and the detection limits could reach 10-6 M and 0.25 g L-1. It is confirmed that the prepared capillary shows excellent SERS performance and can be used for rapid detection in various fields.
Collapse
Affiliation(s)
- Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Haoran Wu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Yi Cao
- School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jiaxin Yuan
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Jianxia Qi
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
27
|
Lin X, Li J. Applications of In Situ Raman Spectroscopy on Rechargeable Batteries and Hydrogen Energy Systems. ChemElectroChem 2023. [DOI: 10.1002/celc.202201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiu‐Mei Lin
- Department of Chemistry and Environment Science Minnan Normal University Zhangzhou 363000 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
28
|
Chen H, Liu J, Wu X, Ye C, Zhang J, Luo JL, Fu XZ. Pt-Co Electrocatalysts: Syntheses, Morphologies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204100. [PMID: 35996763 DOI: 10.1002/smll.202204100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pt-Co electrocatalysts have attracted significant attention because of their excellent performance in many electrochemical reactions. This review focuses on Pt-Co electrocatalysts designed and prepared for electrocatalytic applications. First, the various synthetic methods and synthesis mechanisms are systematically summarized; typical examples and core synthesis parameters are discussed for regulating the morphology and structure. Then, starting with the design and structure-activity relationship of catalysts, the research progress of the morphologies and structures of Pt-Co electrocatalysts obtained based on various strategies, the structure-activity relationship between them, and their properties are summarized. In addition, the important electrocatalytic applications and mechanisms of Pt-Co catalysts, including electrocatalytic oxidation/reduction and bifunctional catalytic reactions, are described and summarized, and their high catalytic activities are discussed on the basis of their mechanism and active sites. Moreover, the advanced electrochemical in situ characterization techniques are summarized, and the challenges and direction concerning the development of high-performance Pt-Co catalysts in electrocatalysis are discussed.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuexian Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chunyi Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
29
|
Enhanced Performance of Sn@Pt Core-Shell Nanocatalysts Supported on Two Different Carbon Structures for the Hydrogen Oxidation Reaction in Acid Media. J CHEM-NY 2022. [DOI: 10.1155/2022/2982594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sn@Pt core-shell nanocatalysts, supported on Vulcan XC-72 and home-developed nitrogen-doped graphene (Sn@Pt/C and Sn@Pt/NG, respectively), were evaluated for the hydrogen oxidation reaction (HOR) in acid electrolyte. The nanocatalysts were synthesized by the bromide anion exchange (BAE) method. TEM characterization confirmed the nanosize nature of Sn@Pt/C and Sn@Pt/NG, with an average particle size of 2.1 and 2.3 nm, respectively. Sn@Pt/C delivered a similar mass limiting current density (jl, m) of the HOR compared to Sn@Pt/NG, which was higher than those of Pt/C and Pt/NG (ca. 2 and 2.3-fold increase, respectively). Moreover, the Sn@Pt/C and Sn@Pt/NG core-shell nanocatalysts demonstrated a higher specific activity related to Pt/C and Pt/NG. Mass and specific Tafel slopes further demonstrated the improved catalytic activity of Sn@Pt/C for the HOR, followed by Sn@Pt/NG. The application of the nanocatalysts was proposed for polymer electrolyte membrane fuel cells (PEMFC).
Collapse
|