1
|
Mittal S, Jena MK, Pathak B. Automated-Screening Oriented Electric Sensing of Vitamin B1 Using a Machine Learning Aided Solid-State Nanopore. J Phys Chem B 2025; 129:1301-1310. [PMID: 39480465 DOI: 10.1021/acs.jpcb.4c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Micronutrient detection and identification at the single-molecule level are paramount for both clinical and home diagnostics. Analytical tools such as high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry have been widely used but include a high instrument cost and prolonged analysis time. Here, as a model system, by merging nanopore signatures with machine learning algorithms, we propose an automated electric sensing strategy to identify vitamin B1 and its phosphorylated derivatives with good accuracy. Further, the relationship between vitamin B1 dynamics and nanopore signatures is examined. To understand the machine-decision-making process, Shapley additive explanations are made. Using a machine learning aided solid-state nanopore, we pave the way for next-generation micronutrient detection.
Collapse
Affiliation(s)
- Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
2
|
Zhang D, Zhang M, Zhou R. Sequence-Dependent Slowdown of DNA Translocation Using Transmembrane RNA-DNA Interactions in MoS 2 Nanopore. J Phys Chem B 2025; 129:876-885. [PMID: 39804229 DOI: 10.1021/acs.jpcb.4c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The emergence of nanopores in two-dimensional (2D) nanomaterials offers an attractive solid-state platform for high-throughput and low-cost DNA sequencing. However, several challenges remain to be addressed before their wide application, including the too-fast DNA translocation speed (compared to state-of-the-art single nucleoside detection techniques) and too large noise/signal ratios due to DNA fluctuations inside the nanopores. Here, we use molecular dynamics (MD) simulations to demonstrate the feasibility of utilizing RNA-DNA interactions in modulating DNA translocations in 2D MoS2 nanopores. By constructing a transmembrane-RNA-oligonucleotide-decorated nanopore (TOD nanopore), we find that the translocation speed of DNA can be significantly slowed in a sequence-dependent manner, with up to 160-fold deceleration compared with the naked control. The strong interactions between the translocating DNA and the first and second guanines of transmembrane RNAs are thought to play a key role in regulating the translocation process. Moreover, the observed suppression of base conformational fluctuations within the TOD nanopore can further improve the single nucleotide detecting resolution. Therefore, our investigations demonstrate that the proposed TOD nanopore can be a potential candidate for enhanced DNA sequencing with solid-state nanopores.
Collapse
Affiliation(s)
- Dong Zhang
- Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingjiao Zhang
- Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
3
|
Cui Y, Gao L, Ying C, Tian J, Liu Z. Two-Dimensional Material-Based Nanofluidic Devices and Their Applications. ACS NANO 2025; 19:1911-1943. [PMID: 39783262 DOI: 10.1021/acsnano.4c12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids. Their ultrathin structure and photothermoelectric response make it possible to achieve the scale control, friction limitation, and regulatory response, all of which are challenging to achieve with traditional solid materials. In this review, we provide a comprehensive overview of the preparation methods and corresponding structures of three types of 2D material-based nanofluidic devices, including nanopores, nanochannels, and membranes. We highlight their applications and recent advances in exploring physical mechanisms, detecting biomolecules (DNA, protein), developing iontronics devices, improving ion/gas selectivity, and generating osmotic energy. We discuss the challenges facing 2D material-based nanofluidic devices and the prospects for future advancements in this field.
Collapse
Affiliation(s)
- Yangjun Cui
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Long Gao
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Cuifeng Ying
- Advanced Optics & Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, U.K
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Zhibo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
4
|
Wei J, Hong H, Wang X, Lei X, Ye M, Liu Z. Nanopore-based sensors for DNA sequencing: a review. NANOSCALE 2024; 16:18732-18766. [PMID: 39295590 DOI: 10.1039/d4nr01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Nanopore sensors, owing to their distinctive structural properties, can be used to detect biomolecular translocation events. These sensors operate by monitoring variations in electric current amplitude and duration, thereby enabling the calibration and distinction of various biomolecules. As a result, nanopores emerge as a potentially powerful tool in the field of deoxyribonucleic acid (DNA) sequencing. However, the interplay between testing bandwidth and noise often leads to the loss of part of the critical translocation signals, presenting a substantial challenge for the precise measurement of biomolecules. In this context, innovative detection mechanisms have been developed, including optical detection, tunneling current detection, and nanopore field-effect transistor (FET) detection. These novel detection methods are based on but beyond traditional nanopore techniques and each of them has unique advantages. Notably, nanopore FET sensors stand out for their high signal-to-noise ratio (SNR) and high bandwidth measurement capabilities, overcoming the limitations typically associated with traditional solid-state nanopore (SSN) technologies and thus paving the way for new avenues to biomolecule detection. This review begins by elucidating the fundamental detection principles, development history, applications, and fabrication methods for traditional SSNs. It then introduces three novel detection mechanisms, with a particular emphasis on nanopore FET detection. Finally, a comprehensive analysis of the advantages and challenges associated with both SSNs and nanopore FET sensors is performed, and then insights into the future development trajectories for nanopore FET sensors in DNA sequencing are provided. This review has two main purposes: firstly, to provide researchers with a preliminary understanding of advancements in the nanopore field, and secondly, to offer a comprehensive analysis of the fabrication techniques, transverse current detection principles, challenges, and future development trends in the field of nanopore FET sensors. This comprehensive analysis aims to help give researchers in-depth insights into cutting-edge advancements in the field of nanopore FET sensors.
Collapse
Affiliation(s)
- Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Xin Lei
- School of Chemistry, Beihang University, Beijing, 100084, China
| | - Minjie Ye
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
6
|
Lee S, Song MK, Zhang X, Suh JM, Ryu JE, Kim J. Mixed-Dimensional Integration of 3D-on-2D Heterostructures for Advanced Electronics. NANO LETTERS 2024. [PMID: 39037750 DOI: 10.1021/acs.nanolett.4c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their exceptional properties requisite for next-generation electronics, including ultrahigh carrier mobility, superior mechanical flexibility, and unusual optical characteristics. Despite their great potential, one of the major technical difficulties toward lab-to-fab transition exists in the seamless integration of 2D materials with classic material systems, typically composed of three-dimensional (3D) materials. Owing to the self-passivated nature of 2D surfaces, it is particularly challenging to achieve well-defined interfaces when forming 3D materials on 2D materials (3D-on-2D) heterostructures. Here, we comprehensively review recent progress in 3D-on-2D incorporation strategies, ranging from direct-growth- to layer-transfer-based approaches and from non-epitaxial to epitaxial integration methods. Their technological advances and obstacles are rigorously discussed to explore optimal, yet viable, integration strategies of 3D-on-2D heterostructures. We conclude with an outlook on mixed-dimensional integration processes, identifying key challenges in state-of-the-art technology and suggesting potential opportunities for future innovation.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Min-Kyu Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jung-El Ryu
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Chen H, Huang C, Liao Z, Ma X, Fan J. The Role of MXene Surface Terminations on Peptide Transportation in Nanopore Sensing. J Phys Chem Lett 2024; 15:3900-3906. [PMID: 38564363 DOI: 10.1021/acs.jpclett.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nanopores with two-dimensional materials have various advantages in sensing, but the fast translocation of molecules hinders their scale-up applications. In this work, we investigate the influence of -F, -O, and -OH surface terminations on the translocation of peptides through MXene nanopores. We find that the longest dwell time always occurs when peptides pass through the Ti3C2O2 nanopores. This elongated dwell time is induced by the strongest interaction between peptides and the Ti3C2O2 membrane, in which the van der Waals interactions dominate. Compared to the other two MXene nanopores, the braking effect is indicated during the whole translocation process, which evidence the advantage of Ti3C2O2 in nanopore sensing. Our work demonstrates that membrane surface chemistry has a great influence on the translocation of peptides, which can be introduced in the design of nanopores for a better performance.
Collapse
Affiliation(s)
- Huan Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhenyu Liao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
8
|
Sülzle J, Yang W, Shimoda Y, Ronceray N, Mayner E, Manley S, Radenovic A. Label-Free Imaging of DNA Interactions with 2D Materials. ACS PHOTONICS 2024; 11:737-744. [PMID: 38405387 PMCID: PMC10885193 DOI: 10.1021/acsphotonics.3c01604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
Two-dimensional (2D) materials offer potential as substrates for biosensing devices, as their properties can be engineered to tune interactions between the surface and biomolecules. Yet, not many methods can measure these interactions in a liquid environment without introducing labeling agents such as fluorophores. In this work, we harness interferometric scattering (iSCAT) microscopy, a label-free imaging technique, to investigate the interactions of single molecules of long dsDNA with 2D materials. The millisecond temporal resolution of iSCAT allows us to capture the transient interactions and to observe the dynamics of unlabeled DNA binding to a hexagonal boron nitride (hBN) surface in solution for extended periods (including a fraction of 10%, of trajectories lasting longer than 110 ms). Using a focused ion beam technique to engineer defects, we find that DNA binding affinity is enhanced at defects; when exposed to long lanes, DNA binds preferentially at the lane edges. Overall, we demonstrate that iSCAT imaging is a useful tool to study how biomolecules interact with 2D materials, a key component in engineering future biosensors.
Collapse
Affiliation(s)
- Jenny Sülzle
- Institute
of Physics and Institute of Bioengineering, Laboratory of Experimental
Biophysics (LEB), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Wayne Yang
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Yuta Shimoda
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nathan Ronceray
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Eveline Mayner
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Suliana Manley
- Institute
of Physics and Institute of Bioengineering, Laboratory of Experimental
Biophysics (LEB), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Aleksandra Radenovic
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
9
|
Yu YS, Ren Q, Tan RR, Ding HM. Exploring the non-monotonic DNA capture behavior in a charged graphene nanopore. Phys Chem Chem Phys 2023; 25:28034-28042. [PMID: 37846110 DOI: 10.1039/d3cp03767c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nanopore-based biomolecule detection has emerged as a promising and sought-after innovation, offering high throughput, rapidity, label-free analysis, and cost-effectiveness, with potential applications in personalized medicine. However, achieving efficient and tunable biomolecule capture into the nanopore remains a significant challenge. In this study, we employ all-atom molecular dynamics simulations to investigate the capture of double-stranded DNA (dsDNA) molecules into graphene nanopores with varying positive charges. We discover a non-monotonic relationship between the DNA capture rate and the charge of the graphene nanopore. Specifically, the capture rate initially decreases and then increases with an increase in nanopore charge. This behavior is primarily attributed to differences in the electrophoretic force, rather than the influence of electroosmosis or counterions. Furthermore, we also observe this non-monotonic trend in various ionic solutions, but not in ionless solutions. Our findings shed light on the design of novel DNA sequencing devices, offering valuable insights into enhancing biomolecule capture rates in nanopore-based sensing platforms.
Collapse
Affiliation(s)
- You-Sheng Yu
- School of Science, East China University of Technology, Nanchang 330013, China
- National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiang Ren
- School of Science, East China University of Technology, Nanchang 330013, China
| | - Rong-Ri Tan
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
10
|
Tayo BO, Walkup MA, Caliskan S. Adsorption of DNA nucleobases on single-layer Ti 3C 2 MXene and graphene: vdW-corrected DFT and NEGF studies. AIP ADVANCES 2023; 13:085213. [PMID: 37575976 PMCID: PMC10415020 DOI: 10.1063/5.0160784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
We investigated the interaction of DNA nucleobases [adenine (A), guanine (G), thymine (T), and cytosine (C)] with single-layer Ti3C2 MXene using Van der Waals (vdW)-corrected density functional theory and non-equilibrium Green's function methods. All calculations were benchmarked against graphene. We showed that depending on the initial vertical height of a nucleobase above the Ti3C2 surface, two interaction mechanisms are possible, namely, physisorption and chemisorption. For graphene, DNA nucleobases always physisorbed onto the graphene surface irrespective of the initial vertical height of the nucleobase above the graphene sheet. The PBE+vdW binding energies for graphene are high (0.55-0.74 eV) and follow the order G > A > T > C, with adsorption heights in the range of 3.16-3.22 Å, indicating strong physisorption. For Ti3C2, the PBE+vdW binding energies are relatively weaker (0.16-0.20 eV) and follow the order A > G = T > C, with adsorption heights in the range of 5.51-5.60 Å, indicating weak physisorption. The binding energies for chemisorption follow the order G > A > T > C, which is the same order for physisorption. The binding energy values (5.3-7.5 eV) indicate very strong chemisorption (∼40 times larger than the physisorption binding energies). Furthermore, our band structure and electronic transport analysis showed that for physisorption, there is neither significant variation in the band structure nor modulation in the transmission function and device density of states. The relatively weak physisorption and strong chemisorption show that Ti3C2 might not be capable of identifying DNA nucleobases using the physisorption method.
Collapse
Affiliation(s)
- Benjamin O. Tayo
- School of Engineering, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| | - Michael A. Walkup
- School of Engineering, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| | - Serkan Caliskan
- Department of Physical and Applied Sciences, University of Houston–Clear Lake, Houston, Texas 77058, USA
| |
Collapse
|
11
|
Liu M, Li J, Tan CS. Unlocking the Power of Nanopores: Recent Advances in Biosensing Applications and Analog Front-End. BIOSENSORS 2023; 13:598. [PMID: 37366963 DOI: 10.3390/bios13060598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The biomedical field has always fostered innovation and the development of various new technologies. Beginning in the last century, demand for picoampere-level current detection in biomedicine has increased, leading to continuous breakthroughs in biosensor technology. Among emerging biomedical sensing technologies, nanopore sensing has shown great potential. This paper reviews nanopore sensing applications, such as chiral molecules, DNA sequencing, and protein sequencing. However, the ionic current for different molecules differs significantly, and the detection bandwidths vary as well. Therefore, this article focuses on current sensing circuits, and introduces the latest design schemes and circuit structures of different feedback components of transimpedance amplifiers mainly used in nanopore DNA sequencing.
Collapse
Affiliation(s)
- Miao Liu
- Medical College, Tianjin University, Tianjin 300072, China
| | - Junyang Li
- Medical College, Tianjin University, Tianjin 300072, China
| | - Cherie S Tan
- Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Jena MK, Pathak B. Development of an Artificially Intelligent Nanopore for High-Throughput DNA Sequencing with a Machine-Learning-Aided Quantum-Tunneling Approach. NANO LETTERS 2023; 23:2511-2521. [PMID: 36799480 DOI: 10.1021/acs.nanolett.2c04062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Solid-state nanopore-based single-molecule DNA sequencing with quantum tunneling technology poses formidable challenges to achieve long-read sequencing and high-throughput analysis. Here, we propose a method for developing an artificially intelligent (AI) nanopore that does not require extraction of the signature transmission function for each nucleotide of the whole DNA strand by integrating supervised machine learning (ML) and transverse quantum transport technology with a graphene nanopore. The optimized ML model can predict the transmission function of all other nucleotides after training with data sets of all the orientations of any nucleotide inside the nanopore with a root-mean-square error (RMSE) of as low as 0.062. Further, up to 96.01% accuracy is achieved in classifying the unlabeled nucleotides with their transmission readouts. We envision that an AI nanopore can alleviate the experimental challenges of the quantum-tunneling method and pave the way for rapid and high-precision DNA sequencing by predicting their signature transmission functions.
Collapse
Affiliation(s)
- Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
13
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Purwidyantri A, Azinheiro S, García Roldán A, Jaegerova T, Vilaça A, Machado R, Cerqueira MF, Borme J, Domingues T, Martins M, Alpuim P, Prado M. Integrated Approach from Sample-to-Answer for Grapevine Varietal Identification on a Portable Graphene Sensor Chip. ACS Sens 2023; 8:640-654. [PMID: 36657739 PMCID: PMC9973367 DOI: 10.1021/acssensors.2c02090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
Identifying grape varieties in wine, related products, and raw materials is of great interest for enology and to ensure its authenticity. However, these matrices' complexity and low DNA content make this analysis particularly challenging. Integrating DNA analysis with 2D materials, such as graphene, offers an advantageous pathway toward ultrasensitive DNA detection. Here, we show that monolayer graphene provides an optimal test bed for nucleic acid detection with single-base resolution. Graphene's ultrathinness creates a large surface area with quantum confinement in the perpendicular direction that, upon functionalization, provides multiple sites for DNA immobilization and efficient detection. Its highly conjugated electronic structure, high carrier mobility, zero-energy band gap with the associated gating effect, and chemical inertness explain graphene's superior performance. For the first time, we present a DNA-based analytic tool for grapevine varietal discrimination using an integrated portable biosensor based on a monolayer graphene field-effect transistor array. The system comprises a wafer-scale fabricated graphene chip operated under liquid gating and connected to a miniaturized electronic readout. The platform can distinguish closely related grapevine varieties, thanks to specific DNA probes immobilized on the sensor, demonstrating high specificity even for discriminating single-nucleotide polymorphisms, which is hard to achieve with a classical end-point polymerase chain reaction or quantitative polymerase chain reaction. The sensor was operated in ultralow DNA concentrations, with a dynamic range of 1 aM to 0.1 nM and an attomolar detection limit of ∼0.19 aM. The reported biosensor provides a promising way toward developing decentralized analytical tools for tracking wine authenticity at different points of the food value chain, enabling data transmission and contributing to the digitalization of the agro-food industry.
Collapse
Affiliation(s)
- Agnes Purwidyantri
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Sarah Azinheiro
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Department
of Analytical Chemistry, Nutrition and Food Science, School of Veterinary
Sciences, University of Santiago de Compostela, Campus of Lugo, Lugo27002, Spain
| | - Aitor García Roldán
- Department
of Analytical Chemistry, Nutrition and Food Science, School of Veterinary
Sciences, University of Santiago de Compostela, Campus of Lugo, Lugo27002, Spain
| | - Tereza Jaegerova
- Department
of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague 6, Prague166 28, Czech Republic
| | - Adriana Vilaça
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Rofer Machado
- Centre
of Chemistry, University of Minho, Campus de Gualtar, Braga4710-057, Portugal
| | - M. Fátima Cerqueira
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Center
of Physics of the Universities of Minho and Porto, University of Minho, Braga4710-057, Portugal
| | - Jérôme Borme
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Telma Domingues
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Center
of Physics of the Universities of Minho and Porto, University of Minho, Braga4710-057, Portugal
| | - Marco Martins
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Pedro Alpuim
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Center
of Physics of the Universities of Minho and Porto, University of Minho, Braga4710-057, Portugal
| | - Marta Prado
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| |
Collapse
|