1
|
López-Alcalá D, Hu Z, Baldoví JJ. Graphendofullerene: a novel molecular two-dimensional ferromagnet. Chem Sci 2025; 16:7659-7666. [PMID: 40177315 PMCID: PMC11959406 DOI: 10.1039/d5sc01278c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025] Open
Abstract
Carbon chemistry has attracted a lot of attention from chemists, physicists and material scientists in the last few decades. The recent discovery of graphullerene provides a promising platform for many applications due to its exceptional electronic properties and the possibility to host molecules or clusters inside the fullerene units. Herein, we introduce graphendofullerene, a novel molecular-based two-dimensional (2D) magnetic material formed by trimetallic nitride clusters encapsulated on graphullerene. Through first-principles calculations, we demonstrate the successful incorporation of the molecules into the 2D network formed by C80 fullerenes, which leads to robust long-range ferromagnetic order with a Curie temperature (T C) of 38 K. Additionally, we achieve a 45% and 18% increase in T C by strain engineering and electrostatic doping, respectively. These findings open the way for a new family of molecular 2D magnets based on graphendofullerene for advanced technologies.
Collapse
Affiliation(s)
- Diego López-Alcalá
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - José J Baldoví
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
2
|
Zhang Y, Xie Y, Mei H, Yu H, Li M, He Z, Fan W, Zhang P, Ricciardulli AG, Samorì P, Li M, Yang S. Electrochemical Synthesis of 2D Polymeric Fullerene for Broadband Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416741. [PMID: 39989161 DOI: 10.1002/adma.202416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Indexed: 02/25/2025]
Abstract
2D polymeric fullerene scaffolds, composed of covalently bonded superatomic C60 nanoclusters, are emerging semiconductors possessing unique hierarchical electronic structures. Hitherto their synthesis has relied on complex and time-consuming reactions, thereby hindering scalable production and limiting the technological relevance. Here, the study demonstrates a facile electrochemical exfoliation strategy based on the intercalation and expansion of a layered fullerene superlattice, to produce large size (≈52.5 µm2) and monolayer thick 2D polymeric C60 with high exfoliation yield (≈83%). In situ reduction of solvated protons (H+) weakens the interlayer interactions thereby promoting the rapid and uniform intercalation of tetra-n-butylammonium (TBA+), ensuring gram-scale throughput and high structural integrity of exfoliated 2D polymeric C60. As a proof of concept, the solution-processed 2D polymeric C60 nanosheets have been integrated into thin-film photodetectors, exhibiting a broad spectral photoresponse ranging from 405 to 1200 nm, with a peak photocurrent at 850 nm and a stable response time. This efficient and scalable exfoliation method holds great promise for the advancement of multifunctional composites and optoelectronic devices based on 2D polymeric C60.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Xie
- State Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Mei
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Yu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minjuan Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zexiang He
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Mengmeng Li
- State Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Xu J, Li YK, Guo ZX, Li Z, Hou GL. Harnessing Hole Sites in 2D Monolayer C 60 for Metal Cluster Anchoring. J Phys Chem Lett 2025; 16:1142-1149. [PMID: 39846507 DOI: 10.1021/acs.jpclett.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Synthesis of 2D quasi-hexagonal phase C60 (qHP C60) has opened avenues for its application as a novel catalytic support. This study investigates the structure, stability, and anisotropic properties of Cu4 clusters anchored on the qHP C60 surface through density functional theory calculations. Our findings reveal that the Cu4 cluster preferentially occupies the intrinsic holes of the qHP C60 via one of its tetrahedral faces, resulting in enhanced stability and conductivity, with a significantly reduced band gap of 0.11 eV, compared to the semiconductor behavior of pristine qHP C60. The anisotropic mechanical properties are retained, affirming the robustness of the material under stress. Importantly, the interaction between qHP C60 and Cu4 not only modifies intramolecular bonding but also introduces additional active sites, thereby having a promising enhanced catalytic performance. This work underscores the potential of qHP C60 as an innovative support in catalysis, paving the way for further exploration of its capabilities in industrial applications.
Collapse
Affiliation(s)
- Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ya-Ke Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhi-Xin Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhe Li
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
4
|
Shearsby D, Wu J, Yang D, Peng B. Tuning electronic and optical properties of 2D polymeric C 60 by stacking two layers. NANOSCALE 2025; 17:2616-2620. [PMID: 39817798 DOI: 10.1039/d4nr04540h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Benefiting from improved stability due to interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C60. However, there is a lack of systematic theoretical studies on the material properties of few-layer C60 networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks. The band gap and band-edge positions remain mostly unchanged after stacking two layers into a bilayer, enabling the bilayer to be almost as efficient a photocatalyst as the monolayer. The effective mass ratio along different directions is varied for conduction band states due to interlayer interactions, leading to enhanced anisotropy in carrier transport. Additionally, stronger exciton absorption is found in the bilayer than that in the monolayer over the entire visible light range, rendering the bilayer a more promising candidate for photovoltaics. Moreoever, the polarisation dependence of optical absorption in the bilayer is increased in the red-yellow light range, offering unique opportunities in photonics and display technologies with tailored optical properties over specific directions. Our study provides strategies to tune electronic and optical properties of 2D polymeric C60via the introduction of stacking degrees of freedom.
Collapse
Affiliation(s)
- Dylan Shearsby
- Clare College, University of Cambridge, Trinity Lane, Cambridge CB2 1TL, UK
| | - Jiaqi Wu
- Peterhouse, University of Cambridge, Trumpington Street, Cambridge CB2 1RD, UK
| | - Dekun Yang
- Clare College, University of Cambridge, Trinity Lane, Cambridge CB2 1TL, UK
| | - Bo Peng
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J.Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
5
|
Wu J, Peng B. Smallest [5,6]Fullerene as Building Blocks for 2D Networks with Superior Stability and Enhanced Photocatalytic Performance. J Am Chem Soc 2025; 147:1749-1757. [PMID: 39558753 PMCID: PMC11744754 DOI: 10.1021/jacs.4c13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The assembly of molecules to form covalent networks can create varied lattice structures with physical and chemical properties distinct from those of conventional atomic lattices. Using the smallest stable [5,6]fullerene units as building blocks, various 2D C24 networks can be formed with superior stability and strength compared to the recently synthesized monolayer polymeric C60. Monolayer C24 harnesses the properties of both carbon crystals and fullerene molecules, such as stable chemical bonds, suitable band gaps, and large surface area, facilitating photocatalytic water splitting. The electronic band gaps of C24 are comparable to those of TiO2, providing appropriate band edges with sufficient external potential for overall water splitting over the acidic and neutral pH range. Upon photoexcitation, strong solar absorption enabled by strongly bound bright excitons can generate carriers effectively, while the type-II band alignment between C24 and other 2D monolayers can separate electrons and holes in individual layers simultaneously. Additionally, the number of surface-active sites of C24 monolayers are three times more than that of their C60 counterparts in a much wider pH range, providing spontaneous reaction pathways for the hydrogen evolution reaction. Our work provides insights into materials design using tunable building blocks of fullerene units with tailored functions for energy generation, conversion, and storage.
Collapse
Affiliation(s)
- Jiaqi Wu
- Peterhouse, University of Cambridge, Trumpington Street, Cambridge CB2 1RD, UK
| | - Bo Peng
- Theory
of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
6
|
Xiong M, Yang T. Supercarbon assembly inspired two-dimensional hourglass fermion. J Chem Phys 2025; 162:024301. [PMID: 39774885 DOI: 10.1063/5.0242012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
By using a tight-binding model, first-principles calculations, and ab initio molecular dynamics simulations, we theoretically demonstrate that the C76-Td-assembled two-dimensional (2D) honeycomb lattice is stable at room temperature and is resistant to mechanical deformation. We disclose that each C76-Td mimics a single carbon atom (geometrically and electronically); hence, it plays the role of one supercarbon. This inspires that the 2D material exhibits an exotic hourglass-like fermion at the Fermi level. Furthermore, we suggest that biaxial strains could modify the hourglass shape, including the electronic Fermi velocity, and induce magnetization. Hexagonal boron nitride can be employed as a protective layer without affecting the electronic structure of this material. This hourglass fermion has the potential to serve as a promising material for high-speed electronic devices and to bridge the gap between zero-dimensional spherical carbon clusters and two-dimensional graphene.
Collapse
Affiliation(s)
- Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
7
|
Bai H, Gai X, Sun L, Ma J. Theoretical study on the prediction of optical properties and thermal stability of fullerene nanoribbons. Sci Rep 2024; 14:28978. [PMID: 39578551 PMCID: PMC11584730 DOI: 10.1038/s41598-024-80338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
In this work, we predicted two different configurations of fullerene nanoribbons (quasi-hexagonal phase (qHP) and quasi-tetragonal phase (qTP)) based on two-dimensional fullerenes, with widths of 1, 2, and 3 fullerene units, respectively. Based on first-principles calculations and ab-initio molecular dynamics (AIMD), the thermal stability and optical properties of six fullerene nanoribbons were predicted. AIMD studies indicate that wider qHP nanoribbons (qHPs) exhibit better thermal stability, while increased temperatures lead to greater instability. In contrast, qHP-3 shows the best thermal stability among the six structures. Then, the optical gap between the calculated and experimental quasi-hexagonal two-dimensional fullerenes is compared to illustrate the accuracy of the calculation. The absorption spectra of six fullerene nanoribbons were calculated and the anisotropy of light absorption was analyzed. Finally, the charge transfer modes of each excited state were visualized through electron-hole density plots. This work provides an essential theoretical foundation for understanding new all-carbon materials, specifically fullerenes.
Collapse
Affiliation(s)
- Haonan Bai
- College of Science, Liaoning Petrochemical University, Fushun, 113001, People's Republic of China
| | - Xinwen Gai
- College of Science, Liaoning Petrochemical University, Fushun, 113001, People's Republic of China
| | - Lulu Sun
- College of Science, Liaoning Petrochemical University, Fushun, 113001, People's Republic of China.
| | - Ji Ma
- College of Science, Liaoning Petrochemical University, Fushun, 113001, People's Republic of China.
| |
Collapse
|
8
|
Choudhary S, Saroha R, Banerjee S. Efficient Electron Injection into Graphullerene Enables Reversible NaC 2 Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50859-50869. [PMID: 39279679 DOI: 10.1021/acsami.4c11178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Sodium-ion batteries are emerging as promising alternatives to conventional lithium-based technology, offering solutions to challenges in large-scale grid storage. However, the capacity of conventional graphite-based anodes for storing Na-ions is inherently limited by suboptimal thermodynamic interactions and irreversible structural changes that occur in the anode during charge-discharge cycles. Herein, we present a computational design that explores the potential of graphullerene, a two-dimensional framework with interconnected fullerene moieties, for the reversible storage of Na-ions. A unique aspect of this design is the electron injection capacity into the graphullerene anode, reaching 15 electrons per fullerene moiety, which is the highest limit to date. This advancement enables large-scale Na-ion storage up to the stoichiometry of NaC2, exhibiting specific capacity of 551 mAhg-1 and averaged open circuit voltage of 0.18 V vs Na/Na+. In addition, the multilayered arrangement of stored Na-ions enhances the Na-ion diffusivity on the graphullerene surface, leading to rapid insertion and extraction kinetics. Thus, raising the electron injection limit offers a promising strategy to transform carbon-based anodes into suitable candidates for reversible Na-ion storage, without relying on artificial defect introduction or doping.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ritika Saroha
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Swastika Banerjee
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
9
|
Tong Y, Dai S, Jiang DE. 2D Carbonaceous Materials for Molecular Transport and Functional Interfaces: Simulations and Insights. Acc Chem Res 2024; 57:2678-2688. [PMID: 39190683 PMCID: PMC11411710 DOI: 10.1021/acs.accounts.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ConspectusCarbon-based two-dimensional (2D) functional materials exhibit potential across a wide spectrum of applications from chemical separations to catalysis and energy storage and conversion. In this Account, we focus on recent advances in the manipulation of 2D carbonaceous materials and their composites through computational design and simulations to address how the precise control over material structure at the atomic level correlates with enhanced functional properties such as gas permeation, selectivity, membrane transport, and charge storage. We highlight several key concepts in the computational design and tuning of 2D structures, such as controlled stacking, ion gating, interlayer pillaring, and heterostructure charge transfer.The process of creating and adjusting pores within graphene sheets is vital for effective molecular separation. Simulations show the power of controlling the offset distance between layers of porous graphene in precisely regulating the pore size to enhance gas separation and entropic selectivity. This strategy of controlled stacking extends beyond graphene to include covalent organic frameworks (COFs) such as covalent triazine frameworks (CTFs). Experimental assembly of the layers has been achieved through electrostatic interactions, thermal transformation, and control of side chain interactions.Graphene can interface with ionic liquids in various forms to enhance its functionality. A computational proof-of-concept showcases an ion-gating concept in which the interaction of anions with the pores in graphene allows the anions to dynamically gate the pores for selective gas transport. Realization of the concept has been achieved in both porous graphene and carbon molecular sieve membranes. Ionic liquids can also intercalate between graphene layers to form interlayer pillaring structures, opening the slit space. Grand canonical Monte Carlo simulations show that these structures can be used for efficient gas capture and separation. Experiments have demonstrated that the interlayer space can be tuned by the density of the pillars and that, when fully filled with ionic liquids and forming a confined interface structure, the graphene oxide membrane achieves much higher selectivity for gas separations. Moreover, graphene can interface with other 2D materials to form heterostructures where interfacial charge transfers take place and impact the function. Both ion transport and charge storage are influenced by both the local electric field and chemical interactions.Fullerene can be used as a building block and covalently linked together to construct a new type of 2D carbon material beyond a one-atom-thin layer that also has long-range-ordered subnanometer pores. The interstitial sites among fullerenes form funnel-shaped pores of 2.0-3.3 Å depending on the crystalline phase. The quasi-tetragonal phases are shown by molecular dynamics simulations to be efficient for H2 separation. In addition, defects such as fullerene vacancies can be introduced to create larger pores for the separation of organic solvents.In conclusion, the key to imputing functions to 2D carbonaceous materials is to create new interactions and interfaces and to go beyond a single-atom layer. First-principles and molecular simulations can further guide the discovery of new 2D carbonaceous materials and interfaces and provide atomistic insights into their functions.
Collapse
Affiliation(s)
- Yujing Tong
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Gao Y, Islam MT, Otuokere PU, Pulikkathara M, Liu Y. The Stability of UV-Defluorination-Driven Crosslinked Carbon Nanotubes: A Raman Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1464. [PMID: 39269126 PMCID: PMC11397521 DOI: 10.3390/nano14171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Carbon nanotubes (CNTs) are often regarded as semi-rigid, all-carbon polymers. However, unlike conventional polymers that can form 3D networks such as hydrogels or elastomers through crosslinking in solution, CNTs have long been considered non-crosslinkable under mild conditions. This perception changed with our recent discovery of UV-defluorination-driven direct crosslinking of CNTs in solution. In this study, we further investigate the thermal stability of UV-defluorination-driven crosslinked CNTs, revealing that they are metastable and decompose more readily than either pristine or fluorinated CNTs under Raman laser irradiation. Using Raman spectroscopy under controlled laser power, we examined both single-walled and multi-walled fluorinated CNTs. The results demonstrate that UV-defluorinated CNTs exhibit reduced thermal stability compared to their pristine or untreated fluorinated counterparts. This instability is attributed to the strain on the intertube crosslinking bonds resulting from the curved carbon lattice of the linked CNTs. The metallic CNTs in the crosslinked CNT networks decompose and revert to their pristine state more readily than the semiconducting ones. The inherent instability of crosslinked CNTs leads to combustion at temperatures approximately 100 °C lower than those required for non-crosslinked fluorinated CNTs. This property positions crosslinked CNTs as promising candidates for applications where mechanically robust, lightweight materials are needed, along with feasible post-use removal options.
Collapse
Affiliation(s)
- Yunxiang Gao
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Mohammad Tarequl Islam
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | | | - Merlyn Pulikkathara
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Yuemin Liu
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
11
|
Ying P, Hod O, Urbakh M. Superlubric Graphullerene. NANO LETTERS 2024; 24:10599-10604. [PMID: 39158098 PMCID: PMC11363119 DOI: 10.1021/acs.nanolett.4c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Graphullerene (GF), an extended quasi-two-dimensional network of C60 molecules, is proposed as a multicontact platform for constructing superlubric interfaces with layered materials. Such interfaces are predicted to present very small and comparable sliding energy corrugation regardless of the identity of the underlying flat layered material surface. It is shown that, beyond the geometrical effect, covalent interlinking between the C60 molecules results in reduction of the sliding energy barrier. For extended GF supercells, negligible sliding energy barriers are found along all sliding directions considered, even when compared to the case of the robust superlubric graphene/h-BN heterojunction. This suggests that multicontact architectures can be used to design ultrasuperlubric interfaces, where superlubricity may persist under extreme sliding conditions.
Collapse
Affiliation(s)
- Penghua Ying
- Department of Physical Chemistry, School
of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences,
and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Hod
- Department of Physical Chemistry, School
of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences,
and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Urbakh
- Department of Physical Chemistry, School
of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences,
and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Wu H, Hang X, Kan E, Qian Y. Prediction of pure carbon crystals with intrinsic antiferromagnetism: polymerized from C 20 fullerenes. Phys Chem Chem Phys 2024; 26:19685-19695. [PMID: 38990516 DOI: 10.1039/d4cp02083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Pure carbon materials with magnetic properties have attracted considerable research interest due to their advantages over traditional magnetic materials. Nevertheless, such materials are exceedingly rare. Disrupting the Kekulé valence structures in carbon materials potentially leads to the emergence of magnetism. In this study, using first principles calculations, we developed a range of pure carbon allotropes derived from the smallest fullerene C20 which potentially disrupts the Kekulé valence structures after polymerization. The results indicate that some of the allotropes disrupting the Kekulé valence structures exhibit intrinsic antiferromagnetic ordering, and the magnetism originates from the presence of isolated three-fold coordinated C atoms. The other allotropes adhering to the Kekulé valence structures show non-magnetism with all three-fold coordinated C atoms forming dimers. In all magnetic polymers, magnetism arises from unpaired electrons on the isolated three-fold coordinated carbon atoms, with magnetic moments of about 0.40μB at these sites. The adsorption of dopant atoms can significantly alter the magnetic properties of polymers, for instance, the C20-71 polymer with Immm symmetry undergoes a transition from non-magnetic to anti-magnetic ordering upon adsorption of hydrogen atoms. Electronic calculations indicate that these polymers display a range of electronic properties, encompassing both metallic and semiconducting characteristics. Notably, certain magnetic phases exhibit superhard properties, with the hardness value exceeding 40 GPa. This study presents a potential method for designing magnetic carbon materials. Specifically, certain compounds address the gap in magnetic superhard materials composed of light elements, and can be utilized in the field of spintronics where traditional superhard materials are unsuitable.
Collapse
Affiliation(s)
- Haiping Wu
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinqi Hang
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Erjun Kan
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Qian
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Capobianco A, Wiktor J, Landi A, Ambrosio F, Peluso A. Electron Localization and Mobility in Monolayer Fullerene Networks. NANO LETTERS 2024; 24:8335-8342. [PMID: 38767281 DOI: 10.1021/acs.nanolett.4c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The novel 2D quasi-hexagonal phase of covalently bonded fullerene molecules (qHP C60), the so-called graphullerene, has displayed far superior electron mobilities, if compared to the parent van der Waals three-dimensional crystal (vdW C60). Herein, we present a comparative study of the electronic properties of vdW and qHP C60 using state-of-the-art electronic-structure calculations and a full quantum-mechanical treatment of electron transfer. We show that both materials entail polaronic localization of electrons with similar binding energies (≈0.1 eV) and, therefore, they share the same charge transport via polaron hopping. In fact, we quantitatively reproduce the sizable increment of the electron mobility measured for qHP C60 and identify its origin in the increased electronic coupling between C60 units.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Julia Wiktor
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Alessandro Landi
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Francesco Ambrosio
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10-85100 Potenza, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| |
Collapse
|
14
|
Zhao XK, Zhang YY, Zhao J, Hu HS, Li J. Understanding the Electronic Structure and Chemical Bonding in the 2D Fullerene Monolayer. Inorg Chem 2024; 63:11572-11582. [PMID: 38866714 DOI: 10.1021/acs.inorgchem.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Recently synthesized two-dimensional (2D) monolayer quasi-hexagonal-phase fullerene (qHPC60) demonstrates excellent thermodynamic stability. Within this monolayer, each fullerene cluster is surrounded by six adjacent C60 cages along an equatorial plane and is connected by both C-C single bonds and [2 + 2] cycloaddition bonds that serve as bridges. In this study, we investigate the stability mechanism of the 2D qHPC60 monolayer by examining the electronic structure and chemical bonding through state-of-the-art theoretical methodologies. Density functional theory (DFT) studies reveal that 2D qHPC60 possesses a moderate direct electronic band gap of 1.46 eV, close to the experimental value (1.6 eV). It is found that the intermolecular bridge bonds play a crucial role in enhancing the charge flow and redistribution among C60 cages, leading to the formation of dual π-aromaticity within the C60 sphere and stabilizing the 2D framework structure. Furthermore, we identify a series of delocalized superatom molecular orbitals (SAMOs) within the 2D qHPC60 monolayer, exhibiting atomic orbital-like behavior and hybridization to form nearly free-electron (NFE) bands with σ/π bonding and σ*/π* antibonding properties. Our findings provide insights into the design and potential applications of NFE bands derived from SAMOs in 2D qHPC60 monolayers.
Collapse
Affiliation(s)
- Xiao-Kun Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang-Yang Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jing Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
15
|
Champagne A, Camarasa-Gómez M, Ricci F, Kronik L, Neaton JB. Strongly Bound Excitons and Anisotropic Linear Absorption in Monolayer Graphullerene. NANO LETTERS 2024; 24:7033-7039. [PMID: 38805193 DOI: 10.1021/acs.nanolett.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Graphullerene is a novel two-dimensional carbon allotrope with unique optoelectronic properties. Despite significant experimental characterization and prior density functional theory calculations, unanswered questions remain as to the nature, energy, and intensity of the electronic and optical excitations. Here, we present first-principles calculations of the quasiparticle band structure, neutral excitations, and absorption spectra of monolayer graphullerene and bulk graphullerite, employing the GW-Bethe-Salpeter equation (GW-BSE) approach. We show that strongly bound excitons dominate the absorption spectrum of monolayer graphullerene with binding energies up to 0.8 eV, while graphullerite exhibits less pronounced excitonic effects. Our calculations also reveal a strong linear polarization anisotropy, reflecting the in-plane structural anisotropy from intermolecular coupling between neighboring C60 units. We further show that the presence of Mg atoms, crucial to the synthesis process, induces structural modifications and polarizability effects, resulting in a ∼1 eV quasiparticle gap renormalization and a reduction in the exciton binding energy to ∼0.6 eV.
Collapse
Affiliation(s)
- Aurélie Champagne
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - María Camarasa-Gómez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Francesco Ricci
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Cassiano TSA, Pereira ML, E Silva GM, de Oliveira Neto PH, Ribeiro LA. Large polarons in two-dimensional fullerene networks: the crucial role of anisotropy in charge transport. NANOSCALE 2024; 16:2337-2346. [PMID: 38086667 DOI: 10.1039/d3nr04920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The recent synthesis of a two-dimensional quasi-hexagonal-phase monolayer network of C60 molecules, known as qHPC60, holds significant promise for future semiconductor applications. However, the mechanism behind charge transport in these networks remains unknown. In this study, we developed a Holstein-Peierls Hamiltonian model to investigate charge transport in qHPC60, incorporating both local and non-local electron-phonon couplings. Our computational approach involved identifying suitable semi-empirical parameters to realize the formation of stable polarons in this material. The results unveiled the formation of stable large polarons as the primary carriers in the charge transport throughout qHPC60. To explore polaron transport properties, we conducted dynamic simulations within the picosecond time scale while subjecting the system to an external electric field. Our analysis emphasized the substantial influence of anisotropy on shaping mobile polarons, with an anisotropy coefficient of at least 50%. The polarons exhibited velocities within the acoustic regime ranging from 0.5-1.5 nm ps-1. While these velocities are comparable to those observed in high-end organic molecular crystals, they are considerably lower than those in graphene and conducting polymers. With qHPC60 possessing a semiconducting band gap of approximately 1.6 eV, our findings shed light on its potential application in flat electronics, overcoming the null-gap predicament of graphene.
Collapse
Affiliation(s)
- T S A Cassiano
- University of Brasília, Institute of Physics, 70.910-900, Brasília, Brazil.
| | - M L Pereira
- International Center of Physics, Institute of Physics, University of Brasília, Faculty of Technology, Department of Electrical Engineering, 70910-900, Brasília, Brazil
| | - G M E Silva
- University of Brasília, Institute of Physics, 70.910-900, Brasília, Brazil.
| | | | - L A Ribeiro
- University of Brasília, Institute of Physics, 70.910-900, Brasília, Brazil.
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, 70910-900, Brasília, Brazil
| |
Collapse
|
17
|
Sheka EF. The Triumph of the Spin Chemistry of Fullerene C 60 in the Light of Its Free Radical Copolymerization with Vinyl Monomers. Int J Mol Sci 2024; 25:1317. [PMID: 38279316 PMCID: PMC10816541 DOI: 10.3390/ijms25021317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The spin theory of fullerenes is taken as a basis concept to virtually exhibit a peculiar role of C60 fullerene in the free radical polymerization of vinyl monomers. Virtual reaction solutions are filled with the initial ingredients (monomers, free radicals, and C60 fullerene) as well as with the final products of a set of elementary reactions, which occurred in the course of the polymerization. The above objects, converted to the rank of digital twins, are considered simultaneously under the same conditions and at the same level of the theory. In terms of the polymerization passports of the reaction solutions, a complete virtual picture of the processes considered is presented.
Collapse
Affiliation(s)
- Elena F Sheka
- Institute of Physical Researches and Technology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
18
|
Jones C, Peng B. Boosting Photocatalytic Water Splitting of Polymeric C 60 by Reduced Dimensionality from Two-Dimensional Monolayer to One-Dimensional Chain. J Phys Chem Lett 2023; 14:11768-11773. [PMID: 38126300 PMCID: PMC10758114 DOI: 10.1021/acs.jpclett.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The recent synthesis of monolayer fullerene networks (Hou, L., et al. Nature 2022, 606, 507) provides new opportunities for photovoltaics and photocatalysis because of their versatile crystal structures for further tailoring of electronic, optical, and chemical function. To shed light on the structural aspects of the photocatalytic water splitting performance of fullerene nanomaterials, we compare the photocatalytic properties of individual polymeric fullerene chains and monolayer fullerene networks from first-principles calculations. We find that the photocatalytic efficiency can be further optimized by reducing the dimensionality from two-dimensional (2D) to one-dimensional (1D). The conduction band edge of the polymeric C60 chain provides an external potential for the hydrogen reduction reaction much higher than that of its monolayer counterparts over a wider range of pH values, and there are 2 times more surface active sites in the 1D chain than in the 2D networks from a thermodynamic perspective. These observations identify the 1D fullerene polymer as a more promising candidate as a photocatalyst for the hydrogen evolution reaction in comparison to monolayer fullerene networks.
Collapse
Affiliation(s)
- Cory Jones
- Selwyn
College, University of Cambridge, Grange Road, Cambridge CB3 9DQ, United Kingdom
| | - Bo Peng
- Theory
of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
19
|
Wang T, Zhang L, Wu J, Chen M, Yang S, Lu Y, Du P. Few-Layer Fullerene Network for Photocatalytic Pure Water Splitting into H 2 and H 2 O 2. Angew Chem Int Ed Engl 2023; 62:e202311352. [PMID: 37592375 DOI: 10.1002/anie.202311352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
A few-layer fullerene network possesses several advantageous characteristics, including a large surface area, abundant active sites, high charge mobility, and an appropriate band gap and band edge for solar water splitting. Herein, we report for the first time that the few-layer fullerene network shows interesting photocatalytic performance in pure water splitting into H2 and H2 O2 in the absence of any sacrificial reagents. Under optimal conditions, the H2 and H2 O2 evolution rates can reach 91 and 116 μmol g-1 h-1 , respectively, with good stability. This work demonstrates the novel application of the few-layer fullerene network in the field of energy conversion.
Collapse
Affiliation(s)
- Taotao Wang
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Li Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| | - Jinbao Wu
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| | - Muqing Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| | - Yalin Lu
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| |
Collapse
|
20
|
Tong Y, Liu H, Dai S, Jiang DE. Monolayer Fullerene Membranes for Hydrogen Separation. NANO LETTERS 2023; 23:7470-7476. [PMID: 37540493 DOI: 10.1021/acs.nanolett.3c01946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrogen separation membranes are a critical component in the emerging hydrogen economy, offering an energy-efficient solution for the purification and production of hydrogen gas. Inspired by the recent discovery of monolayer covalent fullerene networks, here we show from concentration-gradient-driven molecular dynamics that quasi-square-latticed monolayer fullerene membranes provide the best pore size match, a unique funnel-shaped pore, and entropic selectivity. The integration of these attributes renders these membranes promising for separating H2 from larger gases such as CO2 and O2. The ultrathin membranes exhibit excellent hydrogen permeance as well as high selectivity for H2/CO2 and H2/O2 separations, surpassing the 2008 Robeson upper bounds by a large margin. The present work points toward a promising direction of using monolayer fullerene networks as membranes for high-permeance, selective hydrogen separation for processes such as water splitting.
Collapse
Affiliation(s)
- Yujing Tong
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Yu T, Li J, Han M, Zhang Y, Li H, Peng Q, Tang HK. Enhancing the Mechanical Stability of 2D Fullerene with a Graphene Substrate and Encapsulation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1936. [PMID: 37446452 DOI: 10.3390/nano13131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Recent advancements have led to the synthesis of novel monolayer 2D carbon structures, namely quasi-hexagonal-phase fullerene (qHPC60) and quasi-tetragonal-phase fullerene (qTPC60). Particularly, qHPC60 exhibits a promising medium band gap of approximately 1.6 eV, making it an attractive candidate for semiconductor devices. In this study, we conducted comprehensive molecular dynamics simulations to investigate the mechanical stability of 2D fullerene when placed on a graphene substrate and encapsulated within it. Graphene, renowned for its exceptional tensile strength, was chosen as the substrate and encapsulation material. We compared the mechanical behaviors of qHPC60 and qTPC60, examined the influence of cracks on their mechanical properties, and analyzed the internal stress experienced during and after fracture. Our findings reveal that the mechanical reliability of 2D fullerene can be significantly improved by encapsulating it with graphene, particularly strengthening the cracked regions. The estimated elastic modulus increased from 191.6 (qHPC60) and 134.7 GPa (qTPC60) to 531.4 and 504.1 GPa, respectively. Moreover, we observed that defects on the C60 layer had a negligible impact on the deterioration of the mechanical properties. This research provides valuable insights into enhancing the mechanical properties of 2D fullerene through graphene substrates or encapsulation, thereby holding promising implications for future applications.
Collapse
Affiliation(s)
- Taotao Yu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianyu Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mingjun Han
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haipeng Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qing Peng
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ho-Kin Tang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|