1
|
Fang H, Hou W, Li C, Li S, Chu F, Li X, Zhang X, Hou L, Yuan C, Ma Y. Insights into the halogen-induced p-band center regulation promising high-performance lithium-sulfur batteries. Chem Sci 2025:d5sc01266j. [PMID: 40236593 PMCID: PMC11995414 DOI: 10.1039/d5sc01266j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
Sn-based halide perovskites are expected to solve the problems of the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs) due to their high conductivity and electrocatalytic activity, but their intrinsic catalytic mechanism for LiPSs remains to be explored. Herein, halide perovskites with varying halide anions, Cs2SnX6 (X = Cl, Br, I), are purposefully designed to unveil the halogen-induced regulatory mechanism. Theoretical calculations demonstrate that increasing the halogen atomic number induces the shift of the p-band center closer to the Fermi level, which results in the localized charge distribution around halide anions and rapid charge separation/transfer at Sn sites, enhancing the adsorptive and catalytic activity and redox kinetics of LiPSs. Experimental investigations exhibit that LSBs assembled with the Cs2SnI6 modified separator deliver a high initial capacity of 1000 mA h g-1 at 2C, with a minimum decay rate of 0.068% per cycle after 500 cycles. More impressively, the Cs2SnI6 battery with a high sulfur loading (6.1 mg cm-2) and a low electrolyte/sulfur ratio (5.5 μL mg-1) achieves a remarkable reversible capacity of 768.8 mA h g-1, along with robust wide-temperature-tolerant cycling performance from -20 to 50 °C. These findings underscore the critical role of p-band center regulation in rationally designing advanced LSBs.
Collapse
Affiliation(s)
- Hanzhang Fang
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Wenshuo Hou
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Chuanlong Li
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Shuo Li
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Fulu Chu
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Xuting Li
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Xianping Zhang
- Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke Jinan 250013 P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan Jinan 250022 P. R. China
| | - Yanwei Ma
- Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke Jinan 250013 P. R. China
| |
Collapse
|
2
|
Min Y, Zou X, Lu Q, Cai W, Bu Y. Advances in the Catalytic Mechanism of Metal Oxides for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411794. [PMID: 39950501 DOI: 10.1002/smll.202411794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Indexed: 03/28/2025]
Abstract
Lithium-sulfur (Li-S) batteries are one of the promising next-generation energy storage/conversion devices, considering their high energy density and low cost. However, the shuttle of polysulfides hinders the practical application of Li-S batteries, which leads to reduced cycling stability. Although chemical adsorption strategies have made significant progress in improving the cycling stability of Li-S batteries, the poor catalytic conversion ability of the polysulfide host results in an imbalance between chemical adsorption and catalytic conversion. Recent studies have revealed that metal oxides with adjustable electronic structures exhibit good catalytic ability as polysulfide hosts. However, there is currently no systematic review of the catalytic mechanism of metal oxides in Li-S batteries. Herein, the working principle and primary challenge of Li-S batteries are first introduced, followed by a categorization of catalyst design strategies. Furthermore, a comprehensive review of recent advancements in understanding the reaction mechanism of metal oxide catalysts in Li-S batteries is also provided. Finally, personal perspectives on the future development of Li-S batteries enhanced by metal oxide catalysis are offered. It is hoped that this review can provide valuable insights into the catalytic role of metal oxides in accelerating polysulfide conversion for Li-S batteries.
Collapse
Affiliation(s)
- Yi Min
- UNIST-NUIST Energy and Environment Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaohong Zou
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Qian Lu
- UNIST-NUIST Energy and Environment Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wei Cai
- UNIST-NUIST Energy and Environment Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yunfei Bu
- UNIST-NUIST Energy and Environment Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
3
|
Wang Z, Gao J, Zhang S, Wu Y, Ren Y, Lu Y, Zhao X, Jin B, Shao M. Polysulfide Tandem Conversion for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409867. [PMID: 39763409 DOI: 10.1002/smll.202409867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/03/2024] [Indexed: 02/21/2025]
Abstract
The electrocatalytic conversion of 16-electron multistep polysulfides is crucial for lithium-sulfur batteries, while it is hard to achieve compatibility between intricate sulfur reduction processes and appropriate catalysts. Herein, a tandem conversion strategy is reported to boost multi-step intermediate reactions of polysulfides transformation by designing an electrocatalyst featuring cobalt and zinc sites (Co/Zn), where the Zn serve as sites for the conversion of long-chain lithium polysulfides (LiPSs), promoting the transformation of S8 to Li2S4; the Co sites accelerate the kinetics of the subsequent reduction of Li2S4. This tandem catalysis method not only enhances the conversion of the initial reactants but also provides additional support for the intermediates, thereby facilitating subsequent reactions to maximize capacity. Consequently, the cell utilizing this precise electrocatalyst delivers a high initial discharge-specific capacity of 1347.5 mAh g-1 at a rate of 0.1 C, demonstrates outstanding rate performance (796.8 mAh g-1 at 3 C), and excellent cycle stability with a capacity attenuation rate of 0.086% per cycle at 3.0 C. These results offer insights into the coordinated design of electrocatalysts for sulfur cathodes based on precise catalytic sites and complex multi-step conversion reactions.
Collapse
Affiliation(s)
- Zhilong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianxiong Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanlan Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongqi Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bowen Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Wang S, Wei Z, Hong H, Guo X, Wang Y, Chen Z, Zhang D, Zhang X, Yang X, Zhi C. A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries. Nat Commun 2025; 16:511. [PMID: 39779662 PMCID: PMC11711384 DOI: 10.1038/s41467-024-55385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)2TeI6, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl- on its surface. This allows for the utilization of inert high-valent tellurium cations, eventually realizing a special eleven-electron transfer mode (Te6+/Te4+/Te2-, I+/I0/I-, and Cl0/Cl-) in suitable electrolytes. The Zn||(BzTEA)2TeI6 battery exhibited a high capacity of up to 473 mAh g-1Te/I and a large energy density of 577 Wh kg-1 Te/I at 0.5 A g-1, with capacity retention up to 82% after 500 cycles at 3 A g-1. The work sheds light on the design of high-energy batteries utilizing chalcogen-halide perovskite cathodes.
Collapse
Affiliation(s)
- Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
| | - Dechao Zhang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai University, Shanghai, China.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zou Q, Liang Q, Zhou H, Guo Y, Xue J, Luo M, Jia S, Liu W, Wang S. Promoting Li 2S Nucleation/Dissolution Kinetics via Multiple Active Sites over TiVCrMoC 3T x Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402344. [PMID: 38829023 DOI: 10.1002/smll.202402344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Lithium-sulfur batteries (LSBs) are still limited by some issues such as polysulfides shuttle and lithium dendrites. Recently, the concept "high-entropy" has been considered as the research hotspot and international frontier. Herein, a high entropy MXene (TiVCrMoC3Tx, HE-MXene) doped graphene is designed as the modified coating on commercial separators for LSBs. The HE-MXene affords multiple metal active sites, fast Li+ diffusion rate, and efficient adsorption toward polysulfide intermediates. Furthermore, strong lithophilic property is favorable for uniform Li+ deposition. The combination of in situ characterizations confirms TiVCrMoC3Tx effectively promotes the Li2S nucleation/dissolution kinetics, reduces the Li+ diffusion barrier, and exhibits favorable lithium uniform deposition behavior. This TiVCrMoC3Tx/G@PP provides a high-capacity retention rate after 1000 cycles at 1 C and 2 C, with a capacity decay rate of merely 0.021% and 0.022% per cycle. Surprisingly, the cell operates at a low potential of 48 mV while maintaining at 5 mA cm-2/5 mAh cm-2 for 4000 h. Furthermore, it still maintains a high-capacity retention rate under a high sulfur loading of 4.8/6.4 mg cm-2 and a low E/S ratio of 8.6/7.5 µg mL-1. This work reveals a technical roadmap for simultaneously addressing the cathode and anode challenge, thus achieving potential commercially viable LSBs.
Collapse
Affiliation(s)
- Qiang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi Liang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 313002, P. R. China
- School of Materials Science and Engineering, Shanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Henggang Zhou
- Guangdong Provincial Key Laboratory of Intelligent Port Security Inspection, Huangpu Customs District, Guangzhou, 510700, P. R. China
| | - Yongqiang Guo
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 313002, P. R. China
| | - Ji Xue
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 313002, P. R. China
| | - Mingkai Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 313002, P. R. China
| | - Songyu Jia
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Wenlong Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Sizhe Wang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 313002, P. R. China
- School of Materials Science and Engineering, Shanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
6
|
Kim GH, Raza A, Lee YJ, Kim D, Park JW, Choi HY. Enhanced lithium host performance of multi-walled carbon nanotubes through acidic functionalization for lithium-sulfur batteries. Heliyon 2024; 10:e35969. [PMID: 39224393 PMCID: PMC11367129 DOI: 10.1016/j.heliyon.2024.e35969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Carbon nanotubes (CNTs) have been explored as a potential cathode material for lithium-sulfur (Li-S) batteries owing to their unique structure. However, traditional CNTs exhibit poor dispersion properties when preparing electrodes. The non-uniform distribution of the conductive agents hinders the formation of enough sites for sulfur loading, which results in the aggregation of sulfur/Li2S and severe polarization. In this study, we propose the acidic functionalization of CNTs in the cathode structure as a practical solution for mitigating the poor dispersion and polysulfide shuttling in lithium-sulfur batteries. Multiwalled CNTs were functionalized by oxidation through acidic treatment using sulfuric, nitric, and mixed acids. The cathode prepared with a mixture of sulfuric and nitric acids showed a coulombic efficiency of 99 % after 100 cycles, with a discharge capacity of 743 mAh g-1. These findings demonstrate the effectiveness of the acidic functionalization of CNTs as a promising approach for enhancing the electrochemical performance and commercial viability of lithium-sulfur batteries.
Collapse
Affiliation(s)
| | | | - You-Jin Lee
- Next-Generation Battery Research Center, Korea Electrotechnology Research Institute, Changwon, 51543, South Korea
| | - Doohun Kim
- Next-Generation Battery Research Center, Korea Electrotechnology Research Institute, Changwon, 51543, South Korea
| | - Jun-Woo Park
- Next-Generation Battery Research Center, Korea Electrotechnology Research Institute, Changwon, 51543, South Korea
| | - Hae-Young Choi
- Next-Generation Battery Research Center, Korea Electrotechnology Research Institute, Changwon, 51543, South Korea
| |
Collapse
|
7
|
Wang H, Li B, Shen Y, Zhang Z, Sun Y, Zhou W, Liang S, Li W, He J. Ion/Electron Co-Conductive Triple-Phase Interface Enabling Fast Redox Reaction Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38417141 DOI: 10.1021/acsami.3c18080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Lithium-sulfur batteries (LSBs) are promising next-generation energy storage systems because of their high energy densities and high theoretical specific capacities. However, most catalysts in the LSBs are based on carbon materials, which can only improve the conductivity and are unable to accelerate lithium-ion transport. Therefore, it would be worthwhile to develop a catalytic electrode exhibiting both ion and electron conductivity. Herein, a triple-phase interface using lithium lanthanum titanate/carbon (LLTO/C) nanofibers to construct ion/electron co-conductive materials was used to afford enhanced adsorption of lithium polysulfides (LiPSs), high conductivity, and fast ion transport in working LSBs. The triple-phase interface accelerates the kinetics of the soluble LiPSs and promotes uniform Li2S precipitation/dissolution. Additionally, the LLTO/C nanofibers decrease the reaction barrier of the LiPSs, significantly improving the conversion of LiPSs to Li2S and promoting rapid conversion. Specifically, the LLTO promotes ion transport owing to its high ionic conductivity, and the carbon enhances the conductivity to improve the utilization rate of sulfur. Therefore, the LSBs with LLTO/C functional separators deliver stable life cycles, high rates, and good electrocatalytic activities. This strategy is greatly important for designing ion/electron conductivity and interface engineering, providing novel insight for the development of the LSBs.
Collapse
Affiliation(s)
- Huan Wang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Boyu Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Yanlei Shen
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Ziyao Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Yinzhao Sun
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Weitao Zhou
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Shuaitong Liang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Weitao Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| |
Collapse
|
8
|
Li J, Gao L, Pan F, Gong C, Sun L, Gao H, Zhang J, Zhao Y, Wang G, Liu H. Engineering Strategies for Suppressing the Shuttle Effect in Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2023; 16:12. [PMID: 37947874 PMCID: PMC10638349 DOI: 10.1007/s40820-023-01223-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost. Nevertheless, the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value. Many methods were proposed for inhibiting the shuttle effect of polysulfide, improving corresponding redox kinetics and enhancing the integral performance of Li-S batteries. Here, we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li-S batteries. First, the electrochemical principles/mechanism and origin of the shuttle effect are described in detail. Moreover, the efficient strategies, including boosting the sulfur conversion rate of sulfur, confining sulfur or lithium polysulfides (LPS) within cathode host, confining LPS in the shield layer, and preventing LPS from contacting the anode, will be discussed to suppress the shuttle effect. Then, recent advances in inhibition of shuttle effect in cathode, electrolyte, separator, and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li-S batteries. Finally, we present prospects for inhibition of the LPS shuttle and potential development directions in Li-S batteries.
Collapse
Affiliation(s)
- Jiayi Li
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Li Gao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Fengying Pan
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Cheng Gong
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Limeng Sun
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Hong Gao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| | - Hao Liu
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
9
|
Fang XT, Zhou L, Chen C, Danilov DL, Qiao F, Li H, Notten PHL. Theoretical Calculations Facilitating Catalysis for Advanced Lithium-Sulfur Batteries. Molecules 2023; 28:7304. [PMID: 37959724 PMCID: PMC10647639 DOI: 10.3390/molecules28217304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lithium-sulfur (Li-S) batteries have emerged as one of the most hopeful alternatives for energy storage systems. However, the commercialization of Li-S batteries is still confronted with enormous hurdles. The poor conductivity of sulfur cathodes induces sluggish redox kinetics. The shuttling of polysulfides incurs the heavy failure of electroactive substances. Tremendous efforts in experiments to seek efficient catalysts have achieved significant success. Unfortunately, the understanding of the underlying catalytic mechanisms is not very detailed due to the complicated multistep conversion reactions in Li-S batteries. In this review, we aim to give valuable insights into the connection between the catalyst activities and the structures based on theoretical calculations, which will lead the catalyst design towards high-performance Li-S batteries. This review first introduces the current advances and issues of Li-S batteries. Then we discuss the electronic structure calculations of catalysts. Besides, the relevant calculations of binding energies and Gibbs free energies are presented. Moreover, we discuss lithium-ion diffusion energy barriers and Li2S decomposition energy barriers. Finally, a Conclusions and Outlook section is provided in this review. It is found that calculations facilitate the understanding of the catalytic conversion mechanisms of sulfur species, accelerating the development of advanced catalysts for Li-S batteries.
Collapse
Affiliation(s)
- Xue-Ting Fang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Zhou
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, MB 5600 Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, MB 5600 Eindhoven, The Netherlands
| | - Chunguang Chen
- State Key Laboratory of Nonlinear Mechanics Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dmitri L. Danilov
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, MB 5600 Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, MB 5600 Eindhoven, The Netherlands
- Institute of Energy and Climate Research Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Fen Qiao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peter H. L. Notten
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, MB 5600 Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, MB 5600 Eindhoven, The Netherlands
- Institute of Energy and Climate Research Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|