1
|
Grupp B, Graser JB, Seifermann J, Gerhardt S, Lemkul JA, Gehrke JF, Johnsson N, Gronemeyer T. Interface integrity in septin protofilaments is maintained by an arginine residue conserved from yeast to man. Mol Biol Cell 2025; 36:ar59. [PMID: 40137961 DOI: 10.1091/mbc.e25-01-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The septins are conserved, filament-forming, guanine nucleotide binding cytoskeletal proteins. They assemble into palindromic protofilaments which polymerize further into higher-ordered structures that participate in essential intracellular processes such as cytokinesis or polarity establishment. Septins belong structurally to the P-Loop NTPases but, unlike their relatives Ras or Rho, do not mediate signals to effectors through GTP binding and hydrolysis. Biochemical approaches addressing how and why septins utilize nucleotides are hampered by the lack of nucleotide-free complexes. Using molecular dynamics simulations, we determined structural alterations and intersubunit binding free energies in human and yeast septin dimer structures and in their in silico generated apo forms. An interchain salt bridge network around the septin unique β-meander, conserved across all kingdoms of septin containing species, is destabilized upon nucleotide removal, concomitant with disruption of the entire G-interface. Within this network, we confirmed a conserved arginine residue, which coordinates the guanine base of the nucleotide, as the central interaction hub. The essential role of this arginine for interface integrity was experimentally confirmed to be conserved in septins from yeast to human.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Jano Benito Graser
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Julia Seifermann
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | - Jan Felix Gehrke
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| |
Collapse
|
2
|
Grupp B, Denkhaus L, Gerhardt S, Vögele M, Johnsson N, Gronemeyer T. The structure of a tetrameric septin complex reveals a hydrophobic element essential for NC-interface integrity. Commun Biol 2024; 7:48. [PMID: 38184752 PMCID: PMC10771490 DOI: 10.1038/s42003-023-05734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
The septins of the yeast Saccharomyces cerevisiae assemble into hetero-octameric rods by alternating interactions between neighboring G-domains or N- and C-termini, respectively. These rods polymerize end to end into apolar filaments, forming a ring beneath the prospective new bud that expands during the cell cycle into an hourglass structure. The hourglass finally splits during cytokinesis into a double ring. Understanding these transitions as well as the plasticity of the higher order assemblies requires a detailed knowledge of the underlying structures. Here we present the first X-ray crystal structure of a tetrameric Shs1-Cdc12-Cdc3-Cdc10 complex at a resolution of 3.2 Å. Close inspection of the NC-interfaces of this and other septin structures reveals a conserved contact motif that is essential for NC-interface integrity of yeast and human septins in vivo and in vitro. Using the tetrameric structure in combination with AlphaFold-Multimer allowed us to propose a model of the octameric septin rod.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Lukas Denkhaus
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg, Germany
| | - Matthis Vögele
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
3
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
4
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
5
|
Zehtabian A, Müller PM, Goisser M, Obendorf L, Jänisch L, Hümpfer N, Rentsch J, Ewers H. Precise measurement of nanoscopic septin ring structures with deep learning-assisted quantitative superresolution microscopy. Mol Biol Cell 2022; 33:ar76. [PMID: 35594179 PMCID: PMC9635280 DOI: 10.1091/mbc.e22-02-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The combination of image analysis and superresolution microscopy methods allows for unprecedented insight into the organization of macromolecular assemblies in cells. Advances in deep learning (DL)-based object recognition enable the automated processing of large amounts of data, resulting in high accuracy through averaging. However, while the analysis of highly symmetric structures of constant size allows for a resolution approaching the dimensions of structural biology, DL-based image recognition may introduce bias. This prohibits the development of readouts for processes that involve significant changes in size or shape of amorphous macromolecular complexes. Here we address this problem by using changes of septin ring structures in single molecule localization-based superresolution microscopy data as a paradigm. We identify potential sources of bias resulting from different training approaches by rigorous testing of trained models using real or simulated data covering a wide range of possible results. In a quantitative comparison of our models, we find that a trade-off exists between measurement accuracy and the range of recognized phenotypes. Using our thus verified models, we find that septin ring size can be explained by the number of subunits they are assembled from alone. Furthermore, we provide a new experimental system for the investigation of septin polymerization.
Collapse
Affiliation(s)
- Amin Zehtabian
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Paul Markus Müller
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Maximilian Goisser
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Leon Obendorf
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lea Jänisch
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nadja Hümpfer
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jakob Rentsch
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
6
|
Orientational Ambiguity in Septin Coiled Coils and its Structural Basis. J Mol Biol 2021; 433:166889. [PMID: 33639214 DOI: 10.1016/j.jmb.2021.166889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.
Collapse
|
7
|
Farkašovský M. Septin architecture and function in budding yeast. Biol Chem 2020; 401:903-919. [PMID: 31913844 DOI: 10.1515/hsz-2019-0401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
The septins constitute a conserved family of guanosine phosphate-binding and filament-forming proteins widespread across eukaryotic species. Septins appear to have two principal functions. One is to form a cortical diffusion barrier, like the septin collar at the bud neck of Saccharomyces cerevisiae, which prevents movement of membrane-associated proteins between the mother and daughter cells. The second is to serve as a polymeric scaffold for recruiting the proteins required for critical cellular processes to particular subcellular areas. In the last decade, structural information about the different levels of septin organization has appeared, but crucial structural determinants and factors responsible for septin assembly remain largely unknown. This review highlights recent findings on the architecture and function of septins and their remodeling with an emphasis on mitotically dividing budding yeasts.
Collapse
Affiliation(s)
- Marian Farkašovský
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology SAS, Dubravska cesta 21, 84551 Bratislava, Slovak Republic
| |
Collapse
|
8
|
Abstract
The recently developed expansion microscopy method (ExM) allows for the resolution of structures below the diffraction limit of light not by sophisticated instrumentation, but rather by physically expanding the molecular structure of cells. This happens by crosslinking the protein in the sample to a hydrogel that is polymerized in situ and subsequently expanded, tearing the proteins apart in a nearly isotropic manner. In the resulting, larger facsimile of the original sample, the fluorescence-labeled molecules of interest can be optically separated by conventional fluorescence microscopy since the intermolecular distances are enlarged by a factor ranging from ~4 to 20 depending on the chemistry used for the hydrogel. The achieved improvement in resolution thus corresponds to the expansion factor. Further increase in resolution beyond this value may be achieved by combining ExM with established super-resolution microscopy methods. Indeed, this is possible using structured illumination microscopy (SIM) (Halpern et al., 2017; Wang et al., 2018), single molecule localization microscopy (SMLM) (Zwettler et al., 2020) and stimulated emission depletion (STED), as we and others have shown recently (Gambarotto et al., 2019; Gao et al., 2018; Kim, Kim, Lee, & Shim, 2019; Unnersjö-Jess et al., 2016). Here, we provide a protocol, for our method, called ExSTED, which enabled us to achieve an increase in resolution of up to 30-fold compared to conventional microscopy, well beyond what is possible with conventional STED microscopy. Our protocol includes a strategy to achieve very high intensity fluorescence labeling, which is essential for optimal signal retention during the expansion process for ExSTED.
Collapse
Affiliation(s)
- Mengfei Gao
- Max Planck Institut für molekulare Zellbiologie und Genetik, Dresden, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Ria Thielhorn
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Rentsch
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Alf Honigmann
- Max Planck Institut für molekulare Zellbiologie und Genetik, Dresden, Germany
| | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Abstract
Recent advances in localisation-based super-resolution microscopy have enabled researchers to visualise single molecular features down to individual molecular components (~5 nm), but do not yet allow manipulation of single-molecule targets in a user-prescribed, context-dependent manner. Here we report an “Action-PAINT” strategy for super-resolution labelling upon visualisation on single molecules. This approach monitors and localises DNA binding events in real-time with DNA-PAINT, and upon visualisation of binding to a desired location, photo-crosslinks the DNA to affix the molecular label. We showed the efficiency of 3-cyanovinylcarbazole nucleoside (CNVK) photo-inducible crosslinking on single molecular targets and developed a software package for real-time super-resolution imaging and crosslinking control. We then benchmarked our super-resolution labelling method on synthetic DNA nanostructures and demonstrated targeted multi-point labelling on various complex patterns with 30 nm selectivity. Finally, we performed targeted in situ labelling on fixed microtubule samples with 40 nm target size and custom-controlled, sub-diffraction spacing.
Collapse
|
10
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
11
|
Banko M, Mucha-Kruczynska I, Weise C, Heyd F, Ewers H. A homozygous genome-edited Sept2-EGFP fibroblast cell line. Cytoskeleton (Hoboken) 2019; 76:73-82. [PMID: 30924304 PMCID: PMC6593442 DOI: 10.1002/cm.21518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 01/09/2023]
Abstract
Septins are a conserved, essential family of GTPases that interact with actin, microtubules, and membranes and form scaffolds and diffusion barriers in cells. Several of the 13 known mammalian septins assemble into nonpolar, multimeric complexes that can further polymerize into filamentous structures. While some GFP‐coupled septins have been described, overexpression of GFP‐tagged septins often leads to artifacts in localization and function. To overcome this ubiquitous problem, we have here generated a genome‐edited rat fibroblast cell line expressing Septin 2 (Sept2) coupled to enhanced green fluorescent protein (EGFP) from both chromosomal loci. We characterize these cells by genomic polymerase chain reaction (PCR) for genomic integration, by western blot and reverse transcriptase‐PCR for expression, by immunofluorescence and immunoprecipitation for the colocalization of septins with one another and cellular structures and for complex formation of different septins. By live cell imaging, proliferation and migration assays we investigate proper function of septins in these cells. We find that EGFP is incorporated into both chromosomal loci and only EGFP‐coupled Sept2 is expressed in homozygous cells. We find that endogenous Sept2‐EGFP exhibits expression levels, localization and incorporation into cellular septin complexes similar to the wt in these cells. The expression level of other septins is not perturbed and cell division and cell migration proceed normally. We expect our cell line to be a useful tool for the cell biology of septins, especially for quantitative biology.
Collapse
Affiliation(s)
- Monika Banko
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Iwona Mucha-Kruczynska
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Florian Heyd
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Helge Ewers
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Akhatova F, Danilushkina A, Kuku G, Saricam M, Culha M, Fakhrullin R. Simultaneous Intracellular Detection of Plasmonic and Non-Plasmonic Nanoparticles Using Dark-Field Hyperspectral Microscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Anna Danilushkina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Gamze Kuku
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Melike Saricam
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| |
Collapse
|
13
|
Vissa A, Giuliani M, Froese CD, Kim MS, Soroor F, Kim PK, Trimble WS, Yip CM. Single‐molecule localization microscopy of septin bundles in mammalian cells. Cytoskeleton (Hoboken) 2018; 76:63-72. [DOI: 10.1002/cm.21481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Adriano Vissa
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto Toronto Ontario Canada
| | - Maximiliano Giuliani
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto Toronto Ontario Canada
| | - Carol D. Froese
- Program in Cell BiologyThe Hospital for Sick Children Toronto Ontario Canada
| | - Moshe S. Kim
- Program in Cell BiologyThe Hospital for Sick Children Toronto Ontario Canada
| | - Forooz Soroor
- Program in Cell BiologyThe Hospital for Sick Children Toronto Ontario Canada
- Department of BiochemistryUniversity of Toronto Toronto Ontario Canada
| | - Peter K. Kim
- Program in Cell BiologyThe Hospital for Sick Children Toronto Ontario Canada
- Department of BiochemistryUniversity of Toronto Toronto Ontario Canada
| | - William S. Trimble
- Program in Cell BiologyThe Hospital for Sick Children Toronto Ontario Canada
- Department of BiochemistryUniversity of Toronto Toronto Ontario Canada
- Department of PhysiologyUniversity of Toronto Toronto Ontario Canada
| | - Christopher M. Yip
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto Toronto Ontario Canada
- Department of BiochemistryUniversity of Toronto Toronto Ontario Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
14
|
Khan A, Newby J, Gladfelter AS. Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions. Mol Biol Cell 2018; 29:702-712. [PMID: 29321251 PMCID: PMC6003234 DOI: 10.1091/mbc.e17-10-0608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 01/18/2023] Open
Abstract
Septins self-assemble into heteromeric rods and filaments to act as scaffolds and modulate membrane properties. How cells tune the biophysical properties of septin filaments to control filament flexibility and length, and in turn the size, shape, and position of higher-order septin structures, is not well understood. We examined how rod composition and nucleotide availability influence physical properties of septins such as annealing, fragmentation, bundling, and bending. We found that septin complexes have symmetric termini, even when both Shs1 and Cdc11 are coexpressed. The relative proportion of Cdc11/Shs1 septin complexes controls the biophysical properties of filaments and influences the rate of annealing, fragmentation, and filament flexibility. Additionally, the presence and apparent exchange of guanine nucleotide also alters filament length and bundling. An Shs1 mutant that is predicted to alter nucleotide hydrolysis has altered filament length and dynamics in cells and impacts cell morphogenesis. These data show that modulating filament properties through rod composition and nucleotide binding can control formation of septin assemblies that have distinct physical properties and functions.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, Dartmouth College, Hanover, NH 03755
| | - Jay Newby
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Abstract
Fluorescence nanoscopy uniquely combines minimally invasive optical access to the internal nanoscale structure and dynamics of cells and tissues with molecular detection specificity. While the basic physical principles of 'super-resolution' imaging were discovered in the 1990s, with initial experimental demonstrations following in 2000, the broad application of super-resolution imaging to address cell-biological questions has only more recently emerged. Nanoscopy approaches have begun to facilitate discoveries in cell biology and to add new knowledge. One current direction for method improvement is the ambition to quantitatively account for each molecule under investigation and assess true molecular colocalization patterns via multi-colour analyses. In pursuing this goal, the labelling of individual molecules to enable their visualization has emerged as a central challenge. Extending nanoscale imaging into (sliced) tissue and whole-animal contexts is a further goal. In this Review we describe the successes to date and discuss current obstacles and possibilities for further development.
Collapse
|
16
|
Booth EA, Sterling SM, Dovala D, Nogales E, Thorner J. Effects of Bni5 Binding on Septin Filament Organization. J Mol Biol 2016; 428:4962-4980. [PMID: 27806918 DOI: 10.1016/j.jmb.2016.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Septins are a protein family found in all eukaryotes (except higher plants) that have roles in membrane remodeling and formation of diffusion barriers and as a scaffold to recruit other proteins. In budding yeast, proper execution of cytokinesis and cell division requires the formation of a collar of circumferential filaments at the bud neck. These filaments are assembled from apolar septin hetero-octamers. Currently, little is known about the mechanisms that control the arrangement and dynamics of septin structures. In this study, we utilized both Förster resonance energy transfer and electron microscopy to analyze the biophysical properties of the septin-binding protein Bni5 and how its association with septin filaments affects their organization. We found that the interaction of Bni5 with the terminal subunit (Cdc11) at the junctions between adjacent hetero-octamers in paired filaments is highly cooperative. Both the C-terminal end of Bni5 and the C-terminal extension of Cdc11 make important contributions to their interaction. Moreover, this binding may stabilize the dimerization of Bni5, which, in turn, forms cross-filament braces that significantly narrow, and impose much more uniform spacing on, the gap between paired filaments.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, CA 94143, USA.
| | - Eva Nogales
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
17
|
Glomb O, Gronemeyer T. Septin Organization and Functions in Budding Yeast. Front Cell Dev Biol 2016; 4:123. [PMID: 27857941 PMCID: PMC5093138 DOI: 10.3389/fcell.2016.00123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins.
Collapse
Affiliation(s)
- Oliver Glomb
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| | - Thomas Gronemeyer
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| |
Collapse
|
18
|
Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci U S A 2016; 113:E6352-E6361. [PMID: 27679846 DOI: 10.1073/pnas.1607674113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells.
Collapse
|
19
|
Dai M, Jungmann R, Yin P. Optical imaging of individual biomolecules in densely packed clusters. NATURE NANOTECHNOLOGY 2016; 11:798-807. [PMID: 27376244 PMCID: PMC5014615 DOI: 10.1038/nnano.2016.95] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/09/2016] [Indexed: 05/15/2023]
Abstract
Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (∼5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography)-a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization-on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1 nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with ∼5 nm point-to-point distance and to analyse the DNA origami structural offset with ångström-level precision (2 Å) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 × 5 nm pixel size and three distinct colours with <1 nm cross-channel registration accuracy.
Collapse
Affiliation(s)
- Mingjie Dai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Biophysics Program, Harvard University, Boston, MA 02115
| | - Ralf Jungmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Booth EA, Thorner J. A FRET-based method for monitoring septin polymerization and binding of septin-associated proteins. Methods Cell Biol 2016; 136:35-56. [PMID: 27473902 DOI: 10.1016/bs.mcb.2016.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Much about septin function has been inferred from in vivo studies using mainly genetic methods, and much of what we know about septin organization has been obtained through examination of static structures in vitro primarily by electron microscopy. Deeper mechanistic insight requires real-time analysis of the dynamics of the assembly of septin-based structures and how other proteins associate with them. We describe here a Förster resonance energy transfer (FRET)-based approach for measuring in vitro the rate and extent of filament formation from septin complexes, binding of other proteins to septin structures, and the apparent affinities of these interactions. FRET is particularly well suited for interrogating protein-protein interactions, especially on a rapid timescale; the spectral change provides an unambiguous indication of whether two elements within the system under study are associating and serves as a molecular-level "ruler" because it is very sensitive to the separation between the donor and acceptor fluorophores over biologically relevant distances (≤10nm). The necessary procedures involve generation of appropriate cysteine-less and single cysteine-containing septin variants, expression and purification of the heterooctameric complexes containing them, efficient labeling of the purified complexes with desired fluorophores, fluorimetric measurement of FRET, and appropriate safeguards and controls in data acquisition and analysis. Our methods can be used to interrogate the effects of buffer conditions, small molecules, and septin-binding proteins on septin filament assembly or stability; determine the effect of alternative septin subunits, mutational alterations, or posttranslational modifications on assembly; and, delineate the location of septin-binding proteins.
Collapse
Affiliation(s)
- E A Booth
- University of California, Berkeley, CA, United States
| | - J Thorner
- University of California, Berkeley, CA, United States
| |
Collapse
|
21
|
Zander S, Baumann S, Weidtkamp-Peters S, Feldbrügge M. Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J Cell Sci 2016; 129:2778-92. [PMID: 27252385 DOI: 10.1242/jcs.182824] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/26/2016] [Indexed: 02/02/2023] Open
Abstract
Septins are conserved cytoskeletal structures functioning in a variety of biological processes including cytokinesis and cell polarity. A wealth of information exists on the heterooligomeric architecture of septins and their subcellular localization at distinct sites. However, the precise mechanisms of their subcellular assembly and their intracellular transport are unknown. Here, we demonstrate that endosomal transport of septins along microtubules is crucial for formation of higher-order structures in the fungus Ustilago maydis Importantly, endosomal septin transport is dependent on each individual septin providing strong evidence that septin heteromeric complexes are assembled on endosomes. Furthermore, endosomal trafficking of all four septin mRNAs is required for endosomal localization of their translation products. Based on these results, we propose that local translation promotes the assembly of newly synthesized septins in heteromeric structures on the surface of endosomes. This is important for the long-distance transport of septins and the efficient formation of the septin cytoskeleton.
Collapse
Affiliation(s)
- Sabrina Zander
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Sebastian Baumann
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Michael Feldbrügge
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
22
|
Kaplan C, Yu C, Ewers H. Ashbya gossypii as a model system to study septin organization by single-molecule localization microscopy. Methods Cell Biol 2016; 136:161-82. [PMID: 27473909 DOI: 10.1016/bs.mcb.2016.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heteromeric complexes of GTP-binding proteins from the septin family assemble into higher order structures that are essential for cell division in many organisms. The correct organization of the subunits into filaments, gauzes, and rings is the basis of septin function in this process. Electron microscopy and polarization fluorescence microscopy contributed greatly to the understanding of the dynamics and organization of such structures. However, both methods show technical limitations in resolution and specificity that do not allow the identification of individual septin complexes in assemblies in intact cells. Single-molecule localization-based fluorescence superresolution microscopy methods combine the resolution of cellular structures at the nanometer level with highest molecular specificity and excellent contrast. Here, we provide a protocol that enables the investigation of the organization of septin complexes in higher order structures in cells by combining advantageous features of the model organism Ashbya gossypii with single-molecule localization microscopy. Our assay is designed to investigate the general assembly mechanism of septin complexes in cells and is applicable to many cell types.
Collapse
Affiliation(s)
| | - C Yu
- ETH Zurich, Zurich, Switzerland
| | - H Ewers
- ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Brausemann A, Gerhardt S, Schott AK, Einsle O, Große-Berkenbusch A, Johnsson N, Gronemeyer T. Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol 2016; 193:157-161. [PMID: 26780475 DOI: 10.1016/j.jsb.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Septins are a conserved family of GTP-binding proteins that assemble into a highly ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. Many molecular functions and mechanisms of the septins in S. cerevisiae were already uncovered. However, structural information is only available from modeling the crystallized subunits of the human septins into the EM cryomicroscopy data of the yeast hetero-octameric septin rod. Octameric rods are the building block of septin filaments in yeast. We present here the first crystal structure of Cdc11, the terminal subunit of the octameric rod and discuss its structure in relation to its human homologues. Size exclusion chromatography analysis revealed that Cdc11 forms homodimers through its C-terminal coiled coil tail.
Collapse
Affiliation(s)
- Anton Brausemann
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Stefan Gerhardt
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Anne-Kathrin Schott
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | | | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
24
|
Booth EA, Vane EW, Dovala D, Thorner J. A Förster Resonance Energy Transfer (FRET)-based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-octamers. J Biol Chem 2015; 290:28388-28401. [PMID: 26416886 PMCID: PMC4653696 DOI: 10.1074/jbc.m115.683128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies in both budding yeast (Saccharomyces cerevisiae) and in human cells have established that septin protomers assemble into linear hetero-octameric rods with 2-fold rotational symmetry. In mitotically growing yeast cells, five septin subunits are expressed (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) and assemble into two types of rods that differ only in their terminal subunit: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1. EM analysis has shown that, under low salt conditions, the Cdc11-capped rods polymerize end to end to form long paired filaments, whereas Shs1-capped rods form arcs, spirals, and rings. To develop a facile method to study septin polymerization in vitro, we exploited our previous work in which we generated septin complexes in which all endogenous cysteine (Cys) residues were eliminated by site-directed mutagenesis, except an introduced E294C mutation in Cdc11 in these experiments. Mixing samples of a preparation of such single-Cys containing Cdc11-capped rods that have been separately derivatized with organic dyes that serve as donor and acceptor, respectively, for FRET provided a spectroscopic method to monitor filament assembly mediated by Cdc11-Cdc11 interaction and to measure its affinity under specified conditions. Modifications of this same FRET scheme also allow us to assess whether Shs1-capped rods are capable of end to end association either with themselves or with Cdc11-capped rods. This FRET approach also was used to follow the binding to septin filaments of a septin-interacting protein, the type II myosin-binding protein Bni5.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eleanor W Vane
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202.
| |
Collapse
|