1
|
Liu X, Yu L, Xiao A, Sun W, Wang H, Wang X, Zhou Y, Li C, Li J, Wang Y, Wang G. Analytical methods in studying cell force sensing: principles, current technologies and perspectives. Regen Biomater 2025; 12:rbaf007. [PMID: 40337625 PMCID: PMC12057814 DOI: 10.1093/rb/rbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
Mechanical stimulation plays a crucial role in numerous biological activities, including tissue development, regeneration and remodeling. Understanding how cells respond to their mechanical microenvironment is vital for investigating mechanotransduction with adequate spatial and temporal resolution. Cell force sensing-also known as mechanosensation or mechanotransduction-involves force transmission through the cytoskeleton and mechanochemical signaling. Insights into cell-extracellular matrix interactions and mechanotransduction are particularly relevant for guiding biomaterial design in tissue engineering. To establish a foundation for mechanical biomedicine, this review will provide a comprehensive overview of cell mechanotransduction mechanisms, including the structural components essential for effective mechanical responses, such as cytoskeletal elements, force-sensitive ion channels, membrane receptors and key signaling pathways. It will also discuss the clutch model in force transmission, the role of mechanotransduction in both physiology and pathological contexts, and biomechanics and biomaterial design. Additionally, we outline analytical approaches for characterizing forces at cellular and subcellular levels, discussing the advantages and limitations of each method to aid researchers in selecting appropriate techniques. Finally, we summarize recent advancements in cell force sensing and identify key challenges for future research. Overall, this review should contribute to biomedical engineering by supporting the design of biomaterials that integrate precise mechanical information.
Collapse
Affiliation(s)
- Xiaojun Liu
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Lei Yu
- Department of Traditional Chinese Medicine, Qingdao Special Service Sanatorium of PLA Navy, Qingdao 266071, China
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Wenxu Sun
- School of Sciences, Nantong University, Nantong 226019, China
| | - Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Jiangtao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yongliang Wang
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Qindao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
3
|
Liu S, Liu J, Foote A, Ogasawara H, Al Abdullatif S, Batista VS, Salaita K. Digital and Tunable Genetically Encoded Tension Sensors Based on Engineered Coiled-Coils. Angew Chem Int Ed Engl 2025; 64:e202407359. [PMID: 39805005 DOI: 10.1002/anie.202407359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force. We address this problem by developing digital GETSs comprised of coiled-coils (CCs) with tunable mechanical thresholds. We validate the mechanical response of CC digital probes using thermodynamic stability prediction, AlphaFold2 modeling, steered molecular dynamics simulations, and single-molecule force spectroscopy. Live cell measurements using optimized CC tension sensors that are inserted into vinculin demonstrate that 13 % of this mechanosensor experiences forces >9.9 pN within focal adhesions. This reveals greater magnitudes of vinculin force than had previously been reported and demonstrates that CC tension sensors enable more facile and precise tension measurements in living systems.
Collapse
Affiliation(s)
- Shuhong Liu
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Alexander Foote
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Hiroaki Ogasawara
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Sarah Al Abdullatif
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
4
|
Pal K. Unravelling molecular mechanobiology using DNA-based fluorogenic tension sensors. J Mater Chem B 2024; 13:37-53. [PMID: 39564891 DOI: 10.1039/d4tb01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Investigations of the biological system have revealed many principles that govern regular life processes. Recently, the analysis of tiny mechanical forces associated with many biological processes revealed their significance in understanding biological functions. Consequently, this piqued the interest of researchers, and a series of technologies have been developed to understand biomechanical cues at the molecular level. Notable techniques include single-molecule force spectroscopy, traction force microscopy, and molecular tension sensors. Well-defined double-stranded DNA structures could possess programmable mechanical characteristics, and hence, they have become one of the central molecules in molecular tension sensor technology. With the advancement of DNA technology, DNA or nucleic acid-based robust tension sensors offer the possibility of understanding mechanobiology in the bulk to single-molecule level range with desired spatiotemporal resolution. This review presents a comprehensive account of molecular tension sensors with a special emphasis on DNA-based fluorogenic tension sensors. Along with a detailed discussion on irreversible and reversible DNA-based tension sensors and their application in super-resolution microscopy, a discussion on biomolecules associated with cellular mechanotransduction and key findings in the field are included. This review ends with an elaborate discussion on the current challenges and future prospects of molecular tension sensors.
Collapse
Affiliation(s)
- Kaushik Pal
- Biophysical Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, AP-517619, India.
| |
Collapse
|
5
|
Combs JD, Foote AK, Ogasawara H, Velusamy A, Rashid SA, Mancuso JN, Salaita K. Measuring Integrin Force Loading Rates Using a Two-Step DNA Tension Sensor. J Am Chem Soc 2024; 146:23034-23043. [PMID: 39133202 PMCID: PMC11345772 DOI: 10.1021/jacs.4c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Cells apply forces to extracellular matrix (ECM) ligands through transmembrane integrin receptors: an interaction which is intimately involved in cell motility, wound healing, cancer invasion and metastasis. These small (piconewton) integrin-ECM forces have been studied by molecular tension fluorescence microscopy (MTFM), which utilizes a force-induced conformational change of a probe to detect mechanical events. MTFM has revealed the force magnitude for integrin receptors in a variety of cell models including primary cells. However, force dynamics and specifically the force loading rate (LR) have important implications in receptor signaling and adhesion formation and remain poorly characterized. Here, we develop an LR probe composed of an engineered DNA structure that undergoes two mechanical transitions at distinct force thresholds: a low force threshold at 4.7 pN (hairpin unfolding) and a high force threshold at 47 pN (duplex shearing). These transitions yield distinct fluorescence signatures observed through single-molecule fluorescence microscopy in live cells. Automated analysis of tens of thousands of events from eight cells showed that the bond lifetime of integrins that engage their ligands and transmit a force >4.7 pN decays exponentially with a τ of 45.6 s. A subset of these events mature in magnitude to >47 pN with a median loading rate of 1.1 pN s-1 and primarily localize at the periphery of the cell-substrate junction. The LR probe design is modular and can be adapted to measure force ramp rates for a broad range of mechanoreceptors and cell models, thus aiding in the study of molecular mechanotransduction in living systems.
Collapse
Affiliation(s)
- J. Dale Combs
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Alexander K. Foote
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arventh Velusamy
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sk Aysha Rashid
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Wang XH, Wang M, Pan JB, Zhu JM, Cheng H, Dong HZ, Bi WJ, Yang SW, Chen YY, Xu F, Duan XJ. Fluorescent probe for imaging intercellular tension: molecular force approach. RSC Adv 2024; 14:22877-22881. [PMID: 39035717 PMCID: PMC11258865 DOI: 10.1039/d4ra02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force in vitro. Specifically, the designed Au-DNA intercellular tension probe includes a molecular spring flanked by a fluorophore-quencher pair, which is anchored between cells. As intercellular forces open the hairpin, the fluorophore is de-quenched, allowing for visualization of cellular force. The effectiveness of this approach was demonstrated by imaging the cellular force in living cells using the designed Au-DNA intercellular tension probe.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Ming Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Jin-Miao Zhu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hu Cheng
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hua-Ze Dong
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Wen-Jie Bi
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Shi-Wei Yang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Yuan-Yuan Chen
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Fan Xu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Xiao-Jing Duan
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| |
Collapse
|
7
|
Chen H, Wang S, Cao Y, Lei H. Molecular Force Sensors for Biological Application. Int J Mol Sci 2024; 25:6198. [PMID: 38892386 PMCID: PMC11173168 DOI: 10.3390/ijms25116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to μm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.
Collapse
Affiliation(s)
- Huiyan Chen
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Shouhan Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
9
|
Tabrizi MA, Ali AA, Singuru MMR, Mi L, Bhattacharyya P, You M. A portable electrochemical DNA sensor for sensitive and tunable detection of piconewton-scale cellular forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586508. [PMID: 38585754 PMCID: PMC10996547 DOI: 10.1101/2024.03.24.586508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell-generated forces are a key player in cell biology, especially during cellular shape formation, migration, cancer development, and immune response. A new type of label-free smartphone-based electrochemical DNA sensor is developed here for cellular force measurement. When cells apply tension forces to the DNA sensors, the rapid rupture of DNA duplexes allows multiple redox reporters to reach the electrode and generate highly sensitive electrochemical signals. The sensitivity of these portable sensors can be further enhanced by incorporating a CRISPR-Cas12a system. Meanwhile, the threshold force values of these DNA-based sensors can be rationally tuned based on the force application geometries and also DNA intercalating agents. Overall, these highly sensitive, portable, cost-efficient, and easy-to-use electrochemical sensors can be powerful tools for detecting different cell-generated molecular forces.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Murali Mohana Rao Singuru
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Lan Mi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Priyanka Bhattacharyya
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Combs JD, Foote AK, Ogasawara H, Velusamy A, Rashid SA, Mancuso JN, Salaita K. Measuring integrin force loading rates using a two-step DNA tension sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585042. [PMID: 38558970 PMCID: PMC10980004 DOI: 10.1101/2024.03.15.585042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cells apply forces to extracellular matrix (ECM) ligands through transmembrane integrin receptors: an interaction which is intimately involved in cell motility, wound healing, cancer invasion and metastasis. These small (pN) forces exerted by cells have been studied by molecular tension fluorescence microscopy (MTFM), which utilizes a force-induced conformational change of a probe to detect mechanical events. MTFM has revealed the force magnitude for integrins receptors in a variety of cell models including primary cells. However, force dynamics and specifically the force loading rate (LR) have important implications in receptor signaling and adhesion formation and remain poorly characterized. Here, we develop a LR probe which is comprised of an engineered DNA structures that undergoes two mechanical transitions at distinct force thresholds: a low force threshold at 4.7 pN corresponding to hairpin unfolding and a high force threshold at 56 pN triggered through duplex shearing. These transitions yield distinct fluorescence signatures observed through single-molecule fluorescence microscopy in live-cells. Automated analysis of tens of thousands of events from 8 cells showed that the bond lifetime of integrins that engage their ligands and transmit a force >4.7 pN decays exponentially with a τ of 45.6 sec. A small subset of these events (<10%) mature in magnitude to >56pN with a median loading rate of 1.3 pNs-1 with these mechanical ramp events localizing at the periphery of the cell-substrate junction. Importantly, the LR probe design is modular and can be adapted to measure force ramp rates for a broad range of mechanoreceptors and cell models, thus aiding in the study of mechanotransduction.
Collapse
Affiliation(s)
- J. Dale Combs
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Sk Aysha Rashid
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, GA 30322, USA
| |
Collapse
|
11
|
Al Abdullatif S, Narum S, Hu Y, Rogers J, Fitzgerald R, Salaita K. Molecular Compressive Force Sensor for Mapping Forces at the Cell-Substrate Interface. J Am Chem Soc 2024; 146:6830-6836. [PMID: 38418383 PMCID: PMC10941184 DOI: 10.1021/jacs.3c13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Mechanical forces are crucial for biological processes such as T cell antigen recognition. A suite of molecular tension probes to measure pulling forces have been reported over the past decade; however, there are no reports of molecular probes for measuring compressive forces, representing a gap in the current mechanobiology toolbox. To address this gap, we report a molecular compression reporter using pseudostable hairpins (M-CRUSH). The design principle was based on a pseudostable DNA structure that folds in response to an external compressive force. We created a library of DNA stem-loop hairpins with varying thermodynamic stability, and then used Förster Resonance Energy Transfer (FRET) to quantify hairpin folding stability as a function of temperature and crowding. We identified an optimal pseudostable DNA hairpin highly sensitive to molecular crowding that displayed a shift in melting temperature (Tm) of 7 °C in response to a PEG crowding agent. When immobilized on surfaces, this optimized DNA hairpin showed a 29 ± 6% increase in FRET index in response to 25% w/w PEG 8K. As a proof-of-concept demonstration, we employed M-CRUSH to map the compressive forces generated by primary naïve T cells. We noted dynamic compressive forces that were highly sensitive to antigen presentation and coreceptor engagement. Importantly, mechanical forces are generated by cytoskeletal protrusions caused by acto-myosin activity. This was confirmed by treating cells with cytoskeletal inhibitors, which resulted in a lower FRET response when compared to untreated cells. Furthermore, we showed that M-CRUSH signal is dependent on probe density with greater density probes showing enhanced signal. Finally, we demonstrated that M-CRUSH probes are modular and can be applied to different cell types by displaying a compressive signal observed under human platelets. M-CRUSH offers a powerful tool to complement tension sensors and map out compressive forces in living systems.
Collapse
Affiliation(s)
- Sarah Al Abdullatif
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven Narum
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rachel Fitzgerald
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Duan Y, Szlam F, Hu Y, Chen W, Li R, Ke Y, Sniecinski R, Salaita K. Detection of cellular traction forces via the force-triggered Cas12a-mediated catalytic cleavage of a fluorogenic reporter strand. Nat Biomed Eng 2023; 7:1404-1418. [PMID: 37957275 PMCID: PMC11289779 DOI: 10.1038/s41551-023-01114-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Molecular forces generated by cell receptors are infrequent and transient, and hence difficult to detect. Here we report an assay that leverages the CRISPR-associated protein 12a (Cas12a) to amplify the detection of cellular traction forces generated by as few as 50 adherent cells. The assay involves the immobilization of a DNA duplex modified with a ligand specific for a cell receptor. Traction forces of tens of piconewtons trigger the dehybridization of the duplex, exposing a cryptic Cas12-activating strand that sets off the indiscriminate Cas12-mediated cleavage of a fluorogenic reporter strand. We used the assay to perform hundreds of force measurements using human platelets from a single blood draw to extract individualized dose-response curves and half-maximal inhibitory concentrations for a panel of antiplatelet drugs. For seven patients who had undergone cardiopulmonary bypass, platelet dysfunction strongly correlated with the need for platelet transfusion to limit bleeding. The Cas12a-mediated detection of cellular traction forces may be used to assess cell state, and to screen for genes, cell-adhesion ligands, drugs or metabolites that modulate cell mechanics.
Collapse
Affiliation(s)
- Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Fania Szlam
- Department of Anesthesiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Departments of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Departments of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Roman Sniecinski
- Department of Anesthesiology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Kim Y, Tram LTH, Kim KA, Kim BC. Defining Integrin Tension Required for Chemotaxis of Metastatic Breast Cancer Cells in Confinement. Adv Healthc Mater 2023; 12:e2202747. [PMID: 37256848 DOI: 10.1002/adhm.202202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Cancer metastasis is affected by chemical factors and physical cues. From cell adhesion to migration, mechanical tension applied to integrin expresses on the cell membrane and physical confinement significantly regulates cancer cell behaviors. Despite the physical interplay between integrins in cells and ligands in the tumor microenvironment, quantitative analysis of integrin tension during cancer cell migration in microconfined spaces remains elusive owing to the limited experimental tools. Herein, a platform termed microconfinement tension gauge tether to monitor spatial integrin tension with single-molecule precision by analyzing the epithelial-growth-factor-induced chemotaxis of metastatic human breast cancer cells in microfluidic channels is developed. The results reveal that the metastatic cancer cells exert the strongest integrin tension in the range of 54-100 pN at the leading edges of cells during chemokinetic migration on a planar surface, while the cells exert the strongest integrin tension exceeding 100 pN at the cell rear when entering microconfinement. Further analysis demonstrates that cells undergo mesenchymal migration under high integrin tension and less confinement, which is converted to amoeboid migration under low integrin tension or high confinement. In summary, the results identify a basic mechanism underlying the mechanical interactions between integrin tension and microenvironment that determines cancer invasion and metastasis.
Collapse
Affiliation(s)
- Young Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Le Thi Hong Tram
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyung Ah Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byoung Choul Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
14
|
Sun F, Li H, Hu Y, Zhang M, Wang W, Chen W, Liu Z. Exploring Mechanical Responses of Cells to Geometric Information Using Micropatterned DNA-Based Molecular Tension Probes. ACS NANO 2023; 17:18584-18595. [PMID: 37713214 DOI: 10.1021/acsnano.3c07088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The geometric shape of a cell is strongly influenced by the cytoskeleton, which, in turn, is regulated by integrin-mediated cell-extracellular matrix (ECM) interactions. To investigate the mechanical role of integrin in the geometrical interplay between cells and the ECM, we proposed a single-cell micropatterning technique combined with molecular tension fluorescence microscopy (MTFM), which allows us to characterize the mechanical properties of cells with prescribed geometries. Our results show that the curvature is a key geometric cue for cells to differentiate shapes in a membrane-tension- and actomyosin-dependent manner. Specifically, curvatures affect the size of focal adhesions (FAs) and induce a curvature-dependent density and spatial distribution of strong integrins. In addition, we found that the integrin subunit β1 plays a critical role in the detection of geometric information. Overall, the integration of MTFM and single-cell micropatterning offers a robust approach for investigating the nexus between mechanical cues and cellular responses, holding potential for advancing our understanding of mechanobiology.
Collapse
Affiliation(s)
- Feng Sun
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongyun Li
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuru Hu
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Mengsheng Zhang
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenxu Wang
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Chen
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zheng Liu
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Hu Y, Duan Y, Salaita K. DNA Nanotechnology for Investigating Mechanical Signaling in the Immune System. Angew Chem Int Ed Engl 2023; 62:e202302967. [PMID: 37186502 PMCID: PMC11336604 DOI: 10.1002/anie.202302967] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/17/2023]
Abstract
Immune recognition occurs at specialized cell-cell junctions when immune cells and target cells physically touch. In this junction, groups of receptor-ligand complexes assemble and experience molecular forces that are ultimately generated by the cellular cytoskeleton. These forces are in the range of piconewton (pN) but play crucial roles in immune cell activation and subsequent effector responses. In this minireview, we will review the development of DNA based molecular tension sensors and their applications in mapping and quantifying mechanical forces experienced by immunoreceptors including T-cell receptor (TCR), Lymphocyte function-associated antigen (LFA-1), and the B-cell receptor (BCR) among others. In addition, we will highlight the use of DNA as a mechanical gate to manipulate mechanotransduction and decipher how mechanical forces regulate antigen discrimination and receptor signaling.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Rashid SA, Dong Y, Ogasawara H, Vierengel M, Essien ME, Salaita K. All-Covalent Nuclease-Resistant and Hydrogel-Tethered DNA Hairpin Probes Map pN Cell Traction Forces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33362-33372. [PMID: 37409737 PMCID: PMC10360067 DOI: 10.1021/acsami.3c04826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Cells sense and respond to the physical properties of their environment through receptor-mediated signaling, a process known as mechanotransduction, which can modulate critical cellular functions such as proliferation, differentiation, and survival. At the molecular level, cell adhesion receptors, such as integrins, transmit piconewton (pN)-scale forces to the extracellular matrix, and the magnitude of the force plays a critical role in cell signaling. The most sensitive approach to measuring integrin forces involves DNA hairpin-based sensors, which are used to quantify and map forces in living cells. Despite the broad use of DNA hairpin sensors to study a variety of mechanotransduction processes, these sensors are typically anchored to rigid glass slides, which are orders of magnitude stiffer than the extracellular matrix and hence modulate native biological responses. Here, we have developed nuclease-resistant DNA hairpin probes that are all covalently tethered to PEG hydrogels to image cell traction forces on physiologically relevant substrate stiffness. Using HeLa cells as a model cell line, we show that the molecular forces transmitted by integrins are highly sensitive to the bulk modulus of the substrate, and cells cultured on the 6 and 13 kPa gels produced a greater number of hairpin unfolding events compared to the 2 kPa substrates. Tension signals are spatially colocalized with pY118-paxillin, confirming focal adhesion-mediated probe opening. Additionally, we found that integrin forces are greater than 5.8 pN but less than 19 pN on 13 kPa gels. This work provides a general strategy to integrate molecular tension probes into hydrogels, which can better mimic in vivo mechanotransduction.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Maia Vierengel
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mark Edoho Essien
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Venturini C, Sáez P. A multi-scale clutch model for adhesion complex mechanics. PLoS Comput Biol 2023; 19:e1011250. [PMID: 37450544 PMCID: PMC10393167 DOI: 10.1371/journal.pcbi.1011250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cell-matrix adhesion is a central mechanical function to a large number of phenomena in physiology and disease, including morphogenesis, wound healing, and tumor cell invasion. Today, how single cells respond to different extracellular cues has been comprehensively studied. However, how the mechanical behavior of the main individual molecules that form an adhesion complex cooperatively responds to force within the adhesion complex is still poorly understood. This is a key aspect of cell adhesion because how these cell adhesion molecules respond to force determines not only cell adhesion behavior but, ultimately, cell function. To answer this question, we develop a multi-scale computational model for adhesion complexes mechanics. We extend the classical clutch hypothesis to model individual adhesion chains made of a contractile actin network, a talin rod, and an integrin molecule that binds at individual adhesion sites on the extracellular matrix. We explore several scenarios of integrins dynamics and analyze the effects of diverse extracellular matrices on the behavior of the adhesion molecules and on the whole adhesion complex. Our results describe how every single component of the adhesion chain mechanically responds to the contractile actomyosin force and show how they control the traction forces exerted by the cell on the extracellular space. Importantly, our computational results agree with previous experimental data at the molecular and cellular levels. Our multi-scale clutch model presents a step forward not only to further understand adhesion complexes mechanics but also to impact, e.g., the engineering of biomimetic materials, tissue repairment, or strategies to arrest tumor progression.
Collapse
Affiliation(s)
- Chiara Venturini
- Laboratori de Càlcul Numèric (LaCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LaCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- E.T.S. de Ingeniería de Caminos, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
18
|
Matsubara H, Fukunaga H, Saito T, Ikezaki K, Iwaki M. A Programmable DNA Origami Nanospring That Reports Dynamics of Single Integrin Motion, Force Magnitude and Force Orientation in Living Cells. ACS NANO 2023. [PMID: 37394270 PMCID: PMC10373515 DOI: 10.1021/acsnano.2c12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mechanical forces are critical for regulating many biological processes such as cell differentiation, proliferation, and death. Probing the continuously changing molecular force through integrin receptors provides insights into the molecular mechanism of rigidity sensing in cells; however, the force information is still limited. Here, we built a coil-shaped DNA origami (DNA nanospring, NS) as a force sensor that reports the dynamic motion of single integrins as well as the magnitude and orientation of the force through integrins in living cells. We monitored the extension with nanometer accuracy and the orientation of the NS linked with a single integrin by the shape of the fluorescence spots. We used acoustic force spectroscopy to estimate the force-extension curve of the NS and determined the force with an ∼10% force error at a broad detectable range from subpicoNewtons (pN) to ∼50 pN. We found single integrins tethered with the NS moved several tens of nanometers, and the contraction and relaxation speeds were load dependent at less than ∼20 pN but robust over ∼20 pN. Fluctuations of the traction force orientation were suppressed with increasing load. Our assay system is a potentially powerful tool for studying mechanosensing at the molecular level.
Collapse
Affiliation(s)
- Hitomi Matsubara
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Hiroki Fukunaga
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Takahiro Saito
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Keigo Ikezaki
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Mitsuhiro Iwaki
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 6512492, Japan
| |
Collapse
|
19
|
Guo Y, Ao Y, Ye C, Xia R, Mi J, Shan Z, Shi M, Xie L, Chen Z. Nanotopographic micro-nano forces finely tune the conformation of macrophage mechanosensitive membrane protein integrin β 2 to manipulate inflammatory responses. NANO RESEARCH 2023; 16:1-15. [PMID: 37359074 PMCID: PMC9986042 DOI: 10.1007/s12274-023-5550-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Finely tuning mechanosensitive membrane proteins holds great potential in precisely controlling inflammatory responses. In addition to macroscopic force, mechanosensitive membrane proteins are reported to be sensitive to micro-nano forces. Integrin β2, for example, might undergo a piconewton scale stretching force in the activation state. High-aspect-ratio nanotopographic structures were found to generate nN-scale biomechanical force. Together with the advantages of uniform and precisely tunable structural parameters, it is fascinating to develop low-aspect-ratio nanotopographic structures to generate micro-nano forces for finely modulating their conformations and the subsequent mechanoimmiune responses. In this study, low-aspect-ratio nanotopographic structures were developed to finely manipulate the conformation of integrin β2. The direct interaction of forces and the model molecule integrin αXβ2 was first performed. It was demonstrated that pressing force could successfully induce conformational compression and deactivation of integrin αXβ2, and approximately 270 to 720 pN may be required to inhibit its conformational extension and activation. Three low-aspect-ratio nanotopographic surfaces (nanohemispheres, nanorods, and nanoholes) with various structural parameters were specially designed to generate the micro-nano forces. It was found that the nanorods and nanohemispheres surfaces induce greater contact pressure at the contact interface between macrophages and nanotopographic structures, particularly after cell adhesion. These higher contact pressures successfully inhibited the conformational extension and activation of integrin β2, suppressing focal adhesion activity and the downstream PI3K-Akt signaling pathway, reducing NF-κB signaling and macrophage inflammatory responses. Our findings suggest that nanotopographic structures can be used to finely tune mechanosensitive membrane protein conformation changes, providing an effective strategy for precisely modulating inflammatory responses. Electronic Supplementary Material Supplementary material (primer sequences of target genes in RT-qPCR assay; the results of solvent accessible surface area during equilibrium simulation, the ligplut results of hydrogen bonds, and hydrophobic interactions; the density of different nanotopographic structures; interaction analysis of the downregulated leading genes of "focal adhesion" signaling pathway in nanohemispheres and nanorods groups; and the GSEA results of "Rap 1 signaling pathway" and "regulation of actin cytoskeleton" in different groups) is available in the online version of this article at 10.1007/s12274-023-5550-0.
Collapse
Affiliation(s)
- Yuanlong Guo
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Yong Ao
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Chen Ye
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Ruidi Xia
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Jiaomei Mi
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Zhengjie Shan
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Mengru Shi
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Lv Xie
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Zetao Chen
- Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| |
Collapse
|
20
|
Zhou P, Ding L, Yan Y, Wang Y, Su B. Recent advances in label-free imaging of cell-matrix adhesions. Chem Commun (Camb) 2023; 59:2341-2351. [PMID: 36744880 DOI: 10.1039/d2cc06499e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesions play an essential role in mediating and regulating many biological processes. The adhesion receptors, typically transmembrane integrins, provide dynamic correlations between intracellular environments and extracellular matrixes (ECMs) by bi-directional signaling. In-depth investigations of cell-matrix adhesion and integrin-mediated cell adhesive force are of great significance in biology and medicine. The emergence of advanced imaging techniques and principles has facilitated the understanding of the molecular composition and structure dynamics of cell-matrix adhesions, especially the label-free imaging methods that can be used to study living cell dynamics without immunofluorescence staining. This highlight article aims to give an overview of recent developments in imaging cell-matrix adhesions in a label-free manner. Electrochemiluminescence microscopy (ECLM) and surface plasmon resonance microscopy (SPRM) are briefly introduced and their applications in imaging analysis of cell-matrix adhesions are summarized. Then we highlight the advances in mapping cell-matrix adhesion force based on molecular tension probes and fluorescence microscopy (collectively termed as MTFM). The biomaterials including polyethylene glycol (PEG), peptides and DNA for constructing tension probes in MTFM are summarized. Finally, the outlook and perspectives on the further developments of cell-matrix adhesion imaging are presented.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Tu Y, Pal K, Austin J, Wang X. Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging. Curr Biol 2022; 32:4386-4396.e3. [PMID: 36084647 PMCID: PMC9613586 DOI: 10.1016/j.cub.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 μm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
22
|
Ma VPY, Hu Y, Kellner AV, Brockman JM, Velusamy A, Blanchard AT, Evavold BD, Alon R, Salaita K. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. SCIENCE ADVANCES 2022; 8:eabg4485. [PMID: 35213231 PMCID: PMC8880789 DOI: 10.1126/sciadv.abg4485] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/15/2021] [Indexed: 05/15/2023]
Abstract
T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F>12 pN potentiates antigen-dependent T cell activation by enhancing T cell-substrate engagement. LFA-1/ICAM-1 mechanical events with F>12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.
Collapse
Affiliation(s)
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Anna V. Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Joshua M. Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Aaron T. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Brian D. Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
24
|
Baek KY, Kim S, Koh HR. Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces. Mol Cells 2022; 45:26-32. [PMID: 35114645 PMCID: PMC8819489 DOI: 10.14348/molcells.2022.2049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022] Open
Abstract
Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligandreceptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.
Collapse
Affiliation(s)
- Kyung Yup Baek
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Seohyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
25
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
26
|
Dong Y, Ramey-Ward AN, Salaita K. Programmable Mechanically Active Hydrogel-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006600. [PMID: 34309076 PMCID: PMC8595730 DOI: 10.1002/adma.202006600] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| |
Collapse
|
27
|
Hu Y, Ma VP, Ma R, Chen W, Duan Y, Glazier R, Petrich BG, Li R, Salaita K. DNA‐Based Microparticle Tension Sensors (μTS) for Measuring Cell Mechanics in Non‐planar Geometries and for High‐Throughput Quantification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuesong Hu
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | | | - Rong Ma
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Department of Pediatrics Emory University Atlanta GA 30322 USA
| | - Yuxin Duan
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Brian G. Petrich
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Department of Pediatrics Emory University Atlanta GA 30322 USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Department of Pediatrics Emory University Atlanta GA 30322 USA
| | - Khalid Salaita
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
28
|
Blanchard A, Combs JD, Brockman JM, Kellner AV, Glazier R, Su H, Bender RL, Bazrafshan AS, Chen W, Quach ME, Li R, Mattheyses AL, Salaita K. Turn-key mapping of cell receptor force orientation and magnitude using a commercial structured illumination microscope. Nat Commun 2021; 12:4693. [PMID: 34344862 PMCID: PMC8333341 DOI: 10.1038/s41467-021-24602-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.
Collapse
Affiliation(s)
- Aaron Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - J Dale Combs
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Edward Quach
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Hu Y, Ma VPY, Ma R, Chen W, Duan Y, Glazier R, Petrich BG, Li R, Salaita K. DNA-Based Microparticle Tension Sensors (μTS) for Measuring Cell Mechanics in Non-planar Geometries and for High-Throughput Quantification. Angew Chem Int Ed Engl 2021; 60:18044-18050. [PMID: 33979471 DOI: 10.1002/anie.202102206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Indexed: 11/07/2022]
Abstract
Mechanotransduction, the interplay between physical and chemical signaling, plays vital roles in many biological processes. The state-of-the-art techniques to quantify cell forces employ deformable polymer films or molecular probes tethered to glass substrates. However, the applications of these assays in fundamental and clinical research are restricted by the planar geometry and low throughput of microscopy readout. Herein, we develop a DNA-based microparticle tension sensor, which features a spherical surface and thus allows for investigation of mechanotransduction at curved interfaces. The micron-scale of μTS enables flow cytometry readout, which is rapid and high throughput. We applied the method to map and measure T-cell receptor forces and platelet integrin forces at 12 and 56 pN thresholds. Furthermore, we quantified the inhibition efficiency of two anti-platelet drugs providing a proof-of-concept demonstration of μTS to screen drugs that modulate cellular mechanics.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Brian G Petrich
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
30
|
Li H, Zhang C, Hu Y, Liu P, Sun F, Chen W, Zhang X, Ma J, Wang W, Wang L, Wu P, Liu Z. A reversible shearing DNA probe for visualizing mechanically strong receptors in living cells. Nat Cell Biol 2021; 23:642-651. [PMID: 34059812 DOI: 10.1038/s41556-021-00691-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
In the last decade, DNA-based tension sensors have made significant contributions to the study of the importance of mechanical forces in many biological systems. Albeit successful, one shortcoming of these techniques is their inability to reversibly measure receptor forces in a higher regime (that is, >20 pN), which limits our understanding of the molecular details of mechanochemical transduction in living cells. Here, we developed a reversible shearing DNA-based tension probe (RSDTP) for probing molecular piconewton-scale forces between 4 and 60 pN transmitted by cells. Using these probes, we can easily distinguish the differences in force-bearing integrins without perturbing adhesion biology and reveal that a strong force-bearing integrin cluster can serve as a 'mechanical pivot' to maintain focal adhesion architecture and facilitate its maturation. The benefits of the RSDTP include a high dynamic range, reversibility and single-molecule sensitivity, all of which will facilitate a better understanding of the molecular mechanisms of mechanobiology.
Collapse
Affiliation(s)
- Hongyun Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Chen Zhang
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yuru Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Pengxiang Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Feng Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.,College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Liang Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Schlichthaerle T, Lindner C, Jungmann R. Super-resolved visualization of single DNA-based tension sensors in cell adhesion. Nat Commun 2021; 12:2510. [PMID: 33947854 PMCID: PMC8097079 DOI: 10.1038/s41467-021-22606-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Cell-extracellular matrix sensing plays a crucial role in cellular behavior and leads to the formation of a macromolecular protein complex called the focal adhesion. Despite their importance in cellular decision making, relatively little is known about cell-matrix interactions and the intracellular transduction of an initial ligand-receptor binding event on the single-molecule level. Here, we combine cRGD-ligand-decorated DNA tension sensors with DNA-PAINT super-resolution microscopy to study the mechanical engagement of single integrin receptors and the downstream influence on actin bundling. We uncover that integrin receptor clustering is governed by a non-random organization with complexes spaced at 20–30 nm distances. The DNA-based tension sensor and analysis framework provide powerful tools to study a multitude of receptor-ligand interactions where forces are involved in ligand-receptor binding. Relatively little is known about cell-matrix interactions and the intracellular transduction of an initial ligand-receptor binding event on the single-molecule level. Here authors combine ligand-decorated DNA tension sensors with DNA-PAINT super-resolution microscopy to study the mechanical engagement of single integrin receptors and the downstream influence on actin bundling.
Collapse
Affiliation(s)
- Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Caroline Lindner
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany. .,Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
33
|
Blanchard AT, Salaita K. Multivalent molecular tension probes as anisotropic mechanosensors: concept and simulation. Phys Biol 2021; 18:034001. [PMID: 33316784 DOI: 10.1088/1478-3975/abd333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cells use protein-based mechanosensors to measure the physical properties of their surroundings. Synthetic tension sensors made of proteins, DNA, and other molecular building blocks have recently emerged as tools to visualize and perturb the mechanics of these mechanosensors. While almost all synthetic tension sensors are designed to exhibit orientation-independent force responses, recent work has shown that biological mechanosensors often function in a manner that is highly dependent on force orientation. Accordingly, the design of synthetic mechanosensors with orientation-dependent force responses can provide a means to study the role of orientation in mechanosensation. Furthermore, the process of designing anisotropic force responses may yield insight into the physical basis for orientation-dependence in biological mechanosensors. Here, we propose a DNA-based molecular tension sensor design wherein multivalency is used to create an orientation-dependent force response. We apply chemomechanical modeling to show that multivalency can be used to create synthetic mechanosensors with force response thresholds that vary by tens of pN with respect to force orientation.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, United States of America
| | | |
Collapse
|
34
|
Fischer LS, Rangarajan S, Sadhanasatish T, Grashoff C. Molecular Force Measurement with Tension Sensors. Annu Rev Biophys 2021; 50:595-616. [PMID: 33710908 DOI: 10.1146/annurev-biophys-101920-064756] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of cells to generate mechanical forces, but also to sense, adapt to, and respond to mechanical signals, is crucial for many developmental, postnatal homeostatic, and pathophysiological processes. However, the molecular mechanisms underlying cellular mechanotransduction have remained elusive for many decades, as techniques to visualize and quantify molecular forces across individual proteins in cells were missing. The development of genetically encoded molecular tension sensors now allows the quantification of piconewton-scale forces that act upon distinct molecules in living cells and even whole organisms. In this review, we discuss the physical principles, advantages, and limitations of this increasingly popular method. By highlighting current examples from the literature, we demonstrate how molecular tension sensors can be utilized to obtain access to previously unappreciated biophysical parameters that define the propagation of mechanical forces on molecular scales. We discuss how the methodology can be further developed and provide a perspective on how the technique could be applied to uncover entirely novel aspects of mechanobiology in the future.
Collapse
Affiliation(s)
- Lisa S Fischer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Srishti Rangarajan
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Tanmay Sadhanasatish
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| |
Collapse
|
35
|
Glazier R, Shinde P, Ogasawara H, Salaita K. Spectroscopic Analysis of a Library of DNA Tension Probes for Mapping Cellular Forces at Fluid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2145-2164. [PMID: 33417432 DOI: 10.1021/acsami.0c09774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oligonucleotide-based probes offer the highest spatial resolution, force sensitivity, and molecular specificity for cellular tension sensing and have been developed to measure a variety of molecular forces mediated by individual receptors in T cells, platelets, fibroblasts, B-cells, and immortalized cancer cell lines. These fluorophore-oligonucleotide conjugate probes are designed with a stem-loop structure that engages cell receptors and reversibly unfolds due to mechanical strain. With the growth of recent work bridging molecular mechanobiology and biomaterials, there is a need for a detailed spectroscopic analysis of DNA tension probes that are used for cellular imaging. In this manuscript, we conducted an analysis of 19 DNA hairpin-based tension probe variants using molecular dynamics simulations, absorption spectroscopy, and fluorescence imaging (epifluorescence and fluorescence lifetime imaging microscopy). We find that tension probes are highly sensitive to their molecular design, including donor and acceptor proximity and pairing, DNA stem-loop structure, and conjugation chemistry. We demonstrate the impact of these design features using a supported lipid bilayer model of podosome-like adhesions. Finally, we discuss the requirements for tension imaging in various biophysical contexts and offer a series of experimental recommendations, thus providing a guide for the design and application of DNA hairpin-based molecular tension probes.
Collapse
Affiliation(s)
- Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Pushkar Shinde
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
36
|
Tu Y, Wang X. Recent Advances in Cell Adhesive Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7128. [PMID: 33322701 PMCID: PMC7763046 DOI: 10.3390/s20247128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Cell adhesive force, exerting on the local matrix or neighboring cells, plays a critical role in regulating many cell functions and physiological processes. In the past four decades, significant efforts have been dedicated to cell adhesive force detection, visualization and quantification. A recent important methodological advancement in cell adhesive force visualization is to adopt force-to-fluorescence conversion instead of force-to-substrate strain conversion, thus greatly improving the sensitivity and resolution of force imaging. This review summarizes the recent development of force imaging techniques (collectively termed as cell adhesive force microscopy or CAFM here), with a particular focus on the improvement of CAFM's spatial resolution and the biomaterial choices for constructing the tension sensors used in force visualization. This review also highlights the importance of DNA-based tension sensors in cell adhesive force imaging and the recent breakthrough in the development of super-resolution CAFM.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
- Molecular, Cellular, and Development Biology Interdepartmental Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
37
|
Brockman JM, Su H, Blanchard AT, Duan Y, Meyer T, Quach ME, Glazier R, Bazrafshan A, Bender RL, Kellner AV, Ogasawara H, Ma R, Schueder F, Petrich BG, Jungmann R, Li R, Mattheyses AL, Ke Y, Salaita K. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat Methods 2020; 17:1018-1024. [PMID: 32929270 PMCID: PMC7574592 DOI: 10.1038/s41592-020-0929-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/20/2020] [Indexed: 11/09/2022]
Abstract
Despite the vital role of mechanical forces in biology, it still remains a challenge to image cellular force with sub-100-nm resolution. Here, we present tension points accumulation for imaging in nanoscale topography (tPAINT), integrating molecular tension probes with the DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) technique to map piconewton mechanical events with ~25-nm resolution. To perform live-cell dynamic tension imaging, we engineered reversible probes with a cryptic docking site revealed only when the probe experiences forces exceeding a defined mechanical threshold (~7-21 pN). Additionally, we report a second type of irreversible tPAINT probe that exposes its cryptic docking site permanently and thus integrates force history over time, offering improved spatial resolution in exchange for temporal dynamics. We applied both types of tPAINT probes to map integrin receptor forces in live human platelets and mouse embryonic fibroblasts. Importantly, tPAINT revealed a link between platelet forces at the leading edge of cells and the dynamic actin-rich ring nucleated by the Arp2/3 complex.
Collapse
Affiliation(s)
- Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Travis Meyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - M Edward Quach
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brian G Petrich
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Yu M, Zhao Z, Chen Z, Le S, Yan J. Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains. Nat Commun 2020; 11:4476. [PMID: 32900995 PMCID: PMC7479118 DOI: 10.1038/s41467-020-18323-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Mechanically stable specific heterodimerization between small protein domains have a wide scope of applications, from using as a molecular anchorage in single-molecule force spectroscopy studies of protein mechanics, to serving as force-bearing protein linker for modulation of mechanotransduction of cells, and potentially acting as a molecular crosslinker for functional materials. Here, we explore the possibility to develop heterodimerization system with a range of mechanical stability from a set of recently engineered helix-heterotetramers whose mechanical properties have yet to be characterized. We demonstrate this possibility using two randomly chosen helix-heterotetramers, showing that their mechanical properties can be modulated by changing the stretching geometry and the number of interacting helices. These helix-heterotetramers and their derivatives are sufficiently stable over physiological temperature range. Using it as mechanically stable anchorage, we demonstrate the applications in single-molecule manipulation studies of the temperature dependent unfolding and refolding of a titin immunoglobulin domain and α-actinin spectrin repeats. Mechanically stable specific heterodimerization formed with reversible bonds are used as a molecular anchorage in single-molecule force spectroscopy studies with unique mechanical properties. Here authors develop a variety of heterodimerization molecular systems with a range of mechanical stability from a set of recently engineered helix-heterotetramers.
Collapse
Affiliation(s)
- Miao Yu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore. .,Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
| |
Collapse
|
39
|
Sharma S, Subramani S, Popa I. Does protein unfolding play a functional role in vivo? FEBS J 2020; 288:1742-1758. [PMID: 32761965 DOI: 10.1111/febs.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Smrithika Subramani
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
40
|
Chighizola M, Previdi A, Dini T, Piazzoni C, Lenardi C, Milani P, Schulte C, Podestà A. Adhesion force spectroscopy with nanostructured colloidal probes reveals nanotopography-dependent early mechanotransductive interactions at the cell membrane level. NANOSCALE 2020; 12:14708-14723. [PMID: 32618323 DOI: 10.1039/d0nr01991g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanosensing, the ability of cells to perceive and interpret the microenvironmental biophysical cues (such as the nanotopography), impacts strongly cellular behaviour through mechanotransductive processes and signalling. These events are predominantly mediated by integrins, the principal cellular adhesion receptors located at the cell/extracellular matrix (ECM) interface. Because of the typical piconewton force range and nanometre length scale of mechanotransductive interactions, achieving a detailed understanding of the spatiotemporal dynamics occurring at the cell/microenvironment interface is challenging; sophisticated interdisciplinary methodologies are required. Moreover, an accurate control over the nanotopographical features of the microenvironment is essential, in order to systematically investigate and precisely assess the influence of the different nanotopographical motifs on the mechanotransductive process. In this framework, we were able to study and quantify the impact of microenvironmental nanotopography on early cellular adhesion events by means of adhesion force spectroscopy based on innovative colloidal probes mimicking the nanotopography of natural ECMs. These probes provided the opportunity to detect nanotopography-specific modulations of the molecular clutch force loading dynamics and integrin clustering at the level of single binding events, in the critical time window of nascent adhesion formation. Following this approach, we found that the nanotopographical features are responsible for an excessive force loading in single adhesion sites after 20-60 s of interaction, causing a drop in the number of adhesion sites. However, by manganese treatment we demonstrated that the availability of activated integrins is a critical regulatory factor for these nanotopography-dependent dynamics.
Collapse
Affiliation(s)
- M Chighizola
- C.I.Ma.I.Na. and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tan SJ, Chang AC, Anderson SM, Miller CM, Prahl LS, Odde DJ, Dunn AR. Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds. SCIENCE ADVANCES 2020; 6:eaax0317. [PMID: 32440534 PMCID: PMC7228748 DOI: 10.1126/sciadv.aax0317] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.
Collapse
Affiliation(s)
- Steven J. Tan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alice C. Chang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah M. Anderson
- Department of Biomedical Engineering and Physical Sciences–Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cayla M. Miller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Louis S. Prahl
- Department of Biomedical Engineering and Physical Sciences–Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J. Odde
- Department of Biomedical Engineering and Physical Sciences–Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Corresponding author.
| |
Collapse
|
42
|
Abstract
Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.
Collapse
|
43
|
Chen C, Hildebrandt N. Resonance energy transfer to gold nanoparticles: NSET defeats FRET. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115748] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Wiegand T, Fratini M, Frey F, Yserentant K, Liu Y, Weber E, Galior K, Ohmes J, Braun F, Herten DP, Boulant S, Schwarz US, Salaita K, Cavalcanti-Adam EA, Spatz JP. Forces during cellular uptake of viruses and nanoparticles at the ventral side. Nat Commun 2020; 11:32. [PMID: 31896744 PMCID: PMC6940367 DOI: 10.1038/s41467-019-13877-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Many intracellular pathogens, such as mammalian reovirus, mimic extracellular matrix motifs to specifically interact with the host membrane. Whether and how cell-matrix interactions influence virus particle uptake is unknown, as it is usually studied from the dorsal side. Here we show that the forces exerted at the ventral side of adherent cells during reovirus uptake exceed the binding strength of biotin-neutravidin anchoring viruses to a biofunctionalized substrate. Analysis of virus dissociation kinetics using the Bell model revealed mean forces higher than 30 pN per virus, preferentially applied in the cell periphery where close matrix contacts form. Utilizing 100 nm-sized nanoparticles decorated with integrin adhesion motifs, we demonstrate that the uptake forces scale with the adhesion energy, while actin/myosin inhibitions strongly reduce the uptake frequency, but not uptake kinetics. We hypothesize that particle adhesion and the push by the substrate provide the main driving forces for uptake. Many intracellular pathogens mimic extracellular matrix motifs to specifically interact with the host membrane which may influences virus particle uptake. Here authors use single molecule tension sensors to reveal the minimal forces exerted on single virus particles and demonstrate that the uptake forces scale with the adhesion energy.
Collapse
Affiliation(s)
- Tina Wiegand
- Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany. .,Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - Marta Fratini
- Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital, INF 324, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), INF 581, 69120, Heidelberg, Germany.,Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Felix Frey
- BioQuant Center, Heidelberg University, INF 267, 69120, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Klaus Yserentant
- Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.,BioQuant Center, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Yang Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.,Johns Hopkins University, 3400N Charles St, Baltimore, MD, 21218, USA
| | - Eva Weber
- Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.,Department of Neuroscience, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Kornelia Galior
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Julia Ohmes
- Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.,Experimental Trauma Surgery, Universty Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Felix Braun
- Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.,BioQuant Center, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Dirk-Peter Herten
- Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.,BioQuant Center, Heidelberg University, INF 267, 69120, Heidelberg, Germany.,Institute of Cardiovascular Sciences & School of Chemistry, Medical School, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, University Hospital, INF 324, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), INF 581, 69120, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center, Heidelberg University, INF 267, 69120, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - E Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany. .,Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany. .,Institute for Physical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Wang Y, Wang H, Tran MV, Algar WR, Li H. Yellow fluorescent protein-based label-free tension sensors for monitoring integrin tension. Chem Commun (Camb) 2020; 56:5556-5559. [DOI: 10.1039/d0cc01635g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yellow fluorescent protein serves as a label-free tension sensor to monitor integrin tension.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Han Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Michael V. Tran
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - W. Russ Algar
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
46
|
Yasunaga A, Murad Y, Li ITS. Quantifying molecular tension-classifications, interpretations and limitations of force sensors. Phys Biol 2019; 17:011001. [PMID: 31387091 DOI: 10.1088/1478-3975/ab38ff] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular force sensors (MFSs) have grown to become an important tool to study the mechanobiology of cells and tissues. They provide a minimally invasive means to optically report mechanical interactions at the molecular level. One of the challenges in molecular force sensor studies is the interpretation of the fluorescence readout. In this review, we divide existing MFSs into three classes based on the force-sensing mechanism (reversibility) and the signal output (analog/digital). From single-molecule force spectroscopy (SMFS) perspectives, we provided a critical discussion on how the sensors respond to force and how the different sensor designs affect the interpretation of their fluorescence readout. Lastly, the review focuses on the limitations and attention one must pay in designing MFSs and biological experiments using them; in terms of their tunability, signal-to-noise ratio (SNR), and perturbation of the biological system under investigation.
Collapse
Affiliation(s)
- Adam Yasunaga
- These authors contributed equally to the manuscript (co-first author)
| | | | | |
Collapse
|
47
|
Ham TR, Collins KL, Hoffman BD. Molecular Tension Sensors: Moving Beyond Force. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:83-94. [PMID: 32864525 DOI: 10.1016/j.cobme.2019.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nearly all cellular processes are sensitive to mechanical inputs, and this plays a major role in diverse physiological processes. Mechanical stimuli are thought to be primarily detected through force-induced changes in protein structure. Approximately a decade ago, molecular tension sensors were created to measure forces across proteins within cells. Since then, an impressive assortment of sensors has been created and provided key insights into mechanotransduction, but comparisons of measurements between various sensors are challenging. In this review, we discuss the different types of molecular tension sensors, provide a system of classification based on their molecular-scale mechanical properties, and highlight how new applications of these sensors are enabling measurements beyond the magnitude of tensile load. We suggest that an expanded understanding of the functionality of these sensors, as well as integration with other techniques, will lead to consensus amongst measurements as well as critical insights into the underlying mechanisms of mechanotransduction.
Collapse
Affiliation(s)
- Trevor R Ham
- Duke University, Room 1379 CIEMAS, 101 Science Drive, 27710, United States
| | - Kasie L Collins
- Duke University, Room 1379 CIEMAS, 101 Science Drive, 27710, United States
| | - Brenton D Hoffman
- Duke University, Room 1379 CIEMAS, 101 Science Drive, 27710, United States
| |
Collapse
|
48
|
DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates. Nat Commun 2019; 10:4507. [PMID: 31628308 PMCID: PMC6800454 DOI: 10.1038/s41467-019-12304-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
Podosomes are ubiquitous cellular structures important to diverse processes including cell invasion, migration, bone resorption, and immune surveillance. Structurally, podosomes consist of a protrusive actin core surrounded by adhesion proteins. Although podosome protrusion forces have been quantified, the magnitude, spatial distribution, and orientation of the opposing tensile forces remain poorly characterized. Here we use DNA nanotechnology to create probes that measure and manipulate podosome tensile forces with molecular piconewton (pN) resolution. Specifically, Molecular Tension-Fluorescence Lifetime Imaging Microscopy (MT-FLIM) produces maps of the cellular adhesive landscape, revealing ring-like tensile forces surrounding podosome cores. Photocleavable adhesion ligands, breakable DNA force probes, and pharmacological inhibition demonstrate local mechanical coupling between integrin tension and actin protrusion. Thus, podosomes use pN integrin forces to sense and respond to substrate mechanics. This work deepens our understanding of podosome mechanotransduction and contributes tools that are widely applicable for studying receptor mechanics at dynamic interfaces.
Collapse
|
49
|
Ma VPY, Salaita K. DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900961. [PMID: 31069945 PMCID: PMC6663650 DOI: 10.1002/smll.201900961] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Indexed: 05/24/2023]
Abstract
The ease of tailoring DNA nanostructures with sub-nanometer precision has enabled new and exciting in vivo applications in the areas of chemical sensing, imaging, and gene regulation. A new emerging paradigm in the field is that DNA nanostructures can be engineered to study molecular mechanics. This new development has transformed the repertoire of capabilities enabled by DNA to include detection of molecular forces in living cells and elucidating the fundamental mechanisms of mechanotransduction. This Review first describes fundamental aspects of force-induced melting of DNA hairpins and duplexes. This is then followed by a survey of the currently available force sensing DNA probes and different fluorescence-based force readout modes. Throughout the Review, applications of these probes in studying immune receptor signaling, including the T cell receptor and B cell receptor, as well as Notch and integrin signaling, are discussed.
Collapse
Affiliation(s)
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
50
|
Zhao J, Su H, Vansuch GE, Liu Z, Salaita K, Dyer RB. Localized Nanoscale Heating Leads to Ultrafast Hydrogel Volume-Phase Transition. ACS NANO 2019; 13:515-525. [PMID: 30574782 PMCID: PMC6467806 DOI: 10.1021/acsnano.8b07150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rate of the volume-phase transition for stimuli-responsive hydrogel particles ranging in size from millimeters to nanometers is limited by the rate of water transport, which is proportional to the surface area of the particle. Here, we hypothesized that the rate of volume-phase transition could be accelerated if the stimulus is geometrically controlled from the inside out, thus facilitating outward water ejection. To test this concept, we applied transient absorption spectroscopy, laser temperature-jump spectroscopy, and finite-element analysis modeling to characterize the dynamics of the volume-phase transition of hydrogel particles with a gold nanorod core. Our results demonstrate that the nanoscale heating of the hydrogel particle core led to an ultrafast, 60 ns particle collapse, which is 2-3 orders of magnitude faster than the response generated from conventional heating. This is the fastest recorded response time of a hydrogel material, thus opening potential applications for such stimuli-responsive materials.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gregory E. Vansuch
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Zheng Liu
- Institute for Advanced Studies, Wuhan University, Wuhan, PR China
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Corresponding Authors
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|