1
|
Tizei LHG, Fiorentin MR, Dursap T, van den Berg TM, Túnica M, Palummo M, Kociak M, Vincent L, Amato M. Optical Absorption in Hexagonal-Diamond Si and Ge Nanowires: Insights from STEM-EELS Experiments and Ab Initio Theory. NANO LETTERS 2025. [PMID: 40326737 DOI: 10.1021/acs.nanolett.5c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Hexagonal-diamond (2H) group IV nanowires are key for advancing group IV-based lasers, quantum electronics, and photonics. Understanding their dielectric response is crucial for performance optimization, but their optical absorption properties remain unexplored. We present the first comprehensive study of optical absorption in 2H-Si and 2H-Ge nanowires combining high-resolution STEM, monochromated EELS, and ab initio simulations. The nanowires, grown in situ in a TEM as nanobranches on GaAs stems, show excellent structural quality: single crystalline, strain-free, minimal defects, and no substrate contamination, enabling access to intrinsic dielectric response. 2H-Si exhibits enhanced absorption in the visible range compared to cubic Si, with a marked onset above 2.5 eV. 2H-Ge shows absorption near 1 eV but no clear features at the direct bandgap, as predicted by ab initio simulations. A peak at around 2 eV in aloof-beam spectra is attributed to a thin 3C-Ge shell. These findings clarify the structure-optical response relationships in 2H materials.
Collapse
Affiliation(s)
- Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Michele Re Fiorentin
- Department of Applied Science And Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Thomas Dursap
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120 Palaiseau, France
| | - Theodorus M van den Berg
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120 Palaiseau, France
| | - Marc Túnica
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Maurizia Palummo
- INFN, Dipartimento di Fisica, Università degli studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Laetitia Vincent
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120 Palaiseau, France
| | - Michele Amato
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
2
|
Wang W, Ngo É, Bulkin P, Zhang Z, Foldyna M, Roca I Cabarrocas P, Johnson EV, Maurice JL. Evolution of Cu-In Catalyst Nanoparticles under Hydrogen Plasma Treatment and Silicon Nanowire Growth Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2061. [PMID: 37513072 PMCID: PMC10384329 DOI: 10.3390/nano13142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
We report silicon nanowire (SiNW) growth with a novel Cu-In bimetallic catalyst using a plasma-enhanced chemical vapor deposition (PECVD) method. We study the structure of the catalyst nanoparticles (NPs) throughout a two-step process that includes a hydrogen plasma pre-treatment at 200 °C and the SiNW growth itself in a hydrogen-silane plasma at 420 °C. We show that the H2-plasma induces a coalescence of the Cu-rich cores of as-deposited thermally evaporated NPs that does not occur when the same annealing is applied without plasma. The SiNW growth process at 420 °C induces a phase transformation of the catalyst cores to Cu7In3; while a hydrogen plasma treatment at 420 °C without silane can lead to the formation of the Cu11In9 phase. In situ transmission electron microscopy experiments show that the SiNWs synthesis with Cu-In bimetallic catalyst NPs follows an essentially vapor-solid-solid process. By adjusting the catalyst composition, we manage to obtain small-diameter SiNWs-below 10 nm-among which we observe the metastable hexagonal diamond phase of Si, which is predicted to have a direct bandgap.
Collapse
Affiliation(s)
- Weixi Wang
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| | - Éric Ngo
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| | - Pavel Bulkin
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| | - Zhengyu Zhang
- Laboratoire LuMIn, École Normale Supérieure Paris-Saclay, CentraleSupélec, Université Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - Martin Foldyna
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| | - Pere Roca I Cabarrocas
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| | - Erik V Johnson
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| | - Jean-Luc Maurice
- Laboratoire de Physique des Interfaces et Couches Minces, École Polytechnique, CNRS, IPParis, 91120 Palaiseau, France
| |
Collapse
|
3
|
Wang W, Ngo É, Florea I, Foldyna M, Roca i Cabarrocas P, Maurice JL. High Density of Quantum-Sized Silicon Nanowires with Different Polytypes Grown with Bimetallic Catalysts. ACS OMEGA 2021; 6:26381-26390. [PMID: 34660996 PMCID: PMC8515598 DOI: 10.1021/acsomega.1c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
When Si nanowires (NWs) have diameters below about 10 nm, their band gap increases as their diameter decreases; moreover, it can be direct if the material adopts the metastable diamond hexagonal structure. To prepare such wires, we have developed an original variant of the vapor-liquid-solid process based on the use of a bimetallic Cu-Sn catalyst in a plasma-enhanced chemical vapor deposition reactor, which allows us to prevent droplets from coalescing and favors the growth of a high density of NWs with a narrow diameter distribution. Controlling the deposited thickness of the catalyst materials at the sub-nanometer level allows us to get dense arrays (up to 6 × 1010 cm-2) of very-small-diameter NWs of 6 nm on average (standard deviation of 1.6 nm) with crystalline cores of about 4 nm. The transmission electron microscopy analysis shows that both 3C and 2H polytypes are present, with the 2H hexagonal diamond structure appearing in 5-13% of the analyzed NWs per sample.
Collapse
Affiliation(s)
- Weixi Wang
- École Polytechnique, LPICM,
CNRS UMR 7647, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | | | - Ileana Florea
- École Polytechnique, LPICM,
CNRS UMR 7647, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Martin Foldyna
- École Polytechnique, LPICM,
CNRS UMR 7647, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Pere Roca i Cabarrocas
- École Polytechnique, LPICM,
CNRS UMR 7647, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Luc Maurice
- École Polytechnique, LPICM,
CNRS UMR 7647, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
4
|
Ossicini S, Marri I, Amato M, Palummo M, Canadell E, Rurali R. Ab initio studies of the optoelectronic structure of undoped and doped silicon nanocrystals and nanowires: the role of size, passivation, symmetry and phase. Faraday Discuss 2020; 222:217-239. [DOI: 10.1039/c9fd00085b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Results from ab initio calculations for singly- and co- doped Si nanocrystals and nanowires are presented.
Collapse
Affiliation(s)
- Stefano Ossicini
- Dipartimento di Scienze e Metodi Dell’Ingegneria
- Centro Interdipartimentale En&Tech
- Universitá di Modena e Reggio Emilia
- I-42125 Reggio Emilia
- Italy
| | - Ivan Marri
- Centro S3
- CNR-Istituto di Nanoscienze
- I-41125 Modena
- Italy
| | - Michele Amato
- Laboratoire de Physique des Solides (LPS)
- CNRS
- Université Paris Sud
- Université Paris-Saclay
- Centre Scientifique D’Orsay
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN
- Universitá di Roma Tor Vergata
- 00133 Roma
- Italy
| | - Enric Canadell
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC)
- Campus de Bellaterra
- Barcelona
- Spain
| | - Riccardo Rurali
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC)
- Campus de Bellaterra
- Barcelona
- Spain
| |
Collapse
|
5
|
Carrete J, López-Suárez M, Raya-Moreno M, Bochkarev AS, Royo M, Madsen GKH, Cartoixà X, Mingo N, Rurali R. Phonon transport across crystal-phase interfaces and twin boundaries in semiconducting nanowires. NANOSCALE 2019; 11:16007-16016. [PMID: 31424472 DOI: 10.1039/c9nr05274g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We combine state-of-the-art Green's-function methods and nonequilibrium molecular dynamics calculations to study phonon transport across the unconventional interfaces that make up crystal-phase and twinning superlattices in nanowires. We focus on two of their most paradigmatic building blocks: cubic (diamond/zinc blende) and hexagonal (lonsdaleite/wurtzite) polytypes of the same group-IV or III-V material. Specifically, we consider InP, GaP and Si, and both the twin boundaries between rotated cubic segments and the crystal-phase boundaries between different phases. We reveal the atomic-scale mechanisms that give rise to phonon scattering in these interfaces, quantify their thermal boundary resistance and illustrate the failure of common phenomenological models in predicting those features. In particular, we show that twin boundaries have a small but finite interface thermal resistance that can only be understood in terms of a fully atomistic picture.
Collapse
Affiliation(s)
- Jesús Carrete
- Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo MO, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, Marini A. Many-body perturbation theory calculations using the yambo code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:325902. [PMID: 30943462 DOI: 10.1088/1361-648x/ab15d0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo's capabilities include the calculation of linear response quantities (both independent-particle and including electron-hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron-phonon interactions to the implementation of a real-time propagation scheme for simulating linear and non-linear optical properties. Improvements to numerical algorithms and the user interface are outlined. Particular emphasis is given to the new and efficient parallel structure that makes it possible to exploit modern high performance computing architectures. Finally, we demonstrate the possibility to automate workflows by interfacing with the yambopy and AiiDA software tools.
Collapse
Affiliation(s)
- D Sangalli
- Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche (CNR-ISM), Division of Ultrafast Processes in Materials (FLASHit), Via Salaria Km 29.5, CP 10, I-00016 Monterotondo Stazione, Italy. European Theoretical Spectroscopy Facility (ETSF
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
He Z, Maurice JL, Li Q, Pribat D. Direct evidence of 2H hexagonal Si in Si nanowires. NANOSCALE 2019; 11:4846-4853. [PMID: 30816896 DOI: 10.1039/c8nr10370d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hexagonal Si (2H polytype) has attracted great interest because of its unique physical properties and wide range of potential applications. For example, it might be used in heterojunctions based on hexagonal and cubic Si. Although hexagonal Si has been reported in Si nanowires, its existence is doubted because structural defects of diamond cubic Si can produce structural signals similar to those attributed to hexagonal Si. Here, through the use of atomic resolution high-angle annular dark-field scanning transmission electron microscopy imaging, we unambiguously report the coherent intergrowth of diamond cubic (3C polytype) and 2H hexagonal Si in Si nanowires grown by chemical vapor deposition. A model describing the intergrowth of 3C and 2H Si is proposed and the reasons for the generation of 2H Si are discussed in detail.
Collapse
Affiliation(s)
- Zhanbing He
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | |
Collapse
|
8
|
Amato M, Ossicini S, Canadell E, Rurali R. Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires. NANO LETTERS 2019; 19:866-876. [PMID: 30608707 DOI: 10.1021/acs.nanolett.8b04083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We studied the physics of common p- and n-type dopants in hexagonal-diamond Si, a Si polymorph that can be synthesized in nanowire geometry without the need of extreme pressure conditions, by means of first-principles electronic structure calculations and compared our results with those for the well-known case of cubic-diamond nanowires. We showed that (i) as observed in recent experiments, at larger diameters (beyond the quantum confinement regime) p-type dopants prefer the hexagonal-diamond phase with respect to the cubic one as a consequence of the stronger degree of three-fold coordination of the former, while n-type dopants are at a first approximation indifferent to the polytype of the host lattice; (ii) in ultrathin nanowires, because of the lower symmetry with respect to bulk systems and the greater freedom of structural relaxation, the order is reversed and both types of dopant slightly favor substitution at cubic lattice sites; (iii) the difference in formation energies leads, particularly in thicker nanowires, to larger concentration differences in different polytypes, which can be relevant for cubic-hexagonal homojunctions; (iv) ultrasmall diameters exhibit, regardless of the crystal phase, a pronounced surface segregation tendency for p-type dopants. Overall these findings shed light on the role of crystal phase in the doping mechanism at the nanoscale and could have a great potential in view of the recent experimental works on group IV nanowires polytypes.
Collapse
Affiliation(s)
- Michele Amato
- Laboratoire de Physique des Solides (LPS) , CNRS, Université Paris-Sud, Université Paris-Saclay, Centre Scientifique d'Orsay , F91405 Orsay cedex , France
| | - Stefano Ossicini
- "Centro S3", CNR-Istituto di Nanoscienze , Via Campi 213/A , 41125 Modena , Italy
- Dipartimento di Scienze e Metodi dell'Ingegneria, Centro Interdipartimentale En&Tech , Universitá di Modena e Reggio Emilia , Via Amendola 2 Pad. Morselli , I-42100 Reggio Emilia , Italy
| | - Enric Canadell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona , Spain
| | - Riccardo Rurali
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona , Spain
| |
Collapse
|
9
|
Rodichkina SP, Lysenko V, Belarouci A, Bezverkhyy I, Chassagnon R, Isaiev M, Nychyporuk T, Timoshenko VY. Photo-induced cubic-to-hexagonal polytype transition in silicon nanowires. CrystEngComm 2019. [DOI: 10.1039/c9ce00562e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline phase transformation in silicon nanowires from cubic diamond to hexagonal diamond under strong laser excitation, caused by inhomogeneous heating-induced mechanical stresses.
Collapse
Affiliation(s)
- S. P. Rodichkina
- Lomonosov Moscow State University
- Faculty of Physics
- 119991 Moscow
- Russia
- University of Lyon
| | - V. Lysenko
- University of Lyon
- Nanotechnology Institute of Lyon
- UMR CNRS 5270
- INSA de Lyon
- France
| | - A. Belarouci
- University of Lyon
- Nanotechnology Institute of Lyon
- UMR CNRS 5270
- INSA de Lyon
- France
| | - I. Bezverkhyy
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS-Université de Bourgogne-Franche Comte
- 21078 Dijon Cedex
- France
| | - R. Chassagnon
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS-Université de Bourgogne-Franche Comte
- 21078 Dijon Cedex
- France
| | - M. Isaiev
- Taras Shevchenko National University of Kyiv
- Kiev 01601
- Ukraine
- Laboratoire LEMTA
- Faculte des Sciences et Technologies
| | - T. Nychyporuk
- University of Lyon
- Nanotechnology Institute of Lyon
- UMR CNRS 5270
- INSA de Lyon
- France
| | - V. Yu. Timoshenko
- Lomonosov Moscow State University
- Faculty of Physics
- 119991 Moscow
- Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
| |
Collapse
|
10
|
Fasolato C, De Luca M, Djomani D, Vincent L, Renard C, Di Iorio G, Paillard V, Amato M, Rurali R, Zardo I. Crystalline, Phononic, and Electronic Properties of Heterostructured Polytypic Ge Nanowires by Raman Spectroscopy. NANO LETTERS 2018; 18:7075-7084. [PMID: 30185053 DOI: 10.1021/acs.nanolett.8b03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semiconducting nanowires (NWs) offer the unprecedented opportunity to host different crystal phases in a nanostructure, which enables the formation of polytypic heterostructures where the material composition is unchanged. This characteristic boosts the potential of polytypic heterostructured NWs for optoelectronic and phononic applications. In this work, we investigate cubic Ge NWs where small (∼20 nm) hexagonal domains are formed due to a strain-induced phase transformation. By combining a nondestructive optical technique (Raman spectroscopy) with density-functional theory (DFT) calculations, we assess the phonon properties of hexagonal Ge, determine the crystal phase variations along the NW axis, and, quite remarkably, reconstruct the relative orientation of the two polytypes. Moreover, we provide information on the electronic band alignment of the heterostructure at points of the Brillouin zone different from the one (Γ) where the direct band gap recombination in hexagonal Ge takes place. We demonstrate the versatility of Raman spectroscopy and show that it can be used to determine the main crystalline, phononic, and electronic properties of the most challenging type of heterostructure (a polytypic, nanoscale heterostructure with constant material composition). The general procedure that we establish can be applied to several types of heterostructures.
Collapse
Affiliation(s)
- Claudia Fasolato
- Departement Physik , Universität Basel , Klingelbergstrasse 82 , 4056 Basel , Switzerland
| | - Marta De Luca
- Departement Physik , Universität Basel , Klingelbergstrasse 82 , 4056 Basel , Switzerland
| | - Doriane Djomani
- Centre de Nanosciences et Nanotechnologies (C2N), CNRS , Univ. Paris-Sud, Université Paris-Saclay , Bât 220, rue André Ampère, Centre scientifique d'Orsay , F91405 Orsay cedex, France
| | - Laetitia Vincent
- Centre de Nanosciences et Nanotechnologies (C2N), CNRS , Univ. Paris-Sud, Université Paris-Saclay , Bât 220, rue André Ampère, Centre scientifique d'Orsay , F91405 Orsay cedex, France
| | - Charles Renard
- Centre de Nanosciences et Nanotechnologies (C2N), CNRS , Univ. Paris-Sud, Université Paris-Saclay , Bât 220, rue André Ampère, Centre scientifique d'Orsay , F91405 Orsay cedex, France
| | - Giulia Di Iorio
- Departement Physik , Universität Basel , Klingelbergstrasse 82 , 4056 Basel , Switzerland
| | | | - Michele Amato
- Laboratoire de Physique des Solides (LPS), CNRS , Univ. Paris-Sud, Université Paris-Saclay, Centre scientifique d'Orsay , F-91405 Orsay cedex, France
| | - Riccardo Rurali
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus de Bellaterra , 08193 Bellaterra, Barcelona , Spain
| | - Ilaria Zardo
- Departement Physik , Universität Basel , Klingelbergstrasse 82 , 4056 Basel , Switzerland
| |
Collapse
|
11
|
Dai L, Maurin I, Foldyna M, Alvarez J, Wang W, Mohsin H, Chen W, Kleider JP, Maurice JL, Gacoin T, Roca I Cabarrocas P. Tin dioxide nanoparticles as catalyst precursors for plasma-assisted vapor-liquid-solid growth of silicon nanowires with well-controlled density. NANOTECHNOLOGY 2018; 29:435301. [PMID: 30074483 DOI: 10.1088/1361-6528/aad7db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fabrication of arrays of silicon nanowires (Si NWs) with well-defined surface coverage using the vapor-liquid-solid process requires a good control of the density and size distribution for the metal catalyst. We report on a cost-effective bottom-up approach to produce Si NWs by a low-temperature deposition technology using plasma-enhanced chemical vapor deposition and tin dioxide (SnO2) nanoparticles as the source of tin catalyst. This strategy offers a straightforward method to select specific particle sizes by conventional colloidal techniques, and to tune the surface coverage using a polyelectrolyte layer to efficiently immobilize the particles on the substrate by electrostatic grafting. After a further step of reduction into tin metal droplets using hydrogen plasma treatment, the catalyst particles are used for the growth of Si NWs. This approach allows the prodcution of controlled Si NWs arrays which can be used as a template for radial junction thin film solar cells.
Collapse
Affiliation(s)
- Letian Dai
- GeePs, CNRS, CentraleSupelec, Université Paris-Sud, Université Paris-Saclay, Sorbonne Université-UPMC Université Paris 06, 91192 Gif-sur-Yvette Cedex, France. LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau, France. Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pandolfi S, Renero-Lecuna C, Le Godec Y, Baptiste B, Menguy N, Lazzeri M, Gervais C, Spektor K, Crichton WA, Kurakevych OO. Nature of Hexagonal Silicon Forming via High-Pressure Synthesis: Nanostructured Hexagonal 4H Polytype. NANO LETTERS 2018; 18:5989-5995. [PMID: 30102550 DOI: 10.1021/acs.nanolett.8b02816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hexagonal Si allotropes are expected to enhance light absorption in the visible range as compared to common cubic Si with diamond structure. Therefore, synthesis of these materials is crucial for the development of Si-based optoelectronics. In this work, we combine in situ high-pressure high-temperature synthesis and vacuum heating to obtain hexagonal Si. High pressure is one of the most promising routes to stabilize these allotropes. It allows one to obtain large-volume nanostructured ingots by a sequence of direct solid-solid transformations, ensuring high-purity samples for detailed characterization. Thanks to our synthesis approach, we provide the first evidence of a polycrystalline bulk sample of hexagonal Si. Exhaustive structural analysis, combining fine-powder X-ray and electron diffraction, afforded resolution of the crystal structure. We demonstrate that hexagonal Si obtained by high-pressure synthesis correspond to Si-4H polytype (ABCB stacking) in contrast with Si-2H (AB stacking) proposed previously. This result agrees with prior calculations that predicted a higher stability of the 4H form over 2H form. Further physical characterization, combining experimental data and ab initio calculations, have shown a good agreement with the established structure. Strong photoluminescence emission was observed in the visible region for which we foresee optimistic perspectives for the use of this material in Si-based photovoltaics.
Collapse
Affiliation(s)
- Silvia Pandolfi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
| | - Carlos Renero-Lecuna
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu , 75252 Paris cedex 05, France
| | - Yann Le Godec
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
| | - Benoit Baptiste
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
| | - Michele Lazzeri
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
| | - Christel Gervais
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu , 75252 Paris cedex 05, France
| | - Kristina Spektor
- ESRF - The European Synchrotron , 71, avenue des Martyrs , 38000 Grenoble , France
| | - Wilson A Crichton
- ESRF - The European Synchrotron , 71, avenue des Martyrs , 38000 Grenoble , France
| | - Oleksandr O Kurakevych
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France
| |
Collapse
|
13
|
Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin CT, Chen G, Zang K, Luo J, Jiang N, Guo D. New Deformation-Induced Nanostructure in Silicon. NANO LETTERS 2018; 18:4611-4617. [PMID: 29911386 DOI: 10.1021/acs.nanolett.8b01910] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanostructures in silicon (Si) induced by phase transformations have been investigated during the past 50 years. Performances of nanostructures are improved compared to that of bulk counterparts. Nevertheless, the confinement and loading conditions are insufficient to machine and fabricate high-performance devices. As a consequence, nanostructures fabricated by nanoscale deformation at loading speeds of m/s have not been demonstrated yet. In this study, grinding or scratching at a speed of 40.2 m/s was performed on a custom-made setup by an especially designed diamond tip (calculated stress under the diamond tip in the order of 5.11 GPa). This leads to a novel approach for the fabrication of nanostructures by nanoscale deformation at loading speeds of m/s. A new deformation-induced nanostructure was observed by transmission electron microscopy (TEM), consisting of an amorphous phase, a new tetragonal phase, slip bands, twinning superlattices, and a single crystal. The formation mechanism of the new phase was elucidated by ab initio simulations at shear stress of about 2.16 GPa. This approach opens a new route for the fabrication of nanostructures by nanoscale deformation at speeds of m/s. Our findings provide new insights for potential applications in transistors, integrated circuits, diodes, solar cells, and energy storage systems.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education , Dalian University of Technology , Dalian 116024 , China
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Zhenyu Zhang
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Keke Chang
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Junfeng Cui
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education , Dalian University of Technology , Dalian 116024 , China
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials , Universidad de Chile , Avenido Tupper 2069 , Santiago Chile
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Guoxin Chen
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Ketao Zang
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Jun Luo
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Dongming Guo
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
14
|
Zhao LZ, Lu WC, Qin W, Zang QJ, Ho KM, Wang CZ. Theoretical Prediction of Si2–Si33 Absorption Spectra. J Phys Chem A 2017; 121:6388-6397. [DOI: 10.1021/acs.jpca.7b04881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li-Zhen Zhao
- College
of Physics and Laboratory of Fiber Materials and Modern Textile, the
Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Wen-Cai Lu
- College
of Physics and Laboratory of Fiber Materials and Modern Textile, the
Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, P. R. China
- Institute
of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021, P. R. China
| | - Wei Qin
- College
of Physics and Laboratory of Fiber Materials and Modern Textile, the
Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Qing-Jun Zang
- College
of Physics and Laboratory of Fiber Materials and Modern Textile, the
Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - K. M. Ho
- Ames
Laboratory-U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - C. Z. Wang
- Ames
Laboratory-U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Cartoixà X, Palummo M, Hauge HIT, Bakkers EPAM, Rurali R. Optical Emission in Hexagonal SiGe Nanowires. NANO LETTERS 2017; 17:4753-4758. [PMID: 28654293 DOI: 10.1021/acs.nanolett.7b01441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.
Collapse
Affiliation(s)
- Xavier Cartoixà
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata" via della Ricerca Scientifica 1 , 00133 Roma, Italy
| | - Håkon Ikaros T Hauge
- Department of Applied Physics, TU Eindhoven , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Department of Applied Physics, TU Eindhoven , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Riccardo Rurali
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Tang J, Maurice JL, Fossard F, Florea I, Chen W, Johnson EV, Foldyna M, Yu L, Roca I Cabarrocas P. Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by a plasma-assisted vapour-liquid-solid method. NANOSCALE 2017; 9:8113-8118. [PMID: 28604879 DOI: 10.1039/c7nr01299c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silicon nanowires have been grown by a plasma-assisted vapour-liquid-solid method using tin as the catalyst. Transmission electron microscopy in the [12[combining macron]10] zone axis shows that the diamond hexagonal (P63/mmc) crystal structure is present in several nanowires. This is the first unambiguous proof of the natural occurrence of this metastable phase to our knowledge.
Collapse
Affiliation(s)
- J Tang
- LPICM, CNRS, École polytechnique, Université Paris-Saclay, 91128 Palaiseau, France.
| | | | | | | | | | | | | | | | | |
Collapse
|