1
|
Yang J, Dang T, Ma S, Tang S, Ding Y, Seki M, Tabata H, Matsui H. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO 3 Semiconductor Nanorods with Strong Light Scattering in the Visible Regime. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39048517 DOI: 10.1021/acsami.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tang Dang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuting Ma
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Siyi Tang
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Ding
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Munetoshi Seki
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Rahman M, Bashar MS, Rahman ML, Chowdhury FI. Comprehensive review of micro/nanostructured ZnSnO 3: characteristics, synthesis, and diverse applications. RSC Adv 2023; 13:30798-30837. [PMID: 37876649 PMCID: PMC10591246 DOI: 10.1039/d3ra05481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Generally, zinc stannate (ZnSnO3) is a fascinating ternary oxide compound, which has attracted significant attention in the field of materials science due to its unique properties such high sensitivity, large specific area, non-toxic nature, and good compatibility. Furthermore, in terms of both its structure and properties, it is the most appealing category of nanoparticles. The chemical stability of ZnSnO3 under normal conditions contributes to its applicability in various fields. To date, its potential as a luminescent and photovoltaic material and application in supercapacitors, batteries, solar cells, biosensors, gas sensors, and catalysts have been extensively studied. Additionally, the efficient energy storage capacity of ZnSnO3 makes it a promising candidate for the development of energy storage systems. This review focuses on the notable progress in the structural features of ZnSnO3 nanocomposites, including the synthetic processes employed for the fabrication of various ZnSnO3 nanocomposites, their intrinsic characteristics, and their present-day uses. Specifically, we highlight the recent progress in ZnSnO3-based nanomaterials, composites, and doped materials for their utilization in Li-ion batteries, photocatalysis, gas sensors, and energy storage and conversion devices. The further exploration and understanding of the properties of ZnSnO3 will undoubtedly lead to its broader implementation and contribute to the advancement of next-generation materials and devices.
Collapse
Affiliation(s)
- Moksodur Rahman
- Department of Chemistry, University of Chittagong Chattogram Bangladesh
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka Bangladesh
| | | | - Md Lutfor Rahman
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka Bangladesh
| | | |
Collapse
|
3
|
Zhu Z, Yasui T, Zhao X, Liu Q, Morita S, Li Y, Yonezu A, Nagashima K, Takahashi T, Osada M, Matsuda R, Yanagida T, Baba Y. Engineering Interface Defects and Interdiffusion at the Degenerate Conductive In 2O 3/Al 2O 3 Interface for Stable Electrodes in a Saline Solution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486017 DOI: 10.1021/acsami.3c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A low-temperature Al2O3 deposition process provides a simplified method to form a conductive two-dimensional electron gas (2DEG) at the metal oxide/Al2O3 heterointerface. However, the impact of key factors of the interface defects and cation interdiffusion on the interface is still not well understood. Furthermore, there is still a blank space in terms of applications that go beyond the understanding of the interface's electrical conductivity. In this work, we carried out a systematic experimental study by oxygen plasma pretreatment and thermal annealing post-treatment to study the impact of interface defects and cation interdiffusion at the In2O3/Al2O3 interface on the electrical conductance, respectively. Combining the trends in electrical conductance with the structural characteristics, we found that building a sharp interface with a high concentration of interface defects provides a reliable approach to producing such a conductive interface. After applying this conductive interface as electrodes for fabricating a field-effect transistor (FET) device, we found that this interface electrode exhibited ultrastability in phosphate-buffered saline (PBS), a commonly used biological saline solution. This study provides new insights into the formation of conductive 2DEGs at metal oxide/Al2O3 interfaces and lays the foundation for further applications as electrodes in bioelectronic devices.
Collapse
Affiliation(s)
- Zetao Zhu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
| | - Xixi Zhao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Quanli Liu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shu Morita
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8603, Japan
| | - Yan Li
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8603, Japan
| | - Akira Yonezu
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kazuki Nagashima
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsunaki Takahashi
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Minoru Osada
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8603, Japan
| | - Ryotaro Matsuda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Fukuoka, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Islam M, Dolle C, Sadaf A, Weidler PG, Sharma B, Eggeler YM, Mager D, Korvink JG. Electrospun carbon nanofibre-assisted patterning of metal oxide nanostructures. MICROSYSTEMS & NANOENGINEERING 2022; 8:71. [PMID: 35782293 PMCID: PMC9240016 DOI: 10.1038/s41378-022-00409-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
This work establishes carbon nanofibre-mediated patterning of metal oxide nanostructures, through the combination of electrospinning and vapor-phase transport growth. Electrospinning of a suitable precursor with subsequent carbonization results in the patterning of catalyst gold nanoparticles embedded within carbon nanofibres. During vapor-phase transport growth, these nanofibres allow preferential growth of one-dimensional metal oxide nanostructures, which grow radially outward from the nanofibril axis, yielding a hairy caterpillar-like morphology. The synthesis of metal oxide caterpillars is demonstrated using zinc oxide, indium oxide, and tin oxide. Source and substrate temperatures play the most crucial role in determining the morphology of the metal oxide caterpillars, whereas the distribution of the nanofibres also has a significant impact on the overall morphology. Introducing the current methodology with near-field electrospinning further facilitates user-defined custom patterning of metal oxide caterpillar-like structures.
Collapse
Affiliation(s)
- Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Dolle
- Microscopy of Nanoscale Structures & Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Ahsana Sadaf
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter G. Weidler
- Institut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bharat Sharma
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yolita M. Eggeler
- Microscopy of Nanoscale Structures & Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Ponzoni A. Metal Oxide Chemiresistors: A Structural and Functional Comparison between Nanowires and Nanoparticles. SENSORS 2022; 22:s22093351. [PMID: 35591040 PMCID: PMC9099833 DOI: 10.3390/s22093351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
Metal oxide nanowires have become popular materials in gas sensing, and more generally in the field of electronic and optoelectronic devices. This is thanks to their unique structural and morphological features, namely their single-crystalline structure, their nano-sized diameter and their highly anisotropic shape, i.e., a large length-to-diameter aspect ratio. About twenty years have passed since the first publication proposing their suitability for gas sensors, and a rapidly increasing number of papers addressing the understanding and the exploitation of these materials in chemosensing have been published. Considering the remarkable progress achieved so far, the present paper aims at reviewing these results, emphasizing the comparison with state-of-the-art nanoparticle-based materials. The goal is to highlight, wherever possible, how results may be related to the particular features of one or the other morphology, what is effectively unique to nanowires and what can be obtained by both. Transduction, receptor and utility-factor functions, doping, and the addition of inorganic and organic coatings will be discussed on the basis of the structural and morphological features that have stimulated this field of research since its early stage.
Collapse
Affiliation(s)
- Andrea Ponzoni
- National Institute of Optics (INO) Unit of Brescia, National Research Council (CNR), 25123 Brescia, Italy; ; Tel.: +39-030-3711440
- National Institute of Optics (INO) Unit of Lecco, National Research Council (CNR), 23900 Lecco, Italy
| |
Collapse
|
6
|
Influence of nanostructure geometry on light trapping in solar cells. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01699-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
8
|
Fabrication of a Robust In 2O 3 Nanolines FET Device as a Biosensor Platform. MICROMACHINES 2021; 12:mi12060642. [PMID: 34072848 PMCID: PMC8229030 DOI: 10.3390/mi12060642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 01/14/2023]
Abstract
Field-effect transistors (FETs) are attractive biosensor platforms for rapid and accurate detection of various analytes through surface immobilization of specific bio-receptors. Since it is difficult to maintain the electrical stability of semiconductors of sensing channel under physiological conditions for long periods, passivation by a stable metal oxide dielectric layer, such as Al2O3 or HfO2, is currently used as a common method to prevent damage. However, protecting the sensing channel by passivation has the disadvantage that the distance between the target and the conductive channel increases, and the sensing signal will be degraded by Debye shielding. Even though many efforts use semiconductor materials directly as channels for biosensors, the electrical stability of semiconductors in the physiological environments has rarely been studied. In this work, an In2O3 nanolines FET device with high robustness in artificial physiological solution of phosphate buffered saline (PBS) was fabricated and used as a platform for biosensors without employing passivation on the sensing channel. The FET device demonstrated reproducibility with an average threshold voltage (VTH) of 5.235 V and a standard deviation (SD) of 0.382 V. We tested the robustness of the In2O3 nanolines FET device in PBS solution and found that the device had a long-term electrical stability in PBS with more than 9 days’ exposure. Finally, we demonstrated its applicability as a biosensor platform by testing the biosensing performance towards miR-21 targets after immobilizing the phosphonic acid terminated DNA probes. Since the surface immobilization of multiple bioreceptors is feasible, we demonstrate that the robust In2O3 FET device can be an excellent biosensor platform for biosensors.
Collapse
|
9
|
Abstract
During the past two decades, one–dimensional (1D) metal–oxide nanowire (NW)-based molecular sensors have been witnessed as promising candidates to electrically detect volatile organic compounds (VOCs) due to their high surface to volume ratio, single crystallinity, and well-defined crystal orientations. Furthermore, these unique physical/chemical features allow the integrated sensor electronics to work with a long-term stability, ultra-low power consumption, and miniature device size, which promote the fast development of “trillion sensor electronics” for Internet of things (IoT) applications. This review gives a comprehensive overview of the recent studies and achievements in 1D metal–oxide nanowire synthesis, sensor device fabrication, sensing material functionalization, and sensing mechanisms. In addition, some critical issues that impede the practical application of the 1D metal–oxide nanowire-based sensor electronics, including selectivity, long-term stability, and low power consumption, will be highlighted. Finally, we give a prospective account of the remaining issues toward the laboratory-to-market transformation of the 1D nanostructure-based sensor electronics.
Collapse
|
10
|
Wang Y, Duan L, Deng Z, Liao J. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6781. [PMID: 33260973 PMCID: PMC7729516 DOI: 10.3390/s20236781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
| | - Li Duan
- Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
| |
Collapse
|
11
|
Zeng H, Takahashi T, Seki T, Kanai M, Zhang G, Hosomi T, Nagashima K, Shibata N, Yanagida T. Oxygen-Induced Reversible Sn-Dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52929-52936. [PMID: 33169981 DOI: 10.1021/acsami.0c16108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An impurity doping in semiconductors is an important irreversible process of manipulating the electrical properties of advanced electron devices. Here, we report an unusual reversible dopant activation/deactivation phenomenon, which emerges at an interface between indium tin oxide (ITO) and single-crystalline oxide channel. We found that the interface electrical resistance between ITO electrodes and single-crystalline oxide nanowire channel can be repeatedly switched between a metallic state and a near-insulative state by applying thermal treatments in air or vacuum. Interestingly, this electrical switching phenomenon disappears when the oxide nanowire changes from the single-crystalline structure to the lithography-defined polycrystalline structure. Atmosphere-controlled annealing experiments reveal that atmospheric oxygen induces repeatable change in the interfacial electrical resistance. Systematic investigations on metal cation species and channel crystallinity demonstrate that the observed electrical switching is related to an interface-specific reversible Sn-dopant activation/deactivation of ITO electrode in contact with a single-crystalline oxide channel.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takehito Seki
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Guozhu Zhang
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
12
|
Zhao X, Nagashima K, Zhang G, Hosomi T, Yoshida H, Akihiro Y, Kanai M, Mizukami W, Zhu Z, Takahashi T, Suzuki M, Samransuksamer B, Meng G, Yasui T, Aoki Y, Baba Y, Yanagida T. Synthesis of Monodispersedly Sized ZnO Nanowires from Randomly Sized Seeds. NANO LETTERS 2020; 20:599-605. [PMID: 31858802 DOI: 10.1021/acs.nanolett.9b04367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate the facile, rational synthesis of monodispersedly sized zinc oxide (ZnO) nanowires from randomly sized seeds by hydrothermal growth. Uniformly shaped nanowire tips constructed in ammonia-dominated alkaline conditions serve as a foundation for the subsequent formation of the monodisperse nanowires. By precisely controlling the sharp tip formation and the nucleation, our method substantially narrows the distribution of ZnO nanowire diameters from σ = 13.5 nm down to σ = 1.3 nm and controls their diameter by a completely bottom-up method, even initiating from randomly sized seeds. The proposed concept of sharp tip based monodisperse nanowires growth can be applied to the growth of diverse metal oxide nanowires and thus paves the way for bottom-up grown metal oxide nanowires-integrated nanodevices with a reliable performance.
Collapse
Affiliation(s)
- Xixi Zhao
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Kazuki Nagashima
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
- Japan Science and Technology Agency (JST), PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Guozhu Zhang
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Takuro Hosomi
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
- Japan Science and Technology Agency (JST), PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Hideto Yoshida
- The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Yuya Akihiro
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Wataru Mizukami
- Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Zetao Zhu
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Tsunaki Takahashi
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
- Japan Science and Technology Agency (JST), PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Masaru Suzuki
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Benjarong Samransuksamer
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Hefei 230031 , China
| | - Takao Yasui
- Japan Science and Technology Agency (JST), PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Yuriko Aoki
- Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Takeshi Yanagida
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| |
Collapse
|
13
|
Substantial Narrowing on the Width of "Concentration Window" of Hydrothermal ZnO Nanowires via Ammonia Addition. Sci Rep 2019; 9:14160. [PMID: 31578443 PMCID: PMC6775099 DOI: 10.1038/s41598-019-50641-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
A crystal growth of hydrothermal ZnO nanowires essentially requires a concentration control within so-called “concentration window”, where the anisotropic crystal growth of ZnO nanowires preferentially occurs. Although understanding what exactly determines the width of “concentration window” is important to tailor the anisotropic crystal growth process, the fundamental knowledge as to “concentration window” is still scarce. Here we report the effect of ammonia addition on the width of “concentration window” using conventional hydrothermal ZnO nanowire growth. We found that the ammonia addition substantially narrows the width of “concentration window”. Within the narrow range of zinc complex concentration, we found a significant increase of growth rate (up to 2000 nm/h) of ZnO nanowires. The narrowed “concentration window” and the resultant increased growth rate by the ammonia addition can be understood in terms of synchronized effects of both (1) a reduction of zinc hydroxide complex (precursor) concentration and (2) a fast rate limiting process of ligand exchange between different zinc complexes. Thus, the present knowldege as to “concentration window” will accelerate further tailoring an anisotropic crystal growth of hydrothermal ZnO nanowires.
Collapse
|
14
|
Tanaka M, Minamide T, Takahashi Y, Hanai Y, Yanagida T, Okochi M. Peptide Screening from a Phage Display Library for Benzaldehyde Recognition. CHEM LETT 2019. [DOI: 10.1246/cl.190318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Taisuke Minamide
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Takahashi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yosuke Hanai
- Engineering Division, Industrial Solutions Company, Panasonic Corporation, 1006 Oaza Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Takeshi Yanagida
- Laboratory of Integrated Nanostructure Materials, Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
15
|
Akihiro Y, Nagashima K, Hosomi T, Kanai M, Anzai H, Takahashi T, Zhang G, Yasui T, Baba Y, Yanagida T. Water-Organic Cosolvent Effect on Nucleation of Solution-Synthesized ZnO Nanowires. ACS OMEGA 2019; 4:8299-8304. [PMID: 31459916 PMCID: PMC6648987 DOI: 10.1021/acsomega.9b00945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 06/01/2023]
Abstract
Here, we show the effect of water-organic (acetone, tert-butyl alcohol, and isopropanol) cosolvents on nucleation and anisotropic crystal growth of solution-synthesized ZnO nanowires. The addition of organic solution does not alter the face-selective crystal growth nature but significantly promotes the crystal growth of both length and diameter of the nanowires. Systematic investigations reveal that a variation of the relative dielectric constant in the cosolvent can rigorously explain the observed effect of the water-organic cosolvent on the ZnO nanowire growth via the degree of supersaturation for the nucleation. The difference between acetone, tert-butyl alcohol, and isopropanol on the cosolvent effect can be interpreted in terms of a local solvent-sorting effect.
Collapse
Affiliation(s)
- Yuya Akihiro
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Nagashima
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takuro Hosomi
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Masaki Kanai
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroshi Anzai
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Tsunaki Takahashi
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Guozhu Zhang
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takeshi Yanagida
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
16
|
Meng Y, Lan C, Li F, Yip S, Wei R, Kang X, Bu X, Dong R, Zhang H, Ho JC. Direct Vapor-Liquid-Solid Synthesis of All-Inorganic Perovskite Nanowires for High-Performance Electronics and Optoelectronics. ACS NANO 2019; 13:6060-6070. [PMID: 31067402 DOI: 10.1021/acsnano.9b02379] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Controlled synthesis of lead halide perovskite (LHP) nanostructures not only benefits fundamental research but also offers promise for applications. Among many synthesis techniques, although catalytic vapor-liquid-solid (VLS) growth is recognized as an effective route to achieve high-quality nanostructures, until now, there is no detailed report on VLS grown LHP nanomaterials due to the emerging challenges in perovskite synthesis. Here, we develop a direct VLS growth for single-crystalline all-inorganic lead halide perovskite ( i.e., CsPbX3; X = Cl, Br, or I) nanowires (NWs). These NWs exhibit high-performance photodetection with the responsivity exceeding 4489 A/W and detectivity over 7.9 × 1012 Jones toward the visible light regime. Field-effect transistors (FET) based on individual CsPbX3 NWs are also fabricated, where they show the superior hole mobility of up to 3.05 cm2/(V s), higher than other all-inorganic LHP devices. This work provides important guidelines for the further improvement of these perovskite nanostructures for utilizations.
Collapse
Affiliation(s)
| | - Changyong Lan
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P. R. China
| | | | | | | | | | | | | | | | - Johnny C Ho
- Shenzhen Research Institute , City University of Hong Kong , Shenzhen 518057 , P. R. China
| |
Collapse
|
17
|
Bonu V, Sahu BK, Das A, Amirthapandian S, Dhara S, Barshilia HC. Sub-wavelength waveguide properties of 1D and surface-functionalized SnO 2 nanostructures of various morphologies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:379-388. [PMID: 30800577 PMCID: PMC6369987 DOI: 10.3762/bjnano.10.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
One-dimensional (1D) SnO2 sub-wavelength waveguides are a critical contribution to advanced optoelectronics. Further understanding of the surface defects and role of morphology in 1D SnO2 nanowires can help to better utilize these nanostructures more efficiently. For this purpose, three different nanowires (NWs), namely belts, cylindrical- and square-shaped structures were grown using SnO2 quantum dots as a precursor material. The growth process of these NWs is discussed. The nanobelts were observed to grow up to 3 mm in length. Morphological and structural studies of the nanostructures were also carried out. All NWs showed waveguide behavior with visible photoluminescence (PL) upon excitation with a 325 nm laser. This behavior was also demonstrated in tapered and surface-functionalized SnO2 NWs. While the tapered waveguide can allow for easy focusing of light, the simple surface chemistry offers selective light propagation by tuning the luminescence. Defect-related PL in NWs is studied using temperature-dependent measurements and a band diagram is proposed.
Collapse
Affiliation(s)
- Venkataramana Bonu
- Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
- Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017, India
| | - Binaya Kumar Sahu
- Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Arindam Das
- Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Sankarakumar Amirthapandian
- Materials Physics Division, Indira Gandhi Center for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Sandip Dhara
- Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Harish C Barshilia
- Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017, India
| |
Collapse
|
18
|
Tanaka M, Harlisa IH, Takahashi Y, Ikhsan NA, Okochi M. Screening of bacteria-binding peptides and one-pot ZnO surface modification for bacterial cell entrapment. RSC Adv 2018; 8:8795-8799. [PMID: 35539876 PMCID: PMC9078527 DOI: 10.1039/c7ra12302g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/18/2018] [Indexed: 01/16/2023] Open
Abstract
Short functional peptides are promising materials for use as targeting recognition probes. Toll-like receptor 4 (TLR4) plays an essential role in pathogen recognition and in activation of innate immunity. Here, the TLR4 amino acid sequence was used to screen for bacterial cell binding peptides using a peptide array. Several octamer peptides, including GRHIFWRR, demonstrated binding to Escherichia coli as well as lipopolysaccharides. Linking this peptide with the ZnO-binding peptide HKVAPR, creates a bi-functional peptide capable of one-step ZnO surface modification for bacterial cell entrapment. Ten-fold increase in entrapment of E. coli was observed using the bi-functional peptide. The screened peptides and the simple strategy for nanomaterial surface functionalization can be employed for various biotechnological applications including bacterial cell entrapment onto ZnO surfaces. Linking the screened bacteria-binding peptide with the ZnO-binding peptide HKVAPR, created a bifunctional peptide capable of one-step simple ZnO surface modification and of bacterial cell entrapment.![]()
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Ilva Hanun Harlisa
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yuta Takahashi
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Natasha Agustin Ikhsan
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
19
|
Zeng H, Takahashi T, Kanai M, Zhang G, He Y, Nagashima K, Yanagida T. Long-Term Stability of Oxide Nanowire Sensors via Heavily Doped Oxide Contact. ACS Sens 2017; 2:1854-1859. [PMID: 29057648 DOI: 10.1021/acssensors.7b00716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long-term stability of a chemical sensor is an essential quality for long-term collection of data related to exhaled breath, environmental air, and other sources in the Internet of things (IoT) era. Although an oxide nanowire sensor has shown great potential as a chemical sensor, the long-term stability of sensitivity has not been realized yet due to electrical degradation under harsh sensing conditions. Here, we report a rational concept to accomplish long-term electrical stability of metal oxide nanowire sensors via introduction of a heavily doped metal oxide contact layer. Antimony-doped SnO2 (ATO) contacts on SnO2 nanowires show much more stable and lower electrical contact resistance than conventional Ti contacts for high temperature (200 °C) conditions, which are required to operate chemical sensors. The stable and low contact resistance of ATO was confirmed for at least 1960 h under 200 °C in open air. This heavily doped oxide contact enables us to realize the long-term stability of SnO2 nanowire sensors while maintaining the sensitivity for both NO2 gas and light (photo) detections. The applicability of our method is confirmed for sensors on a flexible polyethylene naphthalate (PEN) substrate. Since the proposed fundamental concept can be applied to various oxide nanostructures, it will give a foundation for designing long-term stable oxide nanomaterial-based IoT sensors.
Collapse
Affiliation(s)
- Hao Zeng
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Tsunaki Takahashi
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Masaki Kanai
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Guozhu Zhang
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Yong He
- Key
Laboratory of Optoelectronic Technology and Systems of the Education
Ministry of China, Chongqing University, Chongqing 400044, P. R. China
| | - Kazuki Nagashima
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takeshi Yanagida
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|