1
|
Gomez E, Mehmood A, Bian Z, Lee SA, Tauzin LJ, Adhikari S, Gruebele M, Levine BG, Link S. Single-Particle Correlated Imaging Reveals Multiple Chromophores in Carbon Dot Fluorescence. J Am Chem Soc 2025. [PMID: 40377979 DOI: 10.1021/jacs.5c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Carbon dots are remarkable nanomaterials with many applications, but the sources of their emission are still uncertain. Carbon dots exhibit complex behaviors such as excitation-dependent emission due to their heterogeneous composition and structure. Most studies have been carried out on the ensemble level, where sample heterogeneity remains hidden. Understanding the complex emission of carbon dots requires single-particle measurements. Here, we determined that for red-emitting carbon dots made from two bottom-up precursors, there is a significant population of dots with more than one emitting moiety. Polarization-resolved, single-dot emission microscopy revealed subpopulations of carbon dots based on their emission intensity and polarization. For the multichromophoric carbon dots, we found an average of about four emitters. Single-particle spectroscopy, acquired in parallel to the emission trajectories, and molecular dynamics simulations furthermore established that the countable chromophores in the carbon dots are chemically similar, considering the rather narrow room-temperature emission line width and the absence of significant spectral diffusion.
Collapse
Affiliation(s)
- Eric Gomez
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arshad Mehmood
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhengyi Bian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephen A Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lawrence J Tauzin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Subhasis Adhikari
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, C-I College of Medicine, and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Benjamin G Levine
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stephan Link
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Hao S, Suebka S, Su J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:195. [PMID: 39160151 PMCID: PMC11333578 DOI: 10.1038/s41377-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Label-free detection techniques for single particles and molecules play an important role in basic science, disease diagnostics, and nanomaterial investigations. While fluorescence-based methods are tools for single molecule detection and imaging, they are limited by available molecular probes and photoblinking and photobleaching. Photothermal microscopy has emerged as a label-free imaging technique capable of detecting individual nanoabsorbers with high sensitivity. Whispering gallery mode (WGM) microresonators can confine light in a small volume for enhanced light-matter interaction and thus are a promising ultra-sensitive photothermal microscopy platform. Previously, microtoroid optical resonators were combined with photothermal microscopy to detect 250 nm long gold nanorods and 100 nm long polymers. Here, we combine microtoroids with photothermal microscopy to spatially detect single 5 nm diameter quantum dots (QDs) with a signal-to-noise ratio exceeding 104. Photothermal images were generated by point-by-point scanning of the pump laser. Single particle detection was confirmed for 18 nm QDs by high sensitivity fluorescence imaging and for 5 nm QDs via comparison with theory. Our system demonstrates the capability to detect a minimum heat dissipation of 0.75 pW. To achieve this, we integrated our microtoroid based photothermal microscopy setup with a low amplitude modulated pump laser and utilized the proportional-integral-derivative controller output as the photothermal signal source to reduce noise and enhance signal stability. The heat dissipation of these QDs is below that from single dye molecules. We anticipate that our work will have application in a wide variety of fields, including the biological sciences, nanotechnology, materials science, chemistry, and medicine.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Sartanee Suebka
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
West R, Kanellopulos K, Schmid S. Photothermal Microscopy and Spectroscopy with Nanomechanical Resonators. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21915-21929. [PMID: 38024195 PMCID: PMC10659107 DOI: 10.1021/acs.jpcc.3c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
In nanomechanical photothermal absorption spectroscopy and microscopy, the measured substance becomes a part of the detection system itself, inducing a nanomechanical resonance frequency shift upon thermal relaxation. Suspended, nanometer-thin ceramic or 2D material resonators are innately highly sensitive thermal detectors of localized heat exchanges from substances on their surface or integrated into the resonator itself. Consequently, the combined nanoresonator-analyte system is a self-measuring spectrometer and microscope responding to a substance's transfer of heat over the entire spectrum for which it absorbs, according to the intensity it experiences. Limited by their own thermostatistical fluctuation phenomena, nanoresonators have demonstrated sufficient sensitivity for measuring trace analyte as well as single particles and molecules with incoherent light or focused and wide-field coherent light. They are versatile in their design, support various sampling methods-potentially including hydrated sample encapsulation-and hyphenation with other spectroscopic methods, and are capable in a wide range of applications including fingerprinting, separation science, and surface sciences.
Collapse
Affiliation(s)
- Robert
G. West
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Kostas Kanellopulos
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| |
Collapse
|
4
|
Kanellopulos K, West RG, Schmid S. Nanomechanical Photothermal Near Infrared Spectromicroscopy of Individual Nanorods. ACS PHOTONICS 2023; 10:3730-3739. [PMID: 37869554 PMCID: PMC10588552 DOI: 10.1021/acsphotonics.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/24/2023]
Abstract
Understanding light-matter interaction at the nanoscale requires probing the optical properties of matter at the individual nanoabsorber level. To this end, we developed a nanomechanical photothermal sensing platform that can be used as a full spectromicroscopy tool for single molecule and single particle analysis. As a demonstration, the absorption cross-section of individual gold nanorods is resolved from a spectroscopic and polarization standpoint. By exploiting the capabilities of nanomechanical photothermal spectromicroscopy, the longitudinal localized surface plasmon resonance in the NIR range is unraveled and quantitatively characterized. The polarization features of the transversal surface plasmon resonance in the VIS range are also analyzed. The measurements are compared with the finite element method, elucidating the role played by electron surface and bulk scattering in these plasmonic nanostructures, as well as the interaction between the nanoabsorber and the nanoresonator, ultimately resulting in absorption strength modulation. Finally, a comprehensive comparison is conducted, evaluating the signal-to-noise ratio of nanomechanical photothermal spectroscopy against other cutting-edge single molecule and particle spectroscopy techniques. This analysis highlights the remarkable potential of nanomechanical photothermal spectroscopy due to its exceptional sensitivity.
Collapse
Affiliation(s)
- Kostas Kanellopulos
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Robert G. West
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| |
Collapse
|
5
|
Yang W, Li M, Xie M, Tian Y. Simultaneous Photoluminescence and Photothermal Investigation of Individual CH 3NH 3PbBr 3 Microcrystals. J Phys Chem Lett 2023; 14:3506-3511. [PMID: 37014281 DOI: 10.1021/acs.jpclett.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The photoluminescence (PL) of CH3NH3PbBr3 (MAPbBr3), from thin films to nanoparticles, has been widely studied, providing information about charge carrier dynamics. However, the other energy dissipative channel, nonradiative relaxation, has not been thoroughly investigated due to a lack of proper technology. In this work, we simultaneously investigated the PL and photothermal (PT) properties of single MAPbBr3 microcrystals (MCs) by a home-built PL and PT microscope. In addition to the direct observation of the heterogeneity of the PL and PT images and kinetics of different MCs, we demonstrated the variation in the absorption of single MAPbBr3 MCs, which was believed to be constant. We also proved that more absorbed energy dissipated from the nonradiative channel at higher heating power. These results show that PL and PT microscopy is an effective and convenient method to investigate the charge carrier behaviors of optoelectronic materials at the single particle level for a deep understanding of their photophysical processes.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meilian Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mingyi Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Wang Y, Adhikari S, van der Meer H, Liu J, Orrit M. Thousand-Fold Enhancement of Photothermal Signals in Near-Critical CO 2. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3619-3625. [PMID: 36865992 PMCID: PMC9969513 DOI: 10.1021/acs.jpcc.2c08575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Photothermal (PT) microscopy has shown strong promise in imaging single absorbing nano-objects in soft matter and biological systems. PT imaging at ambient conditions usually requires a high laser power for a sensitive detection, which prevents application to light-sensitive nanoparticles. In a previous study of single gold nanoparticles, we showed that the photothermal signal can be enhanced more than 1000-fold in near-critical xenon compared to that in glycerol, a typical medium for PT detection. In this report, we show that carbon dioxide (CO2), a much cheaper gas than xenon, can enhance PT signals in a similar way. We confine near-critical CO2 in a thin capillary which easily withstands the high near-critical pressure (around 74 bar) and facilitates sample preparation. We also demonstrate enhancement of the magnetic circular dichroism signal of single magnetite nanoparticle clusters in supercritical CO2. We have performed COMSOL simulations to support and explain our experimental findings.
Collapse
Affiliation(s)
- Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Harmen van der Meer
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Junyan Liu
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Adhikari S, Orrit M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS PHOTONICS 2022; 9:3486-3497. [PMID: 36411819 PMCID: PMC9673138 DOI: 10.1021/acsphotonics.2c01205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Circular dichroism (CD) is a standard method for the analysis of biomolecular conformation. It is very reliable when applied to molecules, but requires relatively large amounts of solution. Plasmonics offer the perspective of enhancement of CD signals, which would extend CD spectrometry to smaller amounts of molecules and to weaker chiral signals. However, plasmonic enhancement comes at the cost of additional complications: averaging over all orientations is no longer possible or reliable, linear dichroism leaks into CD signals because of experimental imperfections, scattering and its interference with the incident beam must be taken into account, and the interaction between chiral molecules and possibly chiral plasmonic structures considerably complicates the interpretation of measured signals. This Perspective aims to explore the motivations and problems of plasmonic chirality and to re-evaluate present and future solutions.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CALeiden, Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CALeiden, Netherlands
| |
Collapse
|
8
|
Yang W, Wei Z, Nie Y, Tian Y. Optical Detection and Imaging of Nonfluorescent Matter at the Single-Molecule/Particle Level. J Phys Chem Lett 2022; 13:9618-9631. [PMID: 36214484 DOI: 10.1021/acs.jpclett.2c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the first optical detection of single molecules in 1989, single-molecule spectroscopy has developed rapidly and been widely applied in many areas. However, the vast majority of matter is extremely inefficient at emitting photons in our physical world, which seriously limits the applications of optical methods based on photoluminescence. In addition to indirect detection by fluorescence labeling, many efforts have been made to directly image nonfluorescent matter at the single-particle or single-molecule level in different ways based on the absorption or scattering interaction between light and matter. Herein, we review five popular methods for imaging nonfluorescent particles/molecules, including dark-field microscopy (DFM), surface plasmon resonance microscopy (SPRM), surface enhanced Raman microscopy (SERM), interferometric scattering microscopy (iSCAT), and photothermal microscopy (PTM). After summarizing the principles and applications of these methods, we compare the advantages and disadvantages of each method and describe further potential development and applications.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Zhihong Wei
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| |
Collapse
|
9
|
Lu H, Chang CH, Wu BR, Wu NC, Liang JZ, Dai CA, Yang ACM. Reaching Nearly 100% Quantum Efficiencies in Thin Solid Films of Semiconducting Polymers via Molecular Confinements under Large Segmental Stresses. ACS NANO 2022; 16:8273-8282. [PMID: 35506539 DOI: 10.1021/acsnano.2c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantum efficiencies remain a critical issue for general applications of semiconducting polymers in optoelectronics and others. In this work, we demonstrate that nearly 100% quantum efficiencies (η's) in thin solid films can be reached when the polymer molecules are mechanically stretched into molecular confinement. We selected three conjugated polymers of varied backbone stiffness and interchain coupling, prepared in both diluted and pristine states. All of the polymers when highly diluted (c = 0.1 wt %) exhibited massive η increases after stretching to very large strains (∼300-500%) via micronecking, with the rigid polyfluorene (PFO) and semirigid MEH-PPV both manifesting η ≈ 90%, while the most flexible yet regioregular polythiophene (P3HT-rr) exhibited a 10-fold increase to ∼21%. In the pristine state, molecular aggregation and interchain coupling curtail development of the molecular confinement, but the large-strain deformation still enhances η's significantly, to ∼90% (PFO) and ∼55% (MEH-PPV) despite no increases for the crystalline P3HT-rr. Moreover, upon substitution by a bulkier side-group to reduce interchain coupling, the pristine films of polythiophene (P3EHT) exhibited a ∼3-fold increase of η after the stretching. The nearly 100% of η's in fully stretched molecules indicates that the in situ self-trapping occurring via sub-picosecond backbone interactions can be mostly responsible for energy dissipations and quite suppressible by segmental stress control. The mechanical confinement effects also indicate the fundamental role of molecular mechanics during stabilization and migration of photoexcited charges.
Collapse
Affiliation(s)
- Hsuan Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hong Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Rong Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Nien-Chi Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jun-Zhi Liang
- Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chi-An Dai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Arnold C-M Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center of Instrumentation, National Tsing Hua University; Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Adhikari S, Orrit M. Progress and perspectives in single-molecule optical spectroscopy. J Chem Phys 2022; 156:160903. [PMID: 35489995 DOI: 10.1063/5.0087003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We review some of the progress of single-molecule optical experiments in the past 20 years and propose some perspectives for the coming years. We particularly focus on methodological advances in fluorescence, super-resolution, photothermal contrast, and interferometric scattering and briefly discuss a few of the applications. These advances have enabled the exploration of new emitters and quantum optics; the chemistry and biology of complex heterogeneous systems, nanoparticles, and plasmonics; and the detection and study of non-fluorescing and non-absorbing nano-objects. We conclude by proposing some ideas for future experiments. The field will move toward more and better signals of a broader variety of objects and toward a sharper view of the surprising complexity of the nanoscale world of single (bio-)molecules, nanoparticles, and their nano-environments.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| |
Collapse
|
11
|
Yang W, Li M, Xie M, Nie Y, Du A, Tian Y. Localized quenching sites in MAPbI 3 investigated by fluorescence and photothermal microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083701. [PMID: 34470388 DOI: 10.1063/5.0048239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
In this work, we developed a fluorescence and photothermal microscope with extremely large scanning range and high spatial resolution. We demonstrated the capability of this instrument by simultaneously measuring the photoluminescence and photothermal signals of the CH3NH3PbI3 (MAPbI3) film. After scanning the MAPbI3 film on the scale of centimeters, we can obtain information of both emissive and nonemissive processes with a resolution of 200 nm at any location of the large area. We can clearly see the localized photothermal signal while the photoluminescence signal is uniform. These results directly prove that the emissive recombination happens all over the materials, but the nonemissive recombination happens only at certain localized quenching sites. The fluorescence and photothermal microscope with both large scanning range and high spatial resolution can provide information of all the relaxation channels of the excitons, showing potential applications for investigation of photophysical mechanisms in photoelectric materials.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meilian Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Anbang Du
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Kramer SN, Brown J, Rice M, Peteanu LA. Unraveling the Contribution of Residual Monomer to the Emission Spectra of Poly(3-hexylthiophene) Aggregates: Implications for Identifying H- and J-type Coupling. J Phys Chem Lett 2021; 12:5919-5924. [PMID: 34156859 DOI: 10.1021/acs.jpclett.1c01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) is a well-studied benchmark system for semiconducting polymers used in optoelectronic devices. In these materials, aggregation can improve charge transport efficiency or enhance emission yields depending on the interchain packing. This may be inferred from the absorption and emission spectra when analyzed using exciton coupling models such as the well-known H- and J-coupling model of Kasha. The more recently developed weakly coupled H-aggregate (WCH) model quantifies the degree of disorder via the ratio of the electronic origin intensity to that of the first vibronic band. Here, the underlying assumptions of this approach are tested experimentally for P3HT aggregates formed by solvent poisoning using bulk and single-molecule-based spectroscopic techniques. Specifically, we show that the contribution of residual monomeric chains to the aggregate spectrum must be accounted for to properly assign the spectra as H- or J-type. A modification of the WCH model is introduced to account for multiple emissive species.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jasper Brown
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Megan Rice
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Linda A Peteanu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal Microscopy: Imaging the Optical Absorption of Single Nanoparticles and Single Molecules. ACS NANO 2020; 14:16414-16445. [PMID: 33216527 PMCID: PMC7760091 DOI: 10.1021/acsnano.0c07638] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photothermal (PT) signal arises from slight changes of the index of refraction in a sample due to absorption of a heating light beam. Refractive index changes are measured with a second probing beam, usually of a different color. In the past two decades, this all-optical detection method has reached the sensitivity of single particles and single molecules, which gave birth to original applications in material science and biology. PT microscopy enables shot-noise-limited detection of individual nanoabsorbers among strong scatterers and circumvents many of the limitations of fluorescence-based detection. This review describes the theoretical basis of PT microscopy, the methodological developments that improved its sensitivity toward single-nanoparticle and single-molecule imaging, and a vast number of applications to single-nanoparticle imaging and tracking in material science and in cellular biology.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Patrick Spaeth
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Ashish Kar
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Martin Dieter Baaske
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Saumyakanti Khatua
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Chen PT, Yang YW, Reiter G, Yang ACM. Large quantum efficiency enhancements of pristine conjugated polymer MEH-PPV by interlayer polymer diffusion. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zhu Y, Han L, Fan H, Wang M, Qi R, Zhao Y, He F. Three-Dimensional Spirals of Conjugated Block Copolymers Driven by Screw Dislocation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hua Fan
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meijing Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Qi
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Zhao
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Sabury S, Adams TJ, Kocherga M, Kilbey SM, Walter MG. Synthesis and optoelectronic properties of benzodithiophene-based conjugated polymers with hydrogen bonding nucleobase side chain functionality. Polym Chem 2020. [DOI: 10.1039/d0py00972e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase functionalities in conjugated, alternating copolymers participate in interbase hydrogen bonding, which promotes molecular assembly and organization in thin films and enhances optical and electronic properties.
Collapse
Affiliation(s)
- Sina Sabury
- Department of Chemistry
- University of Tennessee – Knoxville
- Knoxville
- USA
| | - Tyler J. Adams
- Department of Chemistry
- University of North Carolina – Charlotte
- Charlotte
- USA
| | - Margaret Kocherga
- Department of Chemistry
- University of North Carolina – Charlotte
- Charlotte
- USA
| | - S. Michael Kilbey
- Department of Chemistry
- University of Tennessee – Knoxville
- Knoxville
- USA
- Department of Chemical & Biomolecular Engineering
| | - Michael G. Walter
- Department of Chemistry
- University of North Carolina – Charlotte
- Charlotte
- USA
| |
Collapse
|
17
|
Spaeth P, Adhikari S, Le L, Jollans T, Pud S, Albrecht W, Bauer T, Caldarola M, Kuipers L, Orrit M. Circular Dichroism Measurement of Single Metal Nanoparticles Using Photothermal Imaging. NANO LETTERS 2019; 19:8934-8940. [PMID: 31790264 PMCID: PMC6909236 DOI: 10.1021/acs.nanolett.9b03853] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Circular dichroism (CD) spectroscopy is a powerful optical technique for the study of chiral materials and molecules. It gives access to an enantioselective signal based on the differential absorption of right and left circularly polarized light, usually obtained through polarization analysis of the light transmitted through a sample of interest. CD is routinely used to determine the secondary structure of proteins and their conformational state. However, CD signals are weak, limiting the use of this powerful technique to ensembles of many molecules. Here, we experimentally realize the concept of photothermal circular dichroism, a technique that combines the enantioselective signal from circular dichroism with the high sensitivity of photothermal microscopy, achieving a superior signal-to-noise ratio to detect chiral nano-objects. As a proof of principle, we studied the chiral response of single plasmonic nanostructures with CD in the visible range, demonstrating a signal-to-noise ratio better than 40 with only 30 ms integration time for these nanostructures. The high signal-to-noise ratio allows us to quantify the CD signal for individual nanoparticles. We show that we can distinguish relative absorption differences for right circularly and left circularly polarized light as small as gmin = 4 × 10-3 for a 30 ms integration time with our current experimental settings. The enhanced sensitivity of our technique extends CD studies to individual nano-objects and opens CD spectroscopy to numbers of molecules much lower than those in conventional experiments.
Collapse
Affiliation(s)
- Patrick Spaeth
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Subhasis Adhikari
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Laurent Le
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Thomas Jollans
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Sergii Pud
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Wiebke Albrecht
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- EMAT, University
of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Thomas Bauer
- Department
of Quantum Nanoscience, Delft University
of Technology, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Martín Caldarola
- Department
of Quantum Nanoscience, Delft University
of Technology, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Department
of Bionanoscience, Delft University of Technology,
Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- E-mail:
| | - L. Kuipers
- Department
of Quantum Nanoscience, Delft University
of Technology, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- E-mail:
| |
Collapse
|
18
|
van de Laar T, Hooiveld E, Higler R, van der Scheer P, Sprakel J. Gel Trapping Enables Optical Spectroscopy of Single Solvated Conjugated Polymers in Equilibrium. ACS NANO 2019; 13:13185-13195. [PMID: 31647632 PMCID: PMC6887849 DOI: 10.1021/acsnano.9b06164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Single-molecule studies have provided a wealth of insight into the photophysics of conjugated polymers in the solid and desolvated state. Desolvating conjugated chains, e.g., by their embedding in inert solid matrices, invariably leads to chain collapse and the formation of intermolecular aggregates, which have a pronounced effect on their properties. By contrast, the luminescent properties of individual semiconducting polymers in their solvated and thermodynamic state remain largely unexplored. In this paper, we demonstrate a versatile gel trapping technique that enables the chemistry-free immobilization and interrogation of individual conjugated macromolecules, which retain a fully equilibrated conformation by contrast to conventional solid-state immobilization methods. We show how the technique can be used to record full luminescence spectra of single chains, to evaluate their time-resolved fluorescence, and to probe their photodynamics. Finally, we explore how the photophysics of different conjugated polymers is strongly affected by desolvation and chain collapse.
Collapse
|
19
|
|
20
|
Scheer PVD, Laar TVD, Sprakel J. Chain length-dependent luminescence in acceptor-doped conjugated polymers. Sci Rep 2019; 9:11217. [PMID: 31375694 PMCID: PMC6677785 DOI: 10.1038/s41598-019-47537-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Semiconducting polymers doped with a minority fraction of energy transfer acceptors feature a sensitive coupling between chain conformation and fluorescence emission, that can be harnessed for advanced solution-based molecular sensing and diagnostics. While it is known that chain length strongly affects chain conformation, and its response to external cues, the effects of chain length on the emission patterns in chromophore-doped conjugated polymers remains incompletely understood. In this paper, we explore chain-length dependent emission in two different acceptor-doped polyfluorenes. We show how the binomial distribution of acceptor incorporation, during the probabilistic polycondensation reaction, creates a strong chain-length dependency in the optical properties of this class of luminescent polymers. In addition, we also find that the intrachain exciton migration rate is chain-length dependent, giving rise to additional complexity. Both effects combined, make for the need to develop sensoric conjugated polymers of improved monodispersity and chemical homogeneity, to improve the accuracy of conjugated polymer based diagnostic approaches.
Collapse
Affiliation(s)
- Pieter van der Scheer
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Ties van de Laar
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Ho XL, Wang YH, Chen PJ, Woon WY, White JD. MEH-PPV photophysics: insights from the influence of a nearby 2D quencher. NANOTECHNOLOGY 2019; 30:065702. [PMID: 30524048 DOI: 10.1088/1361-6528/aaf148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of 2D quenching on single chain photophysics was investigated by spin coating 13 nm thick films of polystyrene lightly doped with MEH-PPV onto CVD grown graphene and observing the changes in several photoluminescent (PL) observables. With 99% of the PL quenched, we found a 60% drop in the PL lifetime, along with a significant blue-shift of the PL emission due to the preferential quenching of emission at longer wavelengths. During photo-bleaching, the blue spectral shift observed for isolated polymers was eliminated in the presence of the quencher up until 70% of the polymer was photo-bleached. Results were interpreted using a static disorder induced conjugation length distribution model. The quencher, by opening up a new non-radiative decay channel, ensures that excitons do not have sufficient time to migrate to nearby lower energy chromophores. The reduction of energy transfer into the lowest-energy chromophores thus reduces their rate of photo-bleaching. Finally, the difference between the quenched and non-quenched spectra allows the rate of energy transfer along the polymer backbone to be estimated at ∼2 ns-1.
Collapse
Affiliation(s)
- Xuan Long Ho
- Dept of Electrical Engineering, Yuan Ze University, Chung-Li, Taoyuan City, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Drumming up single-molecule beats. Proc Natl Acad Sci U S A 2018; 115:11115-11117. [PMID: 30337481 DOI: 10.1073/pnas.1815764115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Coceancigh H, Higgins DA, Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal Chem 2018; 91:405-424. [PMID: 30350610 DOI: 10.1021/acs.analchem.8b04694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Takashi Ito
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|
24
|
Knapper KA, Pan F, Rea MT, Horak EH, Rogers JD, Goldsmith RH. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. OPTICS EXPRESS 2018; 26:25020-25030. [PMID: 30469610 DOI: 10.1364/oe.26.025020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Whispering-gallery mode (WGM) microresonators have recently been employed as platforms for label-free single-molecule and single-particle detection, imaging, and spectroscopy. However, innovations in device geometry and integration are needed to make WGM microresonators more versatile for biological and chemical applications. Particularly, thick device substrates, originating from wafer-scale fabrication processing, prevent convenient optical interrogation. In this work, we fabricate all-glass toroidal microresonators on a coverslip thickness (~170 μm) substrate, enabling excitation delivery through the sample, simplifying optical integration. Further, we demonstrate the application of this new geometry for single-particle photothermal imaging. Finally, we discover and develop simulations to explain a non-trivial astigmatism in the point spread function (PSF) arising from the curvature of the resonator.
Collapse
|
25
|
Horak EH, Rea MT, Heylman KD, Gelbwaser-Klimovsky D, Saikin SK, Thompson BJ, Kohler DD, Knapper KA, Wei W, Pan F, Gopalan P, Wright JC, Aspuru-Guzik A, Goldsmith RH. Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy. NANO LETTERS 2018; 18:1600-1607. [PMID: 29378412 DOI: 10.1021/acs.nanolett.7b04211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.
Collapse
Affiliation(s)
- Erik H Horak
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Morgan T Rea
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Kevin D Heylman
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - David Gelbwaser-Klimovsky
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Blaise J Thompson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Daniel D Kohler
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Kassandra A Knapper
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Wei Wei
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Feng Pan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Padma Gopalan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - John C Wright
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Randall H Goldsmith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
26
|
Hu Z, Shao B, Geberth GT, Vanden Bout DA. Effects of molecular architecture on morphology and photophysics in conjugated polymers: from single molecules to bulk. Chem Sci 2018; 9:1101-1111. [PMID: 29675155 PMCID: PMC5887865 DOI: 10.1039/c7sc03465b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/30/2017] [Indexed: 01/16/2023] Open
Abstract
A definitive comprehension of morphology and photophysics in conjugated polymers at multiple length scales demands both single molecule spectroscopy and well-controlled molecular architectures.
Conjugated polymers (CPs) possess a wide range of desirable properties, including accessible energetic bandgaps, synthetic versatility, and mechanical flexibility, which make them attractive for flexible and wearable optoelectronic devices. An accurate and comprehensive understanding about the morphology–photophysics relations in CPs lays the groundwork for their development in these applications. However, due to the complex roles of chemical structure, side-chains, backbone, and intramolecular interactions, CPs can exhibit heterogeneity in both their morphology and optoelectronic properties even at the single chain level. This molecular level heterogeneity together with complicated intermolecular interactions found in bulk CP materials severely obscures the deterministic information about the morphology and photophysics at different hierarchy levels. To counter this complexity and offer a clearer picture for the properties of CP materials, we highlight the approach of probing material systems with specific structural features via single molecule/aggregate spectroscopy (SMS). This review article covers recent advances achieved through such an approach regarding the important morphological and photophysical properties of CPs. After a brief review of the typical characteristics of CPs, we present detailed discussions of structurally well-defined model systems of CPs, from manipulated backbones and side-chains, up to nano-aggregates, studied with SMS to offer deterministic relations between morphology and photophysics from single chains building up to bulk states.
Collapse
Affiliation(s)
- Zhongjian Hu
- Department of Chemistry , University of Texas at Austin , USA .
| | - Beiyue Shao
- Department of Chemistry , University of Texas at Austin , USA .
| | | | | |
Collapse
|
27
|
Yarita N, Tahara H, Saruyama M, Kawawaki T, Sato R, Teranishi T, Kanemitsu Y. Impact of Postsynthetic Surface Modification on Photoluminescence Intermittency in Formamidinium Lead Bromide Perovskite Nanocrystals. J Phys Chem Lett 2017; 8:6041-6047. [PMID: 29189012 DOI: 10.1021/acs.jpclett.7b02840] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We study the origin of photoluminescence (PL) intermittency in formamidinium lead bromide (FAPbBr3, FA = HC(NH2)2) nanocrystals and the impact of postsynthetic surface treatments on the PL intermittency. Single-dot spectroscopy revealed the existence of different individual nanocrystals exhibiting either a blinking (binary on-off switching) or flickering (gradual undulation) behavior of the PL intermittency. Although the PL lifetimes of blinking nanocrystals clearly correlate with the individual absorption cross sections, those of flickering nanocrystals show no correlation with the absorption cross sections. This indicates that flickering has an extrinsic origin, which is in contrast to blinking. We demonstrate that the postsynthetic surface treatment with sodium thiocyanate improves the PL quantum yields and completely suppresses the flickering, while it has no significant effect on the blinking behavior. We conclude that the blinking is caused by Auger recombination of charged excitons, and the flickering is due to a temporal drift of the exciton recombination rate induced by surface-trapped electrons.
Collapse
Affiliation(s)
- Naoki Yarita
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Hirokazu Tahara
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Tokuhisa Kawawaki
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
28
|
Pyle JR, Chen J. Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2296-2306. [PMID: 29181286 PMCID: PMC5687005 DOI: 10.3762/bjnano.8.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Super-resolution imaging of single DNA molecules via point accumulation for imaging in nanoscale topography (PAINT) has great potential to visualize fine DNA structures with nanometer resolution. In a typical PAINT video acquisition, dye molecules (YOYO-1) in solution sparsely bind to the target surfaces (DNA) whose locations can be mathematically determined by fitting their fluorescent point spread function. Many YOYO-1 molecules intercalate into DNA and remain there during imaging, and most of them have to be temporarily or permanently fluorescently bleached, often stochastically, to allow for the visualization of a few fluorescent events per DNA per frame of the video. Thus, controlling the fluorescence on-off rate is important in PAINT. In this paper, we study the photobleaching of YOYO-1 and its correlation with the quality of the PAINT images. At a low excitation laser power density, the photobleaching of YOYO-1 is too slow and a minimum required power density was identified, which can be theoretically predicted with the proposed method in this report.
Collapse
Affiliation(s)
- Joseph R Pyle
- Department of Chemistry and Biochemistry, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|