1
|
Dong J, Zhang S, Chan YK, Lai S, Deng Y. Vacancies-rich Z-scheme VdW heterojunction as H 2S-sensitized synergistic therapeutic nanoplatform against refractory biofilm infections. Biomaterials 2025; 320:123258. [PMID: 40090255 DOI: 10.1016/j.biomaterials.2025.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Encapsulated in a self-produced negatively charged extracellular polymeric substance (EPS) matrix, the wound infected bacterial biofilms exhibit formidable resistance to conventional positively charged antibiotics and host's immune responses, which can undoubtedly lead to persistent infections and lethal complications. Nevertheless, developing efficacious strategies to root out stubborn biofilm and promote tissue regeneration still remains a challenge. To resolve this dilemma, a versatile vacancies-rich Z-scheme MoSSe Van der Waals heterojunction (MoSSe VdW HJ) is rationally fabricated as nanoplatform for hydrogen sulfide (H2S)-sensitized synergistic therapy of wound bacterial biofilm infection. The rich anion vacancies and Z-scheme heterostructure make the fabricated MoSSe VdW HJ can effectively augment H2S, localized hyperthermia, and reactive oxygen species production under the stimulation of biofilm microenvironments (BME) and irradiation of 808 nm near-infrared (NIR) light. Therefore, MoSSe VdW HJ is capable to integrate H2S gas, chemodynamic, photothermal, and photodynamic therapies to effectively destroy eDNA and polysaccharides in the EPS matrix, thereby breaching the biofilm barrier to eradicate bacteria and facilitate wound healing. The synergistic strategy exhibits superior anti-biofilm and wound repair effects both in vivo and in vitro, thus providing guideline for the development of BME and NIR light activated synergistic therapeutics to fight against refractory biofilm infections.
Collapse
Affiliation(s)
- Jianwen Dong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shuting Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, 999077, Hong Kong, China
| | - Shuangquan Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China.
| |
Collapse
|
2
|
Gao Q, Wang W, Sun S, Yang Y, Mao K, Yang Y, Wu ZS. Bundling gold nanorods with RCA-produced DNA tape into an intelligently reconfigurable nanocluster bomb for multimodal precision cancer therapy. Mater Today Bio 2025; 32:101718. [PMID: 40236812 PMCID: PMC11999372 DOI: 10.1016/j.mtbio.2025.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Via proposing an innovative assembly technique, we bundle cell-targeting aptamer-modified gold nanorods (AuNRs) with RCA product (RCA-p) tape into a reconfigurable nanocluster (ARGN) bomb for multimodal precision cancer therapy. Because each ARGN has 10 individual AuNRs, the short time of laser irradiation can make the temperature increase to 75 °C much higher than the lethal temperature of tumor cells, enabling the efficient photothermal therapy (PTT). Moreover, both siRNA-Plk1 (2820 per ARGN) and chemotherapeutic agents (15860 per ARGN) can be loaded into two specifically-designed containers in the internal cavity. Because the glomeroplasmatic structure enhances the resistance to enzymatic degradation, ARGN bomb can protect siRNAs from the digestion and avoid Dox leakage during in vivo circulation. Moreover, the spontaneous structural reorganization allows aptamers in the interior cavity move outward to the exterior surface, which magically offers the compensation of degraded aptamers and impair persistent in vivo cell targeting ability. The external stimuli (laser irradiation) promotes the release of chemotherapeutic agents and initiates the PTT/chemotherapy outcome, while endogenous stimuli (intracellular biomarkers) causes almost 100 % release of siRNA-Plk1 species and induces RNA interference therapy, completely inhibiting tumor growth without detectable off-target toxicity.
Collapse
Affiliation(s)
- Qian Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, China
| | - Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Kaili Mao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuxi Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
3
|
Mao M, Li D, Wu Y, Li B, Han X, Yan J, Shang L, Zhang H, Li X. Construction of Antibacterial MoS 2-ACF Phenotype Switcher for Bidirectionally Regulating Inflammation-Proliferation Transition in Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2025; 18:963. [PMID: 40077188 PMCID: PMC11901119 DOI: 10.3390/ma18050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily switch from pro-inflammatory M1 phenotypes to anti-inflammatory M2 phenotypes in response to different microenvironment stimuli. Herein, taking advantage of enhanced electron transfer by coupling MoS2 with a highly conductive activated carbon fiber (ACF) network, a MoS2-ACF heterojunction structure was constructed as a macrophage M1-M2 phenotype switcher (MAPS) for regulating inflammation-proliferation transition to accelerate wound healing. In the early stages of wound repair, MAPS-mediated photothermal effects with near-infrared laser irradiation could promote macrophage reprogramming to the M1 phenotype, which can expedite inflammation. NIR photo-induced hyperthermia, together with M1 macrophages, directly and indirectly kills bacteria. Later, during the healing process, the MAPS could further reprogram macrophages towards the M2 phenotype via its inherent reactive oxygen species (ROS) scavenging ability to resolve inflammation, promoting cell proliferation. Therefore, MoS2-ACF heterojunction structures provide a new strategy to modulate inflammation-proliferation transition by rebalancing the immuno-environmental equilibrium of macrophage M1/M2 phenotypes.
Collapse
Affiliation(s)
- Mengxin Mao
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Diyi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bing Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lei Shang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| |
Collapse
|
4
|
Liu L, Zhang T, Wu Q, Xie L, Zhao Q, Zhang Y, Cui Y, Wang C, He Y. Highly sensitive detection of carbendazim in agricultural products using colorimetric and photothermal lateral flow immunoassay based on plasmonic gold nanostars. Talanta 2025; 281:126891. [PMID: 39277934 DOI: 10.1016/j.talanta.2024.126891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
The wide use and high toxicity of carbendazim (CBD) in agriculture pose unprecedented demands for convenient, sensitive, and cost-effective on-site monitoring. Herein, we propose a novel colorimetric and photothermal dual-mode lateral flow immunoassay (LFIA) based on plasmonic gold nanostars (AuNSs) for CBD detection in agricultural products. The AuNSs were synthesized via a rapid seed-mediated growth method (with growth time of ∼5 s). A stable immunoprobe was formed by adsorbing CBD antibodies onto AuNSs. This immunoprobe exhibited high conversion efficiency and sensitivity in photothermal detection with a low limit of detection (LOD) of 0.28 ng mL-1. The LOD of the colorimetric mode was higher (0.48 ng mL-1). The results of CBD detection in various agricultural products aligned well with ultra-performance liquid chromatography tandem mass spectrometry. Overall, our LFIA shows excellent sensitivity, specificity, reproducibility, and rapidness in CBD detection, and thus is a highly potential on-site platform in resource-limited environments.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Tian Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Qi Wu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Chengqiu Wang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| |
Collapse
|
5
|
Jiang Q, Tong F, Xu Y, Liu C, Xu Q. Cuproptosis: a promising new target for breast cancer therapy. Cancer Cell Int 2024; 24:414. [PMID: 39702350 DOI: 10.1186/s12935-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women globally, affecting approximately one-quarter of all female cancer patients and accounting for one-sixth of cancer-related deaths in women. Despite significant advancements in diagnostic and therapeutic approaches, breast cancer treatment remains challenging due to issues such as recurrence and metastasis. Recently, a novel form of regulated cell death, termed cuproptosis, has been identified. This process disrupts mitochondrial respiration by targeting the copper-dependent cellular pathways. The role of cuproptosis has been extensively investigated in various therapeutic contexts, including chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of novel drugs significantly improving clinical outcomes. This article aims to further elucidate the connection between cuproptosis and breast cancer, focusing on its therapeutic targets, signaling pathways, and potential biomarkers that could enhance treatment strategies. These insights may offer new opportunities for improved patient care and outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Changshan, Quzhou, 324200, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Yun Xu
- Department of Pharmacy, Zhejiang Medical&Health Group Hangzhou Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cheng Liu
- Department of Pharmacy, The Secend People's Hospital Of Jiande, Hangzhou, 311604, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Afliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Seyda D, Dincer O, İnce D, Cugunlular M, Unalan HE, Çınar Aygün S. Bismuth-Tin Core-Shell Particles From Liquid Metals: A Novel, Highly Efficient Photothermal Material that Combines Broadband Light Absorption with Effective Light-to-Heat Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407771. [PMID: 39375946 PMCID: PMC11615822 DOI: 10.1002/advs.202407771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Indexed: 10/09/2024]
Abstract
This study presents a pioneering investigation of hybrid bismuth-tin (BiSn) liquid metal particles for photothermal applications. It is shown that the intrinsic core-shell structure of liquid metal particles can be instrumentalized to combine the broadband absorption characteristics of defect-rich nano-oxides and the high light-to-heat conversion efficiency of metallic particles. Even though bismuth or tin does not show any photothermal characteristics alone, optimization of the core-shell structure of BiSn particles leads to the discovery of novel, highly efficient photothermal materials. Particles with optimized structures can absorb 85% of broadband light and achieve over 90% photothermal conversion efficiency. It is demonstrated that these particles can be used as a solar absorber for solar water evaporation systems owing to their broadband absorption capability and become a non-carbon alternative enabling scalable applications. We also showcased their use in polymer actuators in which a near-infrared (NIR) response stems from their oxide shell, and fast heating/cooling rates achieved by the metal core enable rapid response and local movement. These findings underscore the potential of BiSn liquid metal-derived core-shell particles for diverse applications, capitalizing on their outstanding photothermal properties as well as their facile and scalable synthesis conditions.
Collapse
Affiliation(s)
- Dogu Seyda
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Orcun Dincer
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
- Present address:
Department of Chemical and Materials EngineeringConcordia UniversityMontrealQuebecH3G 1M8Canada
| | - Duygu İnce
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Murathan Cugunlular
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Husnu Emrah Unalan
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| | - Simge Çınar Aygün
- Department of Metallurgical and Materials EngineeringMiddle East Technical University (METU)Ankara06800Türkiye
| |
Collapse
|
7
|
Sabu A, Kandel M, Sarma RR, Ramesan L, Roy E, Sharmila R, Chiu HC. Heterojunction semiconductor nanocatalysts as cancer theranostics. APL Bioeng 2024; 8:041502. [PMID: 39381587 PMCID: PMC11459490 DOI: 10.1063/5.0223718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer nanotechnology is a promising area of cross-disciplinary research aiming to develop facile, effective, and noninvasive strategies to improve cancer diagnosis and treatment. Catalytic therapy based on exogenous stimulus-responsive semiconductor nanomaterials has shown its potential to address the challenges under the most global medical needs. Semiconductor nanocatalytic therapy is usually triggered by the catalytic action of hot electrons and holes during local redox reactions within the tumor, which represent the response of nontoxic semiconductor nanocatalysts to pertinent internal or external stimuli. However, careful architecture design of semiconductor nanocatalysts has been the major focus since the catalytic efficiency is often limited by facile hot electron/hole recombination. Addressing these challenges is vital for the progress of cancer catalytic therapy. In recent years, diverse strategies have been developed, with heterojunctions emerging as a prominent and extensively explored method. The efficiency of charge separation under exogenous stimulation can be heightened by manipulating the semiconducting performance of materials through heterojunction structures, thereby enhancing catalytic capabilities. This review summarizes the recent applications of exogenous stimulus-responsive semiconducting nanoheterojunctions for cancer theranostics. The first part of the review outlines the construction of different heterojunction types. The next section summarizes recent designs, properties, and catalytic mechanisms of various semiconductor heterojunctions in tumor therapy. The review concludes by discussing the challenges and providing insights into their prospects within this dynamic and continuously evolving field of research.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Manoj Kandel
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ritwick Ranjan Sarma
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Lakshminarayan Ramesan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ekta Roy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Wu J, Liu W, Tang S, Wei S, He H, Ma M, Shi Y, Zhu Y, Chen S, Wang X. Light-Responsive Smart Nanoliposomes: Harnessing the Azobenzene Moiety for Controlled Drug Release under Near-Infrared Irradiation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56850-56861. [PMID: 39380427 DOI: 10.1021/acsami.4c13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The azobenzene moiety is an intriguing structure that deforms under UV and visible light, indicating a high potential for biomedical applications. However, its reaction to UV radiation is problematic because of its high energy and low tissue penetration. Unlike previous research on azobenzene structures in photoresponsive materials, this study presents a novel method for imparting photostimulation-responsive properties to liposomes by incorporating the azobenzene moiety and extending the light wavelength with up-conversion nanoparticles. First, the azobenzene structure was incorporated into a phospholipid molecule to create Azo-PSG, which could spontaneously form vesicle assemblies in aqueous solutions and isomerizes within 1 h of light exposure. Furthermore, orthogonal up-conversion nanoparticles with a core-shell structure were created by sequentially growing lanthanide rare earths in the shell layer, which efficiently converts near-infrared light into ultraviolet (400 nm) and blue-green (540 nm) light. Combining these core-shell structured up-conversion nanomaterials with Azo-PSG molecules resulted in the creation of a near-infrared light-responsive smart nanoliposome system. Under near-infrared light irradiation, UCNPs emit UV and blue-green light, causing conformational changes in Azo-PSG molecules that allow drug release within 6 h. The reversible structural shift of Azo-PSG in response to light stimulation holds enormous promise for improving drug release techniques. This novel technique also expands the usage of UV-responsive compounds beyond their constraints of low penetration and high biotoxicity, allowing for rapid medication release under NIR light.
Collapse
Affiliation(s)
- Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wenjing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Shuangying Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yulu Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
9
|
Taydas D, Özler ME, Ergül M, Şahin İnan ZD, Sözmen F. All-in-One Nanohybrids Combining Sonodynamic Photodynamic and Photothermal Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43387-43399. [PMID: 39136145 PMCID: PMC11345719 DOI: 10.1021/acsami.4c09715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
A wide variety of methods are being developed to ultimately defeat cancer; while some of these strategies have shown highly positive results, there are serious obstacles to overcome to completely eradicate this disease. So, it is crucial to construct multifunctional nanostructures possessing intelligent capabilities that can be utilized to treat cancer. A possible strategy for producing these multifunctional nanostructures is to combine various cancer treatment techniques. Based on this point of view, we successfully synthesized multifunctional HCuS@Cu2S@Au-P(NIPAM-co-AAm)-PpIX nanohybrids. The peculiarities of these thermosensitive polymer-modified and protoporphyrin IX (PpIX)-loaded hollow nanohybrids are that they combine photodynamic therapy (PDT), sonodynamic therapy (SDT), and photothermal therapy (PTT) with an intelligent design. As an all-in-one nanohybrids, HCuS@Cu2S@Au-P(NIPAM-co-AAm)-PpIX nanohybrids were employed in the SDT-PDT-PTT combination therapy, which proved to have a synergistic therapeutic effect for in vitro tumor treatments against breast tumors.
Collapse
Affiliation(s)
- Dilsad Taydas
- Nanotechnology
Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas 58140, Türkiye
| | - Muhammed Emre Özler
- Nanotechnology
Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas 58140, Türkiye
| | - Mustafa Ergül
- Biochemistry
Department, Faculty of Pharmacy, Sivas Cumhuriyet
University, Sivas 58140, Türkiye
| | - Zeynep Deniz Şahin İnan
- Histology
and Embryology Department, Faculty of Medicine, Sivas Cumhuriyet University, Sivas 58140, Türkiye
| | - Fazlı Sözmen
- Nanotechnology
Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas 58140, Türkiye
| |
Collapse
|
10
|
Kang Y, Yan J, Han X, Wang X, Wang Y, Song P, Su X, Rauf A, Jin X, Pu F, Zhang H. Construction of Hierarchically Biomimetic Iron Oxide Nanosystems for Macrophage Repolarization-Promoted Immune Checkpoint Blockade of Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36131-36141. [PMID: 38979627 DOI: 10.1021/acsami.4c06415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cancer immunotherapy is developing as the mainstream strategy for treatment of cancer. However, the interaction between the programmed cell death protein-1 (PD-1) and the programmed death ligand 1 (PD-L1) restricts T cell proliferation, resulting in the immune escape of tumor cells. Recently, immune checkpoint inhibitor therapy has achieved clinical success in tumor treatment through blocking the PD-1/PD-L1 checkpoint pathway. However, the presence of M2 tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) will inhibit antitumor immune responses and facilitate tumor growth, which can weaken the effectiveness of immune checkpoint inhibitor therapy. The repolarization of M2 TAMs into M1 TAMs can induce the immune response to secrete proinflammatory factors and active T cells to attack tumor cells. Herein, hollow iron oxide (Fe3O4) nanoparticles (NPs) were prepared for reprogramming M2 TAMs into M1 TAMs. BMS-202, a small-molecule PD-1/PD-L1 inhibitor that has a lower price, higher stability, lower immunogenicity, and higher tumor penetration ability compared with antibodies, was loaded together with pH-sensitive NaHCO3 inside hollow Fe3O4 NPs, followed by wrapping with macrophage membranes. The formed biomimetic FBN@M could produce gaseous carbon dioxide (CO2) from NaHCO3 in response to the acidic TME, breaking up the macrophage membranes to release BMS-202. A series of in vitro and in vivo assessments revealed that FBN@M could reprogram M2 TAMs into M1 TAMs and block the PD-1/PD-L1 pathway, which eventually induced T cell activation and the secretion of TNF-α and IFN-γ to kill the tumor cells. FBN@M has shown a significant immunotherapeutic efficacy for tumor treatment.
Collapse
Affiliation(s)
- Yaqing Kang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiao Yan
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanjing Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Panpan Song
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaochen Su
- Second Inpatient Area of Urology Department, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Xuefei Jin
- Second Inpatient Area of Urology Department, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fang Pu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haiyuan Zhang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Cui L, Xu Q, Lou W, Wang Y, Xi X, Chen Y, Sun M, Wang Z, Zhang P, Yang S, Zhang L, Qu L. Chitosan oligosaccharide-functionalized nano-prodrug for cascade chemotherapy through oxidative stress amplification. Int J Biol Macromol 2024; 268:131641. [PMID: 38641277 DOI: 10.1016/j.ijbiomac.2024.131641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Redox nanoparticles have been extensively developed for chemotherapy. However, the intracellular oxidative stress induced by constant aberrant glutathione (GSH), reactive oxygen species (ROS) and gamma-glutamyl transpeptidase (GGT) homeostasis remains the primary cause of evading tumor apoptosis. Herein, an oxidative stress-amplification strategy was designed using a pH-GSH-H2O2-GGT sensitive nano-prodrug for precise synergistic chemotherapy. The disulfide bond- conjugated doxorubicin prodrug (DOX-ss) was constructed as a GSH-scavenger. Then, phenylboronic acid (PBA), DOX-ss and poly (γ-glutamic acid) (γ-PGA) were successively conjugated using chitosan oligosaccharide (COS) to obtain the nano-prodrug PBA-COS-ss-DOX/γ-PGA. The PBA-COS-ss-DOX/γ-PGA prodrug could tightly attach to the polymer chain segment by atom transfer radical polymerization. Simultaneously, the drug interacted relatively weakly with the polymer by encapsulating ionic crosslinkers in DOX@PBA-COS/γ-PGA. The disulfide bond of the DOX-ss prodrug as a GSH-scavenger could be activated using overexpressed GSH to release DOX. Particularly, PBA-COS-ss-DOX/γ-PGA could prevent premature drug leakage and facilitate DOX delivery by GGT-targeting and intracellular H2O2-cleavable linker in human hepatocellular carcinoma (HepG2) cells. Concurrently, the nano-prodrug induced strong oxidative stress and tumor cell apoptosis. Collectively, the pH-GSH-H2O2-GGT responsive nano-prodrug shows potential for synergistic tumor therapy.
Collapse
Affiliation(s)
- Lan Cui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Qingqing Xu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Weishuang Lou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yali Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xuelian Xi
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yanlin Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Mengyao Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zihua Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Pengshuai Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuoye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
12
|
Wang K, Liu X, Liang X, Jiang Y, Wen CY, Zeng J. Near-Infrared Responsive Ag@Au Nanoplates with Exceptional Stability for Highly Sensitive Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay. Anal Chem 2024. [PMID: 38317503 DOI: 10.1021/acs.analchem.3c05787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Lateral flow immunoassay (LFIA) has played a vital role in point-of-care (POC) testing on account of its simplicity, rapidity, and low cost. However, the low sensitivity and difficulty of quantitation limit its further development. Sensitive markers with new detection modes are being developed to dramatically improve LFIA's performance. Herein, a ligand-complex approach was proposed to uniformly coat a thin layer of Au onto Ag triangular nanoplates (Ag TNPs) without etching the Ag cores, which not only retain the unique optical properties from Ag TNPs but also acquire the surface stability and biocompatibility of gold. The localized surface plasmon resonance absorption of these Ag@Au TNPs could be finely adjusted from visible (550 nm) to the second near-infrared region (NIR-II) (1100 nm), and even longer, by simply adjusting the ratio between edge length and thickness. Utilizing the Ag@Au TNPs as new markers for LFIA, a highly sensitive colorimetric and photothermal dual-mode detection of the SARS-CoV-2 nucleocapsid protein was achieved with a very low background. The Ag@Au TNPs showed an exceedingly high photothermal conversion efficiency of 61.4% (ca. 2 times higher than that of Au nanorods), endowing the LFIA method with a low photothermal detection limit (40 pg/mL), which was 25-fold lower than that of the colorimetric results. The generality of the method was further verified by the sensitive and accurate analysis of cardiac troponin I (cTnI). This method is robust, reproducible, and highly specific and has been successfully applied to SARS-COV-2 detection in 35 clinical samples with satisfactory results, demonstrating its potential for POC applications.
Collapse
Affiliation(s)
- Kun Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinyi Liang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430065, China
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
13
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
14
|
Chen B, Zheng K, Fang S, Huang K, Chu C, Zhuang J, Lin J, Li S, Yao H, Liu A, Liu G, Lin J, Lin X. B7H3 targeting gold nanocage pH-sensitive conjugates for precise and synergistic chemo-photothermal therapy against NSCLC. J Nanobiotechnology 2023; 21:378. [PMID: 37848956 PMCID: PMC10583352 DOI: 10.1186/s12951-023-02078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Kaifan Zheng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, 350122, China
| | - Kangping Huang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Junyang Zhuang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jin Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ailin Liu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, 350122, China.
- The Department of Otolaryngology, Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, 55404, USA.
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Ma J, Li N, Wang J, Liu Z, Han Y, Zeng Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. EXPLORATION (BEIJING, CHINA) 2023; 3:20220161. [PMID: 37933283 PMCID: PMC10582616 DOI: 10.1002/exp.20220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near-infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in PTT. In this review, we aimed to discuss the synergism between tumor PTT with CuS NPs and other therapies such as chemotherapy, radiotherapy, dynamic therapies (photodynamic, chemodynamic, and sonodynamic therapy), immunotherapy, gene therapy, gas therapy, and magnetic hyperthermia. Furthermore, we summarized the results obtained with a combination of two treatments and at least two therapies, with PTT as one of the included therapies. Finally, we summarized the benefits and drawbacks of various therapeutic options and state of the art CuS-based PTT and provided future directions for such therapies.
Collapse
Affiliation(s)
- Jingwen Ma
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Na Li
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Jingjian Wang
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Zhe Liu
- Department of PathologyNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Yulong Han
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Yun Zeng
- School of Life Science and TechnologyXidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of EducationXi'anShaanxi ProvinceP. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans‐Scale Life Information, School of Life Science and TechnologyXidian UniversityXi'anShaanxi ProvinceP. R. China
| |
Collapse
|
16
|
Xiao R, Zeng J, Li F, Ling D. Gold-semiconductor nanohybrids as advanced phototherapeutics. Nanomedicine (Lond) 2023; 18:1585-1606. [PMID: 37830425 DOI: 10.2217/nnm-2023-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold-semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold-semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.
Collapse
Affiliation(s)
- Ruixue Xiao
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jian Zeng
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| |
Collapse
|
17
|
Liu L, Li S, Yang K, Chen Z, Li Q, Zheng L, Wu Z, Zhang X, Su L, Wu Y, Song J. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. NANO LETTERS 2023; 23:3929-3938. [PMID: 37129144 DOI: 10.1021/acs.nanolett.3c00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Manufacturing heteronanostructures with specific physicochemical characteristics and tightly controllable designs is very appealing. Herein, we reported NIR-II light-driven dual plasmonic (AuNR-SiO2-Cu7S4) antimicrobial nanomotors with an intended Janus configuration through the overgrowth of copper-rich Cu7S4 nanocrystals at only one high-curvature site of Au nanorods (Au NRs). These nanomotors were applied for photoacoustic imaging (PAI)-guided synergistic photothermal and photocatalytic treatment of bacterial infections. Both the photothermal performance and photocatalytic activity of the nanomotors are dramatically improved owing to the strong plasmon coupling between Au NRs and the Cu7S4 component and enhanced energy transfer. The motion behavior of nanomotors promotes transdermal penetration and enhances the matter-bacteria interaction. More importantly, the directional navigation and synergistic antimicrobial activity of the nanomotors could be synchronously driven by NIR-II light. The marriage of active motion and enhanced antibacterial activity resulted in the expected good antibacterial effects in an abscess infection mouse model.
Collapse
Affiliation(s)
- Luntao Liu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuqin Li
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Kaiqiong Yang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zongsheng Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Chen Y, Liu P, Zhou C, Zhang T, Zhou T, Men D, Jiang G, Hang L. Gold nanobipyramid@copper sulfide nanotheranostics for image-guided NIR-II photo/chemodynamic cancer therapy with enhanced immune response. Acta Biomater 2023; 158:649-659. [PMID: 36623783 DOI: 10.1016/j.actbio.2022.12.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Photothermal therapy (PTT), photodynamic therapy (PDT), and chemodynamic therapy (CDT) can cause cancer cell death through an immunogenic process. However, the study of second near-infrared window (NIR-II)-triggered PTT and PDT combined with CDT to induce an immune response has not been recently reported. Here, we integrated gold nanobipyramids and copper sulfide in a core/shell architecture (AuNBP@CuS). The material displays both photodynamic and photothermal properties under irradiation with a NIR-II laser. The released Cu2+ from CuS under an acidic tumor microenvironment can be converted to Cu+ by glutathione following a Fenton-like reaction with hydrogen peroxide to generate highly toxic hydroxyl radicals in the tumor region. Both in vitro and in vivo results demonstrated that such multifunctional nanoplatforms could achieve enhanced efficiency for image-guided tumor suppression based on the NIR-II photo/chemodynamic therapy. We found that damage-associated molecular pattern molecules such as adenosine triphosphate, pre-apoptotic calreticulin, and high mobility group box-1 in dying cells induced by the NIR-II photo/chemodynamic therapy could simultaneously trigger adaptive immune responses. This is the first report revealing that NIR-II photo/chemodynamic therapy based on AuNBP@CuS had promising performance on tumor suppressor with an effective immunogenic cell death process. STATEMENT OF SIGNIFICANCE: 1. AuNBP@CuS displays both NIR-II photodynamic and photothermal properties. 2. Cu+ following a Fenton-like reaction to generate highly toxic hydroxyl radicals. 3. The NIR-II photo/chemodynamic therapy can trigger adaptive immune responses. 4. Such multifunctional nanoplatforms could achieve enhanced efficiency for tumor suppression.
Collapse
Affiliation(s)
- Yiyu Chen
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, 518037, PR China
| | - Ping Liu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, 518037, PR China
| | - Chunze Zhou
- Interventional Radiology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tianxing Zhou
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, 518037, PR China
| | - Dandan Men
- Shanxi Province Key Laboratory of Microstructure Functional Materials Institute of Solid State Physics, Shanxi Datong University, Datong, 037009, PR China
| | - Guihua Jiang
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, 518037, PR China.
| | - Lifeng Hang
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, 518037, PR China.
| |
Collapse
|
19
|
Ben-Shahar Y, Stone D, Banin U. Rich Landscape of Colloidal Semiconductor-Metal Hybrid Nanostructures: Synthesis, Synergetic Characteristics, and Emerging Applications. Chem Rev 2023; 123:3790-3851. [PMID: 36735598 PMCID: PMC10103135 DOI: 10.1021/acs.chemrev.2c00770] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanochemistry provides powerful synthetic tools allowing one to combine different materials on a single nanostructure, thus unfolding numerous possibilities to tailor their properties toward diverse functionalities. Herein, we review the progress in the field of semiconductor-metal hybrid nanoparticles (HNPs) focusing on metal-chalcogenides-metal combined systems. The fundamental principles of their synthesis are discussed, leading to a myriad of possible hybrid architectures including Janus zero-dimensional quantum dot-based systems and anisotropic quasi 1D nanorods and quasi-2D platelets. The properties of HNPs are described with particular focus on emergent synergetic characteristics. Of these, the light-induced charge-separation effect across the semiconductor-metal nanojunction is of particular interest as a basis for the utilization of HNPs in photocatalytic applications. The extensive studies on the charge-separation behavior and its dependence on the HNPs structural characteristics, environmental and chemical conditions, and light excitation regime are surveyed. Combining the advanced synthetic control with the charge-separation effect has led to demonstration of various applications of HNPs in different fields. A particular promise lies in their functionality as photocatalysts for a variety of uses, including solar-to-fuel conversion, as a new type of photoinitiator for photopolymerization and 3D printing, and in novel chemical and biomedical uses.
Collapse
Affiliation(s)
- Yuval Ben-Shahar
- Department of Physical Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona74100, Israel
| | - David Stone
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
20
|
A robust Au@Cu 2-xS nanoreactor assembled by silk fibroin for enhanced intratumoral glucose depletion and redox dyshomeostasis. Biomaterials 2023; 293:121970. [PMID: 36549040 DOI: 10.1016/j.biomaterials.2022.121970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@Cu2-xS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective Cu2-xS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of Cu2-xS. The semiconductor of Cu2-xS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e-/h+) pair for a promoted US-triggered singlet oxygen (1O2) generation, in the presence of Au as electron scavenger. Moreover, Cu2-xS is devote to Fenton-like reaction to catalyze H2O2 into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and 1O2 yield can be enhanced by Cu2-xS-catalyzed O2 self-replenishment in H2O2-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.
Collapse
|
21
|
Ouyang R, Zhang Q, Cao P, Yang Y, Zhao Y, Liu B, Miao Y, Zhou S. Efficient improvement in chemo/photothermal synergistic therapy against lung cancer using Bi@Au nano-acanthospheres. Colloids Surf B Biointerfaces 2023; 222:113116. [PMID: 36603409 DOI: 10.1016/j.colsurfb.2022.113116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Novel highly hydrophilic and biocompatible bismuth nanospheres with gold nanoparticles growing outside (Bi@Au nano-acanthospheres, Bi@Au NASs) were synthesized through a simple procedure, which demonstrated to be a promising photothermal agent owing to the ultrahigh photothermal conversion efficiency (η = 46.6 %). The as-prepared Bi@Au NASs showed excellent blood compatibility and fairly low cytotoxicity to human lung cancer A549 cells, as well as efficient photothermal ablation (PTA) therapy induced by a near-infrared laser. Under the 808 nm laser radiation, the tumour temperature could be elevated by ∼25 °C high enough to kill the cancer cells. Moreover, the anticancer drug doxorubicin hydrochloride (DOX) was successfully loaded in Bi@Au NASs with a loading content as high as 16.78 % and released under a pH sensitive release profile, a characteristic beneficial for intravenous delivery of DOX into cancer cells for chemotherapy. The presence of the Bi element enabled Bi@Au NASs to act as a favourable computed tomography (CT) contrast medium for CT imaging-guided tumour treatment. Compared with cancer treatment through either photothermal therapy or chemotherapy, the chemo-photothermal synergistic therapy using Bi@Au NASs as both a photothermal agent and a drug carrier has efficiently enhanced the in vitro and in vivo therapeutic effects in cancer treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qiupeng Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Penghui Cao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Yang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
22
|
Yang S, Wang S, Zhang Y, Wang Y, Yuan J, Jiang Y, He X, Liu L, Song J, Chen L, Yang H. Heterojunction structured BiOCl-Bi 2S 3 nanosheets as mitochondria-targeted near-infrared photothermal and photodynamic therapy agent. Colloids Surf B Biointerfaces 2023; 222:113106. [PMID: 36584451 DOI: 10.1016/j.colsurfb.2022.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria-targeted phototherapy, especially combined photothermal therapy (PTT) and photodynamic therapy (PDT), has been regarded as an attractive strategy for the treatment of tumor. In this study, a facile approach to prepare two-dimensional (2D) BiOCl-Bi2S3 nanostructures was developed, where Bi2S3 quantum dots were doped in/on the ultrathin BiOCl nanosheets, forming a p-n heterojunction. The BiOCl-Bi2S3 shows favorable photothermal conversion efficiency (32%) and synergistically reactive oxygen species (ROS) generating capability under near-infrared (NIR) irradiation. Moreover, the conjugation of synthetic targeting ligand to the surface of BiOCl-Bi2S3 endows the heterojunction effective tumor targeting ability and selective mitochondrial accumulation. The combined cancer targeting ability and synergistic PTT/PDT permit enhanced cooperative phototherapeutic efficiency of the 2D heterojunction. This study provides an attractive way for designing new class of heterostructure materials for potential applications in subcellular-targeted phototherapy.
Collapse
Affiliation(s)
- Shouning Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shengkun Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yanmin Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yijing Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jinhong Yuan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xing He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jian Song
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Huayan Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
23
|
Ivanchenko M, Carroll AL, Brothers AB, Jing H. Facile aqueous synthesis of hollow dual plasmonic hetero-nanostructures with tunable optical responses through nanoscale Kirkendall effects. NANOSCALE ADVANCES 2022; 5:88-95. [PMID: 36605812 PMCID: PMC9765514 DOI: 10.1039/d2na00606e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report the colloidal synthesis of hollow dual-plasmonic nanoparticles (NPs) using Au@Cu2O core-shell NPs as templates and exploiting the nanoscale Kirkendall effect. In our synthesis, we used organic compounds as a source of chalcogenide ions for an anion exchange reaction at elevated temperatures using polyvinylpyrrolidone (PVP) as a capping reagent to transform the solid Cu2O shell into a hollow copper chalcogenide shell. The resulting structures possess different features depending on the chalcogenide precursor employed. TEM images confirm the complete transformation of Au@Cu2O templates when 1,1-dimethyl-2-selenourea was added and the formation of hollow Au@Cu2-x Se nanostructures. In contrast, residues of Cu2O attached to the Au core were present when thioacetamide was used for the synthesis of Au@Cu2-x S with all other conditions kept the same. The divergence of architectures caused distinct optical properties of Au@Cu2-x S and Au@Cu2-x Se NPs. This synthetic approach is an effective pathway for maneuvering the size of interior voids by varying the concentration of chalcogenide ions in the reaction mixture. The insights gained from this work will enrich the synthetic toolbox at the nanoscale and guide us on the rational design of multicomponent plasmonic nanoparticles with precisely controlled hollow interiors and sophisticated geometries, further enhancing our capabilities to fine-tune the electronic, optical, compositional, and physicochemical properties.
Collapse
Affiliation(s)
- Mariia Ivanchenko
- Department of Chemistry and Biochemistry, George Mason University Fairfax Virginia 22030 USA
| | - Alison L Carroll
- Department of Chemistry and Biochemistry, George Mason University Fairfax Virginia 22030 USA
| | - Andrea B Brothers
- Department of Chemistry, American University Washington DC 20016 USA
| | - Hao Jing
- Department of Chemistry and Biochemistry, George Mason University Fairfax Virginia 22030 USA
| |
Collapse
|
24
|
Wang X, Cheng Y, Han X, Yan J, Wu Y, Song P, Wang Y, Li X, Zhang H. Functional 2D Iron-Based Nanosheets for Synergistic Immunotherapy, Phototherapy, and Chemotherapy of Tumor. Adv Healthc Mater 2022; 11:e2200776. [PMID: 35912918 DOI: 10.1002/adhm.202200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Indexed: 01/27/2023]
Abstract
Immunotherapy efficacy has been limited by tumor-associated macrophages (TAMs), which are the most abundant immune regulatory cells infiltrating around tumor tissues. The repolarization of pro-tumor M2 TAMs to anti-tumor M1 TAMs is a very promising immunotherapeutic strategy for cancer therapy. In this manuscript, multifunctional 2D iron-based nanosheets (FeNSs) are synthesized via a simple hydrothermal method for the first time, which not only possess photothermal and photodynamic properties, but also can repolarize TAMs from M2 to M1. After modifying with polyethylene glycol and loading with bioreductive prodrug banoxantrone (AQ4N), abbreviated as AP FeNSs, it can effectively repolarize TAMs from M2 to M1 and deliver AQ4N to tumor microenvironment (TME). Moreover, the repolarized M1 TAMs overexpress inducible nitric oxide synthase, which can convert nontoxic AQ4N to cytotoxic AQ4 under hypoxic TME, enabling immunomodulation-activated chemotherapy. A series of in vitro and in vivo results corroborate that AP FeNSs effectively exert photothermal and photodynamic effects and repolarize M2 TAMs to M1 TAMs, releasing inflammatory factors and activating the chemotherapeutic effect, thereby realizing synergistic tumor therapy.
Collapse
Affiliation(s)
- Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Cheng
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, P. R. China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunyun Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
25
|
Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022; 10:946183. [PMID: 36212064 PMCID: PMC9532752 DOI: 10.3389/fchem.2022.946183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
The progress of nanotechnology enables us to make use of the special properties of materials on the nanoscale and open up many new fields of biomedical research. Among them, thermosensitive nanomaterials stand out in many biomedical fields because of their “intelligent” behavior in response to temperature changes. However, this article mainly reviews the research progress of thermosensitive nanomaterials, which are popular in biomedical applications in recent years. Here, we simply classify the thermally responsive nanomaterials according to the types of polymers, focusing on the mechanisms of action and their advantages and potential. Finally, we deeply investigate the applications of thermosensitive nanomaterials in drug delivery, tissue engineering, sensing analysis, cell culture, 3D printing, and other fields and probe the current challenges and future development prospects of thermosensitive nanomaterials.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| | - Li Sun
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qianqian Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
26
|
A highly sensitive photothermal immunochromatographic sensor for detection of aflatoxin B 1 based on Cu 2-xSe-Au nanoparticles. Food Chem 2022; 401:134065. [PMID: 36116302 DOI: 10.1016/j.foodchem.2022.134065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
Abstract
In the study, Cu2-xSe-Au nanoparticles (CSA) with a photothermal conversion efficiency of 60.78 % at 808 nm were applied to the construction of thermal analysis immunochromatographic test strips for the highly sensitive quantitative detection of aflatoxin B1 (AFB1) in grain. The CSA was coupled with the AFB1 antibody to form a photothermal sensor probe by physical adsorption. The constructed immunosensor exhibited high sensitivity and a wide linear range from 0.01 to 10 μg/L in PBS. The detection limits of 0.00842 μg/L based on the thermal analysis was significantly improved by 11.88-fold compared with colorimetric results. No cross-reaction with the other mycotoxins was found except for aflatoxin B2, aflatoxin M1, aflatoxin G1 and aflatoxin G2. Applied to analysize grain sample, the method achieved the detection of AFB1 ranging from 0.16 to 160 μg/kg.
Collapse
|
27
|
Song P, Han X, Zheng R, Yan J, Wu X, Wang Y, Zhang H. Upregulation of MHC-I and downregulation of PD-L1 expression by doxorubicin and deferasirox codelivered liposomal nanoparticles for chemoimmunotherapy of melanoma. Int J Pharm 2022; 624:122002. [PMID: 35817272 DOI: 10.1016/j.ijpharm.2022.122002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Tumor immunotherapy is a promising strategy to activate the immune system and eliminate tumors. Major histocompatibility complex I (MHC-I) is usually applied to potentiate antigen presentation, but it is associated with upregulation of programmed death ligand 1 (PD-L1) expression, which is unfavorable for activation of immune responses. Moreover, poor permeability of various therapeutic antibodies results in the limited immune response rates of most patients. It is necessary to develop combined small molecule drug delivery systems for simultaneous upregulation of MHC-I expression and downregulation of PD-L1 expression, promoting effective tumor treatment. A moderate dose of doxorubicin hydrochloride (DOX) can induce upregulation of MHC-I expression, while deferasirox (DFX) can inhibit the PI3K-Akt pathway, which potentially downregulates PD-L1 expression. In the present study, we designed a pH-sensitive liposome to incorporate DOX in the hydrophilic cavity and embed DFX in the hydrophobic shell, forming a dual delivery system (DOX-DFXL). In a B16F10 melanoma-bearing mouse model, DOX and DFX were released in acidic tumor microenvironment, which further lead to enhanced antigen presentation and infiltration of T cells into tumor tissues as a result of tumor remission. This codelivery system holds great potential for clinical applications of tumor immunotherapy.
Collapse
Affiliation(s)
- Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
28
|
Ivanchenko M, Jing H. Anisotropic dual-plasmonic hetero-nanostructures with tunable plasmonic coupling effects. NANOSCALE ADVANCES 2022; 4:2632-2636. [PMID: 36132284 PMCID: PMC9419501 DOI: 10.1039/d2na00126h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The influence of plasmonic coupling effects between different components in Au NRs@Cu2-x Se nanostructures on their characteristics was studied. To this aim, anisotropic Au@Cu2-x Se hetero-nanostructures with well-controlled design and optical properties were obtained. The LSPR bands of gold and copper selenide are superpositioned in the NIR region, resulting in superior photocatalytic properties of the nanostructures.
Collapse
Affiliation(s)
- Mariia Ivanchenko
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Hao Jing
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| |
Collapse
|
29
|
Park E, Selvaraj R, Kim Y. High-efficiency photothermal sterilization on PDMS film with Au@CuS yolk-shell nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2041-2067. [PMID: 35571258 PMCID: PMC9094645 DOI: 10.2147/ijn.s355142] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xuefeng Gong
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Correspondence: Yuxuan Zhu, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
32
|
Lv K, Wang L, Ma Y, Zhang F, Guo W, Yu K, Qu F, Lin H. Biodegradation Mn-CoS@carbon di-shell nanoheterostructure with enhanced nanozyme-mediated phototherapy. BIOMATERIALS ADVANCES 2022; 136:212778. [PMID: 35929316 DOI: 10.1016/j.bioadv.2022.212778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The efficacy of phototherapy is dependent on intracellular O2 concentration and NIR harvest. Here, a simple nanoplatform with nanoenzyme mediated phototherapy enhances anticancer capacity. Mn-CoS@carbon (CMS/C) di-shell hollow nanospheres (50 nm) are synthesized successfully through two-step consecutive Kirkendall process. The nanoheterostructure reveals the higher near-infrared (NIR) light absorption and photothermal conversion rate of 66.3% than pure CoS (45.5%), owing to the decreased band gap and multi-reflection of incident light in the hollow structure. And CMS/C reveals the reactive oxygen species (ROS) production and nanoenzyme activities (mimic peroxidase and catalase) that are 6 and 2 times than those of pure CoS. Furthermore, the nanoenzyme exhibits NIR-enhanced abilities to produce more OH and O2 facilitating anticancer. In addition, it also depletes glutathione (mimicking glutathione oxidase), to disturb intracellular redox-homeostasis, boosting the increase of oxidative stress. With grafting bovine serum albumin (BSA) and drug loading, CMS/C@BSA-Dox integrated multi-therapy make the great anticancer effect in vitro and vivo. After that, the nanocomposite could be biodegraded and eliminated via urinary and feces within 14 days. Based on this work, the efficient charge-separation can be designed to reveal high performance nanoenzymes as well as photosensitizers for anticancer.
Collapse
Affiliation(s)
- Kexin Lv
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Limin Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yajie Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
33
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Hu X, Wang N, Guo X, Liang Z, Sun H, Liao H, Xia F, Guan Y, Lee J, Ling D, Li F. A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy. NANO-MICRO LETTERS 2022; 14:101. [PMID: 35412159 PMCID: PMC9005554 DOI: 10.1007/s40820-022-00848-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/21/2022] [Indexed: 05/14/2023]
Abstract
The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes. However, there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation. Here, we report a sub-nanostructural transformable gold@ceria (STGC-PEG) nanozyme that performs tunable catalytic activities via near-infrared (NIR) light-mediated sub-nanostructural transformation. The gold core in STGC-PEG can generate energetic hot electrons upon NIR irradiation, wherein an internal sub-nanostructural transformation is initiated by the conversion between CeO2 and electron-rich state of CeO2-x, and active oxygen vacancies generation via the hot-electron injection. Interestingly, the sub-nanostructural transformation of STGC-PEG enhances peroxidase-like activity and unprecedentedly activates plasmon-promoted oxidase-like activity, allowing highly efficient low-power NIR light (50 mW cm-2)-activated photocatalytic therapy of tumors. Our atomic-level design and fabrication provide a platform to precisely regulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation, approaching natural enzyme-like activity control in complex living systems.
Collapse
Affiliation(s)
- Xi Hu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Oncogenes and Related Genes, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Nan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xia Guo
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
- WLA Laboratories, Shanghai, 201203, People's Republic of China
| | - Heng Sun
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hongwei Liao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yunan Guan
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiyoung Lee
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-Si, Gyeonggi-do, 14662, Republic of Korea
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Oncogenes and Related Genes, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- WLA Laboratories, Shanghai, 201203, People's Republic of China.
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- WLA Laboratories, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
35
|
Diaz-Diestra D, Gholipour HM, Bazian M, Thapa B, Beltran-Huarac J. Photodynamic Therapeutic Effect of Nanostructured Metal Sulfide Photosensitizers on Cancer Treatment. NANOSCALE RESEARCH LETTERS 2022; 17:33. [PMID: 35258742 PMCID: PMC8904679 DOI: 10.1186/s11671-022-03674-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/27/2022] [Indexed: 05/02/2023]
Abstract
Photodynamic therapy (PDT) utilizes photosensitizers (PSs) to produce reactive oxygen species (ROSs) upon irradiation, which causes the shutdown of vessels and deprives the tumor of nutrients and oxygen, and in turn induces adverse effects on the immune system. However, significant efforts are needed to increase the efficiency in PDT in terms of light delivery to specific PSs for the clinical treatment of tumors located deep under the skin. Even though PDT offers a disease site-specific treatment modality, current efforts are directed to improve the solubility (in body fluids and injectable solvents), photostability, amphiphilicity (for tissue penetration), elimination, and systemic toxicity of traditional PSs based on porphyrin derivatives. Nanostructured materials show promising features to achieve most of such combined efforts. They can be artificially engineered to carry multiple theranostic agents onto targeted tumor sites. However, recent studies on photosensitive Cd-based nanostructures, mostly used in PDT, indicate that leeching of Cd2+ ions is stimulated when they are exposed to harsh biological conditions for continuous periods of time, thus making them acutely toxic and hindering their applications in in vivo settings. Since nanostructured materials are not completely immune to degradation, great strides have been made to seek new alternatives. In this review, we focus on the latest advances of Cd-free nanostructured metal transition sulfides (MTSs) as alternative PSs and study their high-energy transfer efficiency, rational designs, and potential applications in cancer-targeted PDT. Nanostructured MTSs are discussed in the context of their versatility to serve as phototherapy agents and superior properties, including their strong absorption in the NIR region, excellent photothermal conversion efficiency, controlled reactive oxygen species (ROS) production, versatile surface chemistry, high fluorescence, and structural and thermal stability. We discuss the latest advancements in correlating the self-aggregation of MTSs with their passive tumor cell targeting, highlighting their ability to efficiently produce ROSs, and mitigating their dark toxicity through polymeric functionalization. Treatment of deep-seated tumors by using these PSs upon preferential uptake by tumor tissues (due to the enhanced permeability and retention effect) is also reviewed. We finally summarize the main future perspectives of MTSs as next-generation PSs within the context of cancer theranostics.
Collapse
Affiliation(s)
- Daysi Diaz-Diestra
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00931 USA
- Present Address: NAMSA, 400 US Highway 169 S, Suite 500, Minneapolis, MN 55426 USA
| | | | - Marjan Bazian
- Department of Physics, Alzahra University, 19938 Tehran, Iran
| | - Bibek Thapa
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Juan Beltran-Huarac
- Department of Physics, Howell Science Complex, East Carolina University, Greenville, NC 27858 USA
| |
Collapse
|
36
|
Yu Q, Peng T, Zhang J, Liu X, Pan Y, Ge D, Zhao L, Rosei F, Zhang J. Cu 2-x S x Capped AuCu Nanostars for Efficient Plasmonic Photothermal Tumor Treatment in the Second Near-Infrared Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103174. [PMID: 34914183 DOI: 10.1002/smll.202103174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/19/2021] [Indexed: 05/05/2023]
Abstract
Plasmonic nanohybrids are promising photo energy conversion materials in photoelectronics and biomedicine, due to their unique surface plasmon resonance (SPR). Au and Cu2-x Sx nanostructures with strong SPR in the near-infrared (NIR) spectral region are classic plasmonic systems used to convert NIR photons into heat for photothermal therapy (PTT). The rational design of the Au/Cu2-x Sx nanohybrids is expected to induce better photothermal conversion; however, the construction of such hybrids via wet-chemistry methods with a well-controlled interfacial structure is still challenging. Here, the synthesis of an AuCu Star/Cu2-x Sx nanohybrid is reported, where the Cu2-x Sx components are selectively grown on the AuCu nanostar tips to form "caps". The spatial formation of the Cu2-x Sx caps on star tips is mainly governed by surfactant concentration, tip curvature, and experimental manipulation. The nanohybrids show low cytotoxicity and superior photothermal conversion efficiency, enabling robust PTT to kill cancer cells in the second NIR window. Numerical simulation reveals that the coupling of Cu2-x Sx on nanostar tips generates strong interfacial electric field, improving photothermal conversion. Moreover, the spatial separation structure favors the continuous flow of hot charge carriers to produce active radicals, further promoting the tumor treatment effect.
Collapse
Affiliation(s)
- Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Tingyu Peng
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jinfeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaoxuan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ye Pan
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, No. 31 Ji'nan Road, Dongying, Shandong, 257034, P. R. China
| | - Long Zhao
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
37
|
Jiang Y, Huo Z, Qi X, Zuo T, Wu Z. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes. Nanomedicine (Lond) 2022; 17:303-324. [PMID: 35060391 DOI: 10.2217/nnm-2021-0374] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies found that unbalanced copper homeostasis affect tumor growth, causing irreversible damage. Copper can induce multiple forms of cell death, including apoptosis and autophagy, through various mechanisms, including reactive oxygen species accumulation, proteasome inhibition, and antiangiogenesis. Hence, copper in vivo has attracted tremendous attention and is in the research spotlight in the field of tumor treatment. This review first highlights three typical forms of copper's antitumor mechanisms. Then, the development of diverse biomaterials and nanotechnology allowing copper to be fabricated into diverse structures to realize its theragnostic action is discussed. Novel copper complexes and their clinical applications are subsequently described.
Collapse
Affiliation(s)
- Yicheng Jiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyi Huo
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.,Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou, 310018, China
| | - Tongmei Zuo
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou, 310018, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
38
|
Yang C, Jiang W, Yu Y, Zhang H, Cai C, Shen Q. Anisotropic Plasmonic Pd-Tipped Au Nanorods for Near-Infrared Light-Activated Photoacoustic Imaging Guided Photothermal-Photodynamic Cancer Therapy. J Mater Chem B 2022; 10:2028-2037. [DOI: 10.1039/d2tb00002d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of photothermal therapy (PTT) and photodynamic therapy (PDT) has become a promising cancer treatment method. Herein, anisotropic metal hetero-nanostructure Pd-tipped Au nanorods (PTA NRs) were fabricated, which exhibit...
Collapse
|
39
|
Dong J, Ma K, Pei Y, Pei Z. Core–shell metal–organic frameworks with pH/GSH dual-responsiveness for combined chemo–chemodynamic therapy. Chem Commun (Camb) 2022; 58:12341-12344. [DOI: 10.1039/d2cc04218e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel core-shell metal-organic framework (MOFs), Cu-MOF@SMON/DOX-HA, was fabricated for chemo-chemodynamic combined therapy to achieve efficient drug targeting delivery and induce cells ferroptosis.
Collapse
Affiliation(s)
- Junliang Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Ke Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
40
|
Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X. Advances in FePt-involved nano-system design and application for bioeffect and biosafety. J Mater Chem B 2021; 10:339-357. [PMID: 34951441 DOI: 10.1039/d1tb02221k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. In this review, recent developments in the design, synthesis, biocompatibility evaluation and potential nanomedicine applications of FePt-involved nano-systems are summarized, especially for cancer theranostic and biological molecule detection. The in vivo multi-model imaging capability is discussed in detail, including magnetic resonance imaging and computed tomography. Furthermore, we highlight the significant achievements of various FePt-involved nanotherapeutics for cancer treatment, such as drug delivery, chemodynamic therapy, photodynamic therapy, radiotherapy and immunotherapy. In addition, a series of FePt-involved nanocomposites are also applied for biological molecule detection, such as H2O2, glucose and naked-eye detection of cancer cells. Ultimately, we also summarize the challenges and prospects of FePt-involved nano-systems in nanocatalytic medicine. This review is expected to give a general pattern for the development of FePt-involved nano-systems in the field of nanocatalytic medicine and analytical determination.
Collapse
Affiliation(s)
- Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China. .,School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Qiulian Wei
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China. .,School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China
| | - Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Yunkai Kou
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| |
Collapse
|
41
|
Xu Z, Deng B, Wang X, Yu J, Xu Z, Liu P, Liu C, Cai Y, Wang F, Zong R, Chen Z, Xing H, Chen G. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J Nanobiotechnology 2021; 19:404. [PMID: 34865643 PMCID: PMC8647563 DOI: 10.1186/s12951-021-01152-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic wound healing remains a challenge because of its susceptibility to drug-resistant bacterial infection and its persistent proinflammatory state. Switching from proinflammatory M1 macrophages (Mφs) to proregenerative M2 dominant Mφs in a timely manner accelerates wound healing by coordinating inflammatory, proliferative, and angiogenic processes. METHODS We propose a sequential photothermal antibacterial and subsequent M2 Mφ polarization strategy based on nanofibers (NFs) consisting of polydopamine (PDA) coating on curcumin (Cur) nanocrystals to treat Methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds. RESULTS The PDA/Cur NFs showed excellent photothermal conversion and antibacterial effects due to the PDA shell under laser irradiation, consequently resulting in the release of the inner Cur with the ability to promote cell proliferation and reinforce the M2 Mφ phenotype in vitro. In vivo studies on MRSA-infected diabetic wounds showed that PDA/Cur NFs not only inhibited MRSA infection but also accelerated the wound regeneration process. Furthermore, the NFs displayed the ability to promote the M2 Mφ phenotype with enhanced collagen deposition, angiogenesis, and cell proliferation. CONCLUSION Overall, the NFs displayed great potential as promising therapeutics for healing infected diabetic wounds through a sequential photothermal antibacterial and M2 Mφ polarization strategy.
Collapse
Affiliation(s)
- Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, China
| | - Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jie Yu
- Department of Traditional Chinese Medicine, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Penggang Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Caihong Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Cai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Fei Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hua Xing
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
42
|
Yu S, Jang D, Maji SK, Chung K, Lee JS, Marques Mota F, Wang J, Kim S, Kim DH. Sophisticated plasmon-enhanced photo-nanozyme for anti-angiogenic and tumor-microenvironment-responsive combinatorial photodynamic and photothermal cancer therapy. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
44
|
In situ immobilization of silver nanocrystals in carbon nanoparticles for intracellular fluorescence imaging and hydroxyl radicals detection. J Colloid Interface Sci 2021; 608:2672-2680. [PMID: 34785054 DOI: 10.1016/j.jcis.2021.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/02/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022]
Abstract
Silver nanoparticles (Ag NPs) have attracted extensive research interest in bioimaging and biosensing due to their unique surface plasmon resonance. However, the potential aggregation and security anxiety of Ag NPs hinder their further application in biomedical field due to their high surface energy and the possible ionization. Here, binary heterogeneous nanocomplexes constructed from silver nanoparticles and carbon nanomaterials (termed as C-Ag NPs) were reported. The C-Ag NPs with multiple yolk structure were synthesized via a one-step solvothermal route using toluene as carbon precursor and dispersant. The hydrophilic functional groups on the carbon layer endowed the C-Ag NPs excellent chemical stability and water-dispersity. Results showed that C-Ag NPs demonstrated excellent safety profile and excellent biocompatibility, which could be used as an intracellular imaging agent. Moreover, the C-Ag NPs responded specifically to hydroxyl radicals and were expected to serve as a flexible sensor to efficiently detect diseases related to the expression of hydroxyl radicals in the future.
Collapse
|
45
|
Laser-triggered combination therapy by iron sulfide-doxorubicin@functionalized nanozymes for breast cancer therapy. J Nanobiotechnology 2021; 19:344. [PMID: 34706736 PMCID: PMC8554880 DOI: 10.1186/s12951-021-01023-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background The use of magnetic nanozymes (NZs) with the ability to synchronize gas therapy through photodynamic and chemotherapy in the treatment of breast cancer has received much attention. Results Hence, in this study, we designed a bovine lactoferrin-coated iron sulfide NZs containing doxorubicin (abbreviated as: FeS-Dox@bLf NZs) by wet-chemical synthesis method. Then, the physicochemical characteristics of synthesized NZs were explored by several methods. Also, the level of Fe2+, H2S and Dox releases from FeS-Dox@Lf NZs. Also, the cytotoxic effects of FeS-Dox@Lf NZs were investigated by cellular assays. After intravenous injections of NZs and laser irradiation, significant effects of FeS-Dox@Lf NZs on mice weight and tumor status were observed. Afterwards, not only the distribution of Dox in the body was examined by fluorescent, but also the time of Fe clearance and the amount of Dox and Fe retention in vital tissues were determined. The findings confirm that FeS-Dox@Lf NZs, in addition to targeted drug distribution in tumor tissue, resulted in superior therapeutic performance compared to free Dox due to reduced Dox side effects in vital tissues, and increased level of free radicals in 4T1 cells. Conclusion Overall, FeS-Dox@Lf NZs with the ability to synchronize chemotherapy and gas therapy raised hopes for more effective treatment of breast cancer. Graphic abstract ![]()
Collapse
|
46
|
Liu B, Pan X, Zhang D, Wang R, Chen J, Fang H, Liu T. Construction of Function‐Oriented Core–Shell Nanostructures in Hydrogen‐Bonded Organic Frameworks for Near‐Infrared‐Responsive Bacterial Inhibition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bai‐Tong Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Hong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and (Taiwan) Crops & Key Laboratory of Biopesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fujian Fuzhou 350002 China
| | - Ding‐Yang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and (Taiwan) Crops & Key Laboratory of Biopesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fujian Fuzhou 350002 China
| | - Rui Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 China
| | - Jun‐Yu Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 China
| | - Han‐Ru Fang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tian‐Fu Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
47
|
Gao X, Wei M, Ma D, Yang X, Zhang Y, Zhou X, Li L, Deng Y, Yang W. Engineering of a Hollow‐Structured Cu
2−
X
S Nano‐Homojunction Platform for Near Infrared‐Triggered Infected Wound Healing and Cancer Therapy. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202106700] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiangyu Gao
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Daichuan Ma
- Analytical & Testing Center Sichuan University Chengdu 610065 China
| | - Xuyang Yang
- Department of Gastrointestinal Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Yang Zhang
- Department of Gastrointestinal Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Xiong Zhou
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Limei Li
- Science and Technology Achievement Incubation Center Kunming Medical University Kunming 650500 China
| | - Yi Deng
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Mechanical Engineering The University of Hong Kong Hong Kong SAR 999077 China
| | - Weizhong Yang
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
48
|
Liu BT, Pan XH, Zhang DY, Wang R, Chen JY, Fang HR, Liu TF. Construction of Function-Oriented Core-Shell Nanostructures in Hydrogen-Bonded Organic Frameworks for Near-Infrared-Responsive Bacterial Inhibition. Angew Chem Int Ed Engl 2021; 60:25701-25707. [PMID: 34477299 DOI: 10.1002/anie.202110028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the "bottle-around-ship" strategy, core-shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand-grafting stepwise method. The UCNPs "core" can effectively upconvert near-infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide-based HOF "shell" through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR-responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF-based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.
Collapse
Affiliation(s)
- Bai-Tong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and (Taiwan) Crops & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Ding-Yang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and (Taiwan) Crops & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Rui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, China
| | - Jun-Yu Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, China
| | - Han-Ru Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Tee SY, Ye E, Teng CP, Tanaka Y, Tang KY, Win KY, Han MY. Advances in photothermal nanomaterials for biomedical, environmental and energy applications. NANOSCALE 2021; 13:14268-14286. [PMID: 34473186 DOI: 10.1039/d1nr04197e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials that exhibit photothermal effect have attracted enormous research interests due to their ability to strongly absorb light and effectively transform it into heat for a wide range of applications in biomedical, environmental and energy related fields. The past decade has witnessed significant advances in the preparation of a variety of photothermal materials, mainly due to the emergence of many nano-enabled new materials, such as plasmonic metals, stoichiometric/non-stoichiometric semiconductors, and the newly emerging MXenes. These photothermal nanomaterials can be hybridized with other constituents to form functional hybrids or composites for achieving enhanced photothermal performance. In this review, we present the fundamental insight of inorganic photothermal materials, including their photothermal conversion mechanisms/properties as well as their potential applications in various fields. Emphasis is placed on strategic approaches for improving their light harvesting and photothermal conversion capabilities through engineering their nanostructured size, shape, composition, bandgap and so on. Lastly, the underlying challenges and perspectives for future development of photothermal nanomaterials are proposed.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Yuki Tanaka
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | | | - Khin Yin Win
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Ming-Yong Han
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
50
|
Lin H, Shi S, Lan X, Quan X, Xu Q, Yao G, Liu J, Shuai X, Wang C, Li X, Yu M. Scaffold 3D-Printed from Metallic Nanoparticles-Containing Ink Simultaneously Eradicates Tumor and Repairs Tumor-Associated Bone Defects. SMALL METHODS 2021; 5:e2100536. [PMID: 34928065 DOI: 10.1002/smtd.202100536] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Indexed: 06/14/2023]
Abstract
Bone metastasis occurs in about 70% of breast cancer patients. The surgical resection of metastatic tumors often leads to bone erosion and destruction, which greatly hinders the treatment and prognosis of breast cancer patients with bone metastasis. Herein, a bifunctional scaffold 3D-printed from nanoink is fabricated to simultaneously eliminate the tumor cells and repair the tumor-associated bone defects. The metallic polydopamine (PDA) nanoparticles (FeMg-NPs) may effectively load and sustainably release the metal ions Fe3+ and Mg2+ in situ. Fe3+ exerts a chemodynamic therapy to synergize with the photothermal therapy induced by PDA with effective photothermal conversion under NIR laser, which efficiently eliminates the bone-metastatic tumor. Meanwhile, the sustained release of osteoinductive Mg2+ from the bony porous 3D scaffold enhances the new bone formation in the bone defects. Taken together, the implantation of scaffold (FeMg-SC) 3D-printed from the FeMg-NPs-containing nanoink provides a novel strategy to simultaneously eradicate bone-metastatic tumor and repair the tumor-associated bone defects.
Collapse
Affiliation(s)
- Huimin Lin
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Shanwei Shi
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xinyue Lan
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaolong Quan
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qinqin Xu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, 523808, China
| | - Xiang Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Meng Yu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|