1
|
Cheng R, Wang Q, Wang Z, Jing L, Garcia-Caraveo AV, Li Z, Zhong Y, Liu X, Luo X, Huang T, Yun HS, Salihoglu H, Russell L, Kazem N, Chen T, Shen S. Liquid-infused nanostructured composite as a high-performance thermal interface material for effective cooling. Nat Commun 2025; 16:794. [PMID: 39824798 PMCID: PMC11742011 DOI: 10.1038/s41467-025-56163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability. We report a strategy to create printable, high-performance liquid-infused nanostructured composites, comprising a mechanically soft and thermally conductive double-sided Cu nanowire array scaffold infused with a customized thermal-bridge liquid that suppresses contact thermal resistance. The liquid infusion concept is versatile for a broad range of thermal interface applications. Remarkably, the liquid metal infused nanostructured composite exhibits an ultra-low thermal resistance <1 mm² K W-1 at interface, outperforming state-of-the-art thermal interface materials on chip-cooling. The high reliability of the nanostructured composites enables undegraded performance through extreme temperature cycling. We envision liquid-infused nanostructured composites as a universal thermal interface solution for cooling applications in data centers, GPU/CPU systems, solid-state lasers, and LEDs.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Qixian Wang
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Zexiao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Lin Jing
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Ana V Garcia-Caraveo
- College of Engineering, Oregon State University, 1791 SW Campus Way, Corvallis, OR, USA
| | - Zhuo Li
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Yibai Zhong
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Xiu Liu
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Xiao Luo
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Tianyi Huang
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Hyeong Seok Yun
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Hakan Salihoglu
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Loren Russell
- Arieca, Inc., 201 N Braddock Ave STE 334, Pittsburgh, PA, USA
| | - Navid Kazem
- Arieca, Inc., 201 N Braddock Ave STE 334, Pittsburgh, PA, USA
| | - Tianyi Chen
- College of Engineering, Oregon State University, 1791 SW Campus Way, Corvallis, OR, USA
| | - Sheng Shen
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Jing L, Cheng R, Tasoglu M, Wang Z, Wang Q, Zhai H, Shen S, Cohen-Karni T, Garg R, Lee I. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207015. [PMID: 36642828 DOI: 10.1002/smll.202207015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Thermal interfaces are vital for effective thermal management in modern electronics, especially in the emerging fields of flexible electronics and soft robotics that impose requirements for interface materials to be soft and flexible in addition to having high thermal performance. Here, a novel sandwich-structured thermal interface material (TIM) is developed that simultaneously possesses record-low thermal resistance and high flexibility. Frequency-domain thermoreflectance (FDTR) is employed to investigate the overall thermal performance of the sandwich structure. As the core of this sandwich, a vertically aligned copper nanowire (CuNW) array preserves its high intrinsic thermal conductivity, which is further enhanced by 60% via a thick 3D graphene (3DG) coating. The thin copper layers on the top and bottom play the critical roles in protecting the nanowires during device assembly. Through the bottom-up fabrication process, excellent contacts between the graphene-coated CuNWs and the top/bottom layer are realized, leading to minimal interfacial resistance. In total, the thermal resistance of the sandwich is determined as low as ~0.23 mm2 K W-1 . This work investigates a new generation of flexible thermal interface materials with an ultralow thermal resistance, which therefore renders the great promise for advanced thermal management in a wide variety of electronics.
Collapse
Affiliation(s)
- Lin Jing
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rui Cheng
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Muzaffer Tasoglu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Zexiao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Qixian Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Hannah Zhai
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Sheng Shen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Raghav Garg
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Inkyu Lee
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Jing L, Cheng R, Garg R, Gong W, Lee I, Schmit A, Cohen-Karni T, Zhang X, Shen S. 3D Graphene-Nanowire "Sandwich" Thermal Interface with Ultralow Resistance and Stiffness. ACS NANO 2023; 17:2602-2610. [PMID: 36649646 PMCID: PMC10041630 DOI: 10.1021/acsnano.2c10525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Despite the recent advancements of passive and active cooling solutions for electronics, interfaces between materials have generally become crucial barriers for thermal transport because of intrinsic material dissimilarity and surface roughness at interfaces. We demonstrate a 3D graphene-nanowire "sandwich" thermal interface that enables an ultralow thermal resistance of ∼0.24 mm2·K/W that is about 1 order of magnitude smaller than those of solders and several orders of magnitude lower than those of thermal greases, gels, and epoxies, as well as a low elastic and shear moduli of ∼1 MPa like polymers and foams. The flexible 3D "sandwich" exhibits excellent long-term reliability with >1000 cycles over a broad temperature range from -55 °C to 125 °C. This nanostructured thermal interface material can greatly benefit a variety of electronic systems and devices by allowing them to operate at lower temperatures or at the same temperature but with higher performance and higher power density.
Collapse
Affiliation(s)
- Lin Jing
- Department
of Mechanical Engineering, Carnegie Mellon
University; Pittsburgh, Pennsylvania 15213, United States
| | - Rui Cheng
- Department
of Mechanical Engineering, Carnegie Mellon
University; Pittsburgh, Pennsylvania 15213, United States
| | - Raghav Garg
- Department
of Materials Science and Engineering, Carnegie
Mellon University; Pittsburgh, Pennsylvania 15213, United States
| | - Wei Gong
- Department
of Mechanical Engineering, Carnegie Mellon
University; Pittsburgh, Pennsylvania 15213, United States
| | - Inkyu Lee
- Department
of Materials Science and Engineering, Carnegie
Mellon University; Pittsburgh, Pennsylvania 15213, United States
| | - Aaron Schmit
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology; Cambridge, Massachusetts 02139, United States
| | - Tzahi Cohen-Karni
- Department
of Materials Science and Engineering, Carnegie
Mellon University; Pittsburgh, Pennsylvania 15213, United States
| | - Xu Zhang
- Department
of Electrical and Computer Engineering, Carnegie Mellon University; Pittsburgh, Pennsylvania 15213, United States
| | - Sheng Shen
- Department
of Mechanical Engineering, Carnegie Mellon
University; Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Hao X, Wan S, Zhao Z, Zhu L, Peng D, Yue M, Kuang J, Cao W, Liu G, Wang Q. Enhanced Thermal Conductivity of Epoxy Composites by Introducing 1D AlN Whiskers and Constructing Directionally Aligned 3D AlN Filler Skeletons. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2124-2133. [PMID: 36576869 DOI: 10.1021/acsami.2c18356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have attracted increasing attention. For regular ceramic particles as fillers, it is necessary to achieve the highest filling fraction to obtain high thermal conductivity, yet leading to higher production cost and reduced mechanical properties. In this paper, AlN whiskers with a high aspect ratio were successfully prepared using a modified direct nitriding method, which was further paired with AlN particles as fillers to prepare the AlN/epoxy composites. It is indicated that AlN whiskers could form bridging links between AlN particles, which favored the establishment of thermal pathways inside the polymer matrix. On this basis, we constructed the 3D AlN skeletons as a thermal conductivity pathway by the freeze-casting method, which could further enhance the thermal conductivity of the composites. The synergistic enhancement effect of 1D AlN whiskers and directional filler skeletons on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the experimental results showed that the addition of one-dimensional fillers could also effectively improve the thermal stability and mechanical properties of the composites, which was beneficial for preparing high-performance TIMs.
Collapse
Affiliation(s)
- Xu Hao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Shiqin Wan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Zheng Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Lifeng Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Dongyao Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Ming Yue
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Jianlei Kuang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Guanghua Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
5
|
Lv J, Thangavel G, Lee PS. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. NANOSCALE 2023; 15:434-449. [PMID: 36515001 DOI: 10.1039/d2nr04464a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent decades have witnessed the booming development of stretchable electronics based on nano/micro composite inks. Printing is a scalable, low-cost, and high-efficiency fabrication tool to realize stretchable electronics through additive processes. However, compared with conventional flexible electronics, stretchable electronics need to experience more severe mechanical deformation which may cause destructive damage. Most of the reported works in this field mainly focus on how to achieve a high stretchability of nano/micro composite conductors or single working modules/devices, with limited attention given to the reliability for practical applications. In this minireview, we summarized the failure modes when printing stretchable electronics using nano/micro composite ink, including dysfunction of the stretchable interconnects, the stress-concentrated rigid-soft interfaces for hybrid electronics, the vulnerable vias upon stretching, thermal accumulation, and environmental instability of stretchable materials. Strategies for tackling these challenges to realize reliable performances are proposed and discussed. Our review provides an overview on the importance of reliable, printable, and stretchable electronics, which are the key enablers in propelling stretchable electronics from fancy demos to practical applications.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
6
|
Dai W, Ren XJ, Yan Q, Wang S, Yang M, Lv L, Ying J, Chen L, Tao P, Sun L, Xue C, Yu J, Song C, Nishimura K, Jiang N, Lin CT. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. NANO-MICRO LETTERS 2022; 15:9. [PMID: 36484932 PMCID: PMC9733747 DOI: 10.1007/s40820-022-00979-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Developing advanced thermal interface materials (TIMs) to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices. Based on the ultra-high basal-plane thermal conductivity, graphene is an ideal candidate for preparing high-performance TIMs, preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM. However, the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory. In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved, another critical factor is the limited actual contact area leading to relatively high contact thermal resistance (20-30 K mm2 W-1) of the "solid-solid" mating interface formed by the vertical graphene and the rough chip/heat sink. To solve this common problem faced by vertically aligned graphene, in this work, we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces. Based on rational graphene orientation regulation in the middle tier, the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m-1 K-1. Additionally, we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a "liquid-solid" mating interface, significantly increasing the effective heat transfer area and giving a low contact thermal conductivity of 4-6 K mm2 W-1 under packaging conditions. This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
Collapse
Affiliation(s)
- Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xing-Jie Ren
- Institute of Advanced Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qingwei Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Shengding Wang
- Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Mingyang Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Le Lv
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junfeng Ying
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lu Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peidi Tao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Liwen Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chen Xue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chengyi Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, People's Republic of China
| | - Kazuhito Nishimura
- Advanced Nano-Processing Engineering Lab, Mechanical Systems Engineering, Kogakuin University, Tokyo, 192-0015, Japan
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
7
|
Cui Y, Qin Z, Wu H, Li M, Hu Y. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat Commun 2021; 12:1284. [PMID: 33627644 PMCID: PMC7904764 DOI: 10.1038/s41467-021-21531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/26/2021] [Indexed: 01/19/2023] Open
Abstract
Thermal management is the most critical technology challenge for modern electronics. Recent key materials innovation focuses on developing advanced thermal interface of electronic packaging for achieving efficient heat dissipation. Here, for the first time we report a record-high performance thermal interface beyond the current state of the art, based on self-assembled manufacturing of cubic boron arsenide (s-BAs). The s-BAs exhibits highly desirable characteristics of high thermal conductivity up to 21 W/m·K and excellent elastic compliance similar to that of soft biological tissues down to 100 kPa through the rational design of BAs microcrystals in polymer composite. In addition, the s-BAs demonstrates high flexibility and preserves the high conductivity over at least 500 bending cycles, opening up new application opportunities for flexible thermal cooling. Moreover, we demonstrated device integration with power LEDs and measured a superior cooling performance of s-BAs beyond the current state of the art, by up to 45 °C reduction in the hot spot temperature. Together, this study demonstrates scalable manufacturing of a new generation of energy-efficient and flexible thermal interface that holds great promise for advanced thermal management of future integrated circuits and emerging applications such as wearable electronics and soft robotics. Well-developed prototype interface materials for electronics thermal management are limited to a low thermal conductivity or high elastic modulus. Here, the authors report flexible thermal interfaces through self-assembled manufacturing of polymetric composites based on the high thermal conductivity of cubic boron arsenide.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Zihao Qin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Huan Wu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Man Li
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Hasan J, Xu Y, Yarlagadda T, Schuetz M, Spann K, Yarlagadda PK. Antiviral and Antibacterial Nanostructured Surfaces with Excellent Mechanical Properties for Hospital Applications. ACS Biomater Sci Eng 2020; 6:3608-3618. [PMID: 33463169 DOI: 10.1021/acsbiomaterials.0c00348] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the rise of bacterial and viral infections including the recent outbreak of coronavirus, the requirement for novel antimicrobial strategies is also rising with urgency. To solve this problem, we have used a wet etching technique to fabricate 23 nm wide nanostructures randomly aligned as ridges on aluminum (Al) 6063 alloy surfaces. The surfaces were etched for 0.5, 1, and 3 h. The surfaces were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle goniometry, nanoindentation and atomic force microscopy. Strains of the Gram negative bacteria Pseudomonas aeruginosa and the Gram positive bacteria Staphylococcus aureus were used to evaluate the bacterial attachment behavior. For the first time, common respiratory viruses, respiratory syncytial virus (RSV) and rhinovirus (RV), were investigated for antiviral activity on nanostructured surfaces. It was found that the etched Al surfaces were hydrophilic and the nanoscale roughness enhanced with the etching time with Rrms ranging from 69.9 to 995 nm. Both bacterial cells of P. aeruginosa and S. aureus were physically deformed and were nonviable upon attachment after 3 h on the etched Al 6063 surface. This nanoscale surface topography inactivated 92 and 87% of the attached P. aeruginosa and S. aureus cells, respectively. The recovery of infectious RSV was also reduced significantly within 2 h of exposure to the nanostructured surfaces compared to the smooth Al control surfaces. There was a 3-4 log10 reduction in the viability counts of rhinovirus after 24 h on the nanostructured surfaces. The nanostructured surfaces exhibited excellent durability as the surfaces sustained 1000 cycles of 2000 μN load without any damage. This is the first report that has shown the combined antibacterial and antiviral property of the nanostructured surface with excellent nanomechanical properties that could be potentially significant for use in hospital environments to stop the spread of infections arising from physical surfaces.
Collapse
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yanan Xu
- Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Tejasri Yarlagadda
- Institute of Health Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Michael Schuetz
- Institute of Health Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.,Jamieson Trauma Institute, Metro North Hospital and Health Service, Herston, Queensland 4029, Australia
| | - Kirsten Spann
- Institute of Health Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Prasad Kdv Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
9
|
Yuan H, Wang Y, Li T, Wang Y, Ma P, Zhang H, Yang W, Chen M, Dong W. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. NANOSCALE 2019; 11:11360-11368. [PMID: 31166353 DOI: 10.1039/c9nr02491c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, the conventional polymer-based thermally conductive composites with randomly distributed filler particles usually yield an undesired value because of the lack of efficient heat transfer pathways. Therefore, constructing a three-dimensional interconnected filler structure is greatly desirable for realizing high thermal conductivity enhancement in composites. Herein, graphene oxide (GO) was used as a thermally conductive filler due to its excellent thermal conductivity and coated with polydopamine (PDA) to enhance its electric insulation performance. A unique "particle-constructing" method was adopted for fabricating highly ordered three-dimensional GO-based polymer composites, throughout which the GO-PDA formed an intact, uniform and well-defined network structure. The composite, even with a very low GO-PDA loading of 0.96 vol%, exhibited both high in-plane (4.13 W m-1 K-1) and through-plane (4.56 W m-1 K-1) thermal conductivities and also presented excellent electrically insulating properties (>1014Ω cm). These composites have promising applications in heat dissipation of next-generation portable and collapsible electronic devices.
Collapse
Affiliation(s)
- Hao Yuan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yijie Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Weijun Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|