1
|
Han S, Yoo W, Carton O, Joo J, Kwon EJ. PEGylated Multimeric RNA Nanoparticles for siRNA Delivery in Traumatic Brain Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405806. [PMID: 39498752 PMCID: PMC11899522 DOI: 10.1002/smll.202405806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Traumatic brain injury (TBI) impacts millions of people globally, however currently there are no approved therapeutics that address long-term brain health. In order to create a technology that is relevant for siRNA delivery in TBI after systemic administration, sub-100 nm nanoparticles with rolling circle transcription (RCT) are synthesized and isolated in order improve payload delivery into the injured brain. Unlike conventional RCT-based RNA particles, in this method, sub-100 nm RNA nanoparticles (RNPs) are isolated. To enhance RNP pharmacokinetics, RNPs are synthesized with modified bases in order to graft polyethylene glycol (PEG) to the RNPs. PEGylated RNPs (PEG-RNPs) do not significantly impact their knockdown activity in vitro and lead to longer blood half-life after systemic administration and greater accumulation into the injured brain in a mouse model of TBI. In order to demonstrate RNA interference (RNAi) activity of RNPs, knockdown of the inflammatory cytokine TNF-α in injured brain tissue after systemic administration of RNPs in a mouse model of TBI is demonstrated. In summary, small sub-100 nm multimeric RNA nanoparticles are synthesized and isolated that can be modified using accessible chemistry in order to create a technology suitable for systemic RNAi therapy for TBI.
Collapse
Affiliation(s)
- Sangwoo Han
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Woojung Yoo
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Olivia Carton
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Jinmyoung Joo
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Graduate School of Health Science and TechnologyUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Center for Genomic IntegrityInstitute for Basic ScienceUlsan44919Republic of Korea
- Materials Research Science and Engineering CenterUniversity of California San DiegoLa JollaCA92093USA
| | - Ester J. Kwon
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Materials Research Science and Engineering CenterUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| |
Collapse
|
2
|
Mata-Ventosa A, Vila-Planas A, Solsona-Pujol A, Dueña JDL, Torrents M, Izquierdo-García E, Pastor-Anglada M, Pérez-Torras S, Terrazas M. RNase H-sensitive multifunctional ASO-based constructs as promising tools for the treatment of multifactorial complex pathologies. Bioorg Chem 2024; 150:107595. [PMID: 38968904 DOI: 10.1016/j.bioorg.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Combined therapies play a key role in the fight against complex pathologies, such as cancer and related drug-resistance issues. This is particularly relevant in targeted therapies where inhibition of the drug target can be overcome by cross-activating complementary pathways. Unfortunately, the drug combinations approved to date -mostly based on small molecules- face several problems such as toxicity effects, which limit their clinical use. To address these issues, we have designed a new class of RNase H-sensitive construct (3ASO) that can be disassembled intracellularly upon cell entry, leading to the simultaneous release of three different therapeutic oligonucleotides (ONs), tackling each of them the mRNA of a different protein. Here, we used Escherichia coli RNase H1 as a model to study an unprecedented mode of recognition and cleavage, that is mainly dictated by the topology of our RNA·DNA-based hybrid construct. As a model system for our technology we have created 3ASO constructs designed to specifically inhibit the expression of HER2, Akt and Hsp27 in HER2+ breast cancer cells. These trifunctional ON tools displayed very low toxicity and good levels of antiproliferative activity in HER2+ breast cancer cells. The present study will be of great potential in the fight against complex pathologies involving multiple mRNA targets, as the proposed cleavable designs will allow the efficient single-dose administration of different ON drugs simultaneously.
Collapse
Affiliation(s)
- Aida Mata-Ventosa
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Ariadna Vila-Planas
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Aina Solsona-Pujol
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; BioFrontiers Institute, University of Colorado, Boulder, CO, United States; Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | - Jordi de la Dueña
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Maria Torrents
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Eduardo Izquierdo-García
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain.
| | - Montserrat Terrazas
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
3
|
Wu F, Yan L, Zhao X, Lv C, Jin W. Development of an RNA Nanostructure for Effective Botrytis cinerea Control through Spray-Induced Gene Silencing without an Extra Nanocarrier. J Fungi (Basel) 2024; 10:483. [PMID: 39057368 PMCID: PMC11277573 DOI: 10.3390/jof10070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Spray-induced gene silencing represents an eco-friendly approach for crop protection through the use of double-stranded RNA (dsRNA) to activate the RNA interference (RNAi) pathway, thereby silencing crucial genes in pathogens. The major challenges associated with dsRNA are its limited stability and poor cellular uptake, necessitating repeated applications for effective crop protection. In this study, RNA nanoparticles (NPs) were proposed as effectors in plants and pathogens by inducing the RNAi pathway and silencing gene expression. RNA structural motifs, such as hairpin-loop, kissing-loop, and tetra-U motifs, were used to link multiple siRNAs into a long, single-stranded RNA (lssRNA). The lssRNA, synthesized in Escherichia coli, self-assembled into stable RNA nanostructures via local base pairing. Comparative analyses between dsRNA and RNA NPs revealed that the latter displayed superior efficacy in inhibiting spore germination and mycelial growth of Botrytis cinerea. Moreover, RNA NPs had a more robust protective effect on plants against B. cinerea than did dsRNA. In addition, RNA squares are processed into expected siRNA in plants, thereby inhibiting the expression of the target gene. These findings suggest the potential of RNA NPs for use in plant disease control by providing a more efficient and specific alternative to dsRNA without requiring nanocarriers.
Collapse
Affiliation(s)
- Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (F.W.); (L.Y.); (X.Z.); (C.L.)
| | - Ling Yan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (F.W.); (L.Y.); (X.Z.); (C.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312366, China
| | - Xiayang Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (F.W.); (L.Y.); (X.Z.); (C.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312366, China
| | - Chongrun Lv
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (F.W.); (L.Y.); (X.Z.); (C.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312366, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (F.W.); (L.Y.); (X.Z.); (C.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312366, China
| |
Collapse
|
4
|
Zhao X, Liu Z, Liu Y, Lu M, Xu J, Wu F, Jin W. Development and application of an RNA nanostructure to induce transient RNAi in difficult transgenic plants. Biotechnol J 2024; 19:e2400024. [PMID: 38797726 DOI: 10.1002/biot.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The development of RNA interference (RNAi) is crucial for studying plant gene function. Its use, is limited to a few plants with well-established transgenic techniques. Spray-induced gene silencing (SIGS) introduces exogenous double-stranded RNA (dsRNA) into plants by spraying, injection, or irrigation, triggering the RNAi pathway to instantly silence target genes. As is a transient RNAi technology that does not rely on transgenic methods, SIGS has significant potential for studying gene function in plants lacking advanced transgenic technology. In this study, to enhance their stability and delivery efficiency, siRNAs were used as structural motifs to construct RNA nanoparticles (NPs) of four shapes: triangle, square, pentagon, and hexagon. These NPs, when synthesized by Escherichia coli, showed that triangular and square shapes accumulated more efficiently than pentagon and hexagon shapes. Bioassays revealed that RNA squares had the highest RNAi efficiency, followed by RNA triangles, with GFP-dsRNA showing the lowest efficiency at 4 and 7 days post-spray. We further explored the use of RNA squares in inducing transient RNAi in plants that are difficult to transform genetically. The results indicated that Panax notoginseng-derived MYB2 (PnMYB2) and Camellia oleifera-derived GUT (CoGUT) were significantly suppressed in P. notoginseng and C. oleifera, respectively, following the application of PnMYB2- and CoGUT-specific RNA squares. These findings suggest that RNA squares are highly effective in SIGS and can be utilized for gene function research in plants.
Collapse
Affiliation(s)
- Xiayang Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhekai Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Mingdong Lu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Jinfeng Xu
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| |
Collapse
|
5
|
Chen H, Gu Z, Yang L, Liu F, An R, Ge Y, Liang X. Direct dsRNA preparation by promoter-free RCT and RNase H cleavage using one circular dsDNA template with a mismatched bubble. RNA (NEW YORK, N.Y.) 2023; 29:1691-1702. [PMID: 37536954 PMCID: PMC10578470 DOI: 10.1261/rna.079670.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Zhenzhu Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Feng Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| |
Collapse
|
6
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Li C, Wang Y, Li PF, Fu Q. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater 2023; 160:1-13. [PMID: 36764595 DOI: 10.1016/j.actbio.2023.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Nucleic acid nanomaterials with good biocompatibility, biodegradability, and programmability have important applications in biomedical field. Nucleic acid nanomaterials are usually combined with some inorganic nanomaterials to improve their biological stability. However, undefined toxic side effects of composite nanocarriers hamper their application in vivo. As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. RCA products with different functional parts can be customized by changing the sequence of the circular template, thereby generating complex multifunctional DNA nanostructures, such as DNA nanowire, nanoflower, origami, nanotube, nanoribbon, etc. More importantly, RCA products as nonnicked building blocks can enhance the biostability of DNA nanostructures, especially in vivo. These RCA products-based nucleic acid nanostructures can be used as scaffolds or nanocarriers to interact or load with metal nanoparticles, proteins, lipids, cationic polymers, therapeutic nucleic acids or drugs, etc. This paper reviews the assembly strategies of RCA based DNA nanostructures with different shape and their applications in biosensing, bioimaging and biomedicine. Finally, the development prospects of the nucleic acid nanomaterials in clinical diagnosis and treatment of diseases are described. STATEMENT OF SIGNIFICANCE: As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. This paper reviews the construction of various shapes of pure nucleic acid nanomaterials based on RCA products and their applications in biosensing, bioimaging and biomedicine. This will promote the development of biocompatible DNA nanovehicles and their further application in living systems, including bioimaging, molecular detection, disease diagnosis and drug delivery, finally producing a significant impact in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
8
|
Zhu L, Luo J, Ren K. Nucleic acid-based artificial nanocarriers for gene therapy. J Mater Chem B 2023; 11:261-279. [PMID: 36524395 DOI: 10.1039/d2tb01179d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid nanotechnology is a powerful tool in the fields of biosensing and nanomedicine owing to their high editability and easy synthesis and modification. Artificial nucleic acid nanostructures have become an emerging research hotspot as gene carriers with low cytotoxicity and immunogenicity for therapeutic approaches. In this review, recent progress in the design and functional mechanisms of nucleic acid-based artificial nano-vectors especially for exogenous siRNA and antisense oligonucleotide delivery is summarized. Different types of DNA nanocarriers, including DNA junctions, tetrahedrons, origami, hydrogels and scaffolds, are introduced. The enhanced targeting strategies to improve the delivery efficacy are demonstrated. Furthermore, RNA based gene nanocarrier systems by self-assembly of short strands, rolling circle transcription, chemical crosslinking and using RNA motifs and DNA-RNA hybrids are demonstrated. Finally, the outlook and potential challenges are highlighted. The nucleic acid-based artificial nanocarriers offer a promising and precise tool for gene delivery and therapy.
Collapse
Affiliation(s)
- Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
9
|
Yang F, Li S, Yuan R, Xiang Y. A bivalent aptamer and terminus-free siRNA junction nanostructure for targeted gene silencing in cancer cells. J Mater Chem B 2022; 10:8315-8321. [PMID: 36165395 DOI: 10.1039/d2tb01414a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small interfering RNA (siRNA) has increasingly evolved as a potent therapeutic solution for several pathological conditions including cancers via post-transcriptional oncogene suppression in cellular pathways. And, the key for siRNA-based therapy highly relies on the successful siRNAs delivery into the target cells, which is significantly challenged by their instability, poor cellular uptake and targeting capability. To overcome these issues, herein, a new type of RNA nanostructure, the bivalent aptamer and terminus-free siRNA junction, is synthesized and employed for effective gene silencing in cancer cells. Such a siRNA junction can be readily prepared by the self-assembly of three RNA sequences and subsequent ligation of the nicks. The as-synthesized siRNA junction shows highly improved enzymatic stability and targeting capability and can be efficiently delivered into the target cells to induce cell apoptosis. With these integrated advantages, the siRNA junction can therefore offer new potentials for the design of different siRNA therapeutics for various diseases.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
10
|
Kim H, Jang B, Lee D, Kwon SC, Lee H. Artificial primary-miRNAs as a platform for simultaneous delivery of siRNA and antisense oligonucleotide for multimodal gene regulation. J Control Release 2022; 349:983-991. [PMID: 35931211 DOI: 10.1016/j.jconrel.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Self-assembled nucleic acid nanostructures have been widely explored for gene therapy applications due to their unique advantages. Their roles are not limited to offer intracellular delivery platforms but additionally provide a biological function to induce targeted gene regulation. Here, we report a self-assembled artificial primary-miRNA (pri-miRNA) for achieving simultaneous multimodal gene regulation. Artificial pri-miRNAs are designed to play a role as substrate RNAs to recruit and interact with Drosha/DGCR8 (Microprocessor). Incorporation of functional RNA motifs and site-specific chemical modification of the primary miRNA are utilized for the biogenesis of two individual gene-regulating oligonucleotides. Once they are cleaved by the endogenous Drosha/DGCR8 complex, basal strands and pre-miRNA can be generated inside of cells. In this study, we integrated basal strands with either SMN2 ASO or anti-miR21 to induce multimodal gene regulation. Microprocessing and subsequent gene regulation were first evaluated by measuring the activity of reporter pre-miRNA. Chemical modification on the primary miRNA was optimized through a series of in vitro Drosha cleavage tests and targeted gene silencing in cells. Primary miRNA with the basal ASO or anti-miR strands showed a successful in vitro activity and resulted in simultaneous multimodal gene regulation in cells. Artificial primary miRNA may offer synergistic therapeutic effects for treating various diseases, including spinal muscular atrophy and cancer.
Collapse
Affiliation(s)
- Hyunsook Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dayoung Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - S Chul Kwon
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Kim D, Han S, Ji Y, Moon S, Nam H, Lee JB. Multimeric RNAs for efficient RNA-based therapeutics and vaccines. J Control Release 2022; 345:770-785. [PMID: 35367477 PMCID: PMC8970614 DOI: 10.1016/j.jconrel.2022.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs. In this review, we offer an overview of the representative approaches for generating repetitive functional RNAs by chemical conjugation, structural self-assembly, enzymatic elongation, and self-amplification. The therapeutic and vaccine applications of engineered multimeric RNAs in various diseases have also been summarized. By outlining the current status of multimeric RNAs, the potential of multimeric RNA as a promising treatment strategy is highlighted.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
12
|
Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Front Bioeng Biotechnol 2022; 9:792489. [PMID: 35071205 PMCID: PMC8777461 DOI: 10.3389/fbioe.2021.792489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.
Collapse
Affiliation(s)
- Gan Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jing Wu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minglan Luo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhipeng Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Li N, Sun Y, Fu Y, Sun K. RNA Drug Delivery Using Biogenic Nanovehicles for Cancer Therapy. Front Pharmacol 2022; 12:734443. [PMID: 35002692 PMCID: PMC8740118 DOI: 10.3389/fphar.2021.734443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
RNA-based therapies have been promising method for treating all kinds of diseases, and four siRNA-based drugs and two mRNA-based drugs have been approved and are on the market now. However, none of them is applied for cancer treatment. This is not only because of the complexity of the tumor microenvironment, but also due to the intrinsic obstacles of RNAs. Until now, all kinds of strategies have been developed to improve the performance of RNAs for cancer therapy, especially the nanoparticle-based ones using biogenic materials. They are much more compatible with less toxicity compared to the ones using synthetic polymers, and the most widely studied biogenic materials are oligonucleotides, exosomes, and cell membranes. Particular characteristics make them show different capacities in internalization and endosomal escape as well as specific targeting. In this paper, we systematically summarize the RNA-based nano-delivery systems using biogenic materials for cancer therapy, and we believe this review will provide a valuable reference for researchers involved in the field of biogenic delivery and RNA-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Shandong International Biotechnonlogy Park Development Co. Ltd, Yantai, China
| | - Yuanlei Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China.,Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, China, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
14
|
Jang B, Jang H, Kim H, Kim M, Jeong M, Lee GS, Lee K, Lee H. Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing. J Control Release 2021; 343:57-65. [PMID: 34763005 DOI: 10.1016/j.jconrel.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Dicer substrate RNA is an alternative gene silencing agent to canonical siRNA. Enhanced in vitro gene silencing can be achieved with RNA substrates by facilitating Ago loading of dsRNA after Dicer processing. However, the in vivo use of Dicer substrate RNA has been hindered by its instability and immunogenicity in the body due to the lack of proper chemical modification in the structure. Here, we report a universal chemical modification approach for Dicer substrate RNA nanostructures by optimizing protein-RNA interactions in the RNAi pathway. Proteins involved in the RNAi pathway were utilized for evaluating their recognition and binding of substrate RNA. It was found that conventional chemical modifications could severely affect the binding and processing of substrate RNA, consequently reducing RNAi activity. Protein-RNA interaction guided chemical modification was introduced to RNA nanostructures, and their gene silencing activity was assessed. The optimized RNA nanostructures showed excellent binding and processability with RNA binding proteins and offered the enhancement of in vivo EC50 up to 1/8 of its native form.
Collapse
Affiliation(s)
- Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyejin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunsook Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyeong Seok Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
15
|
Chang J, Zhang Y, Li Y, Han Z, Tian F, Liu C, Feng Q, Wang Y, Sun J, Zhang L. Multilayer Ratiometric Fluorescent Nanomachines for Imaging mRNA in Live Cells. SMALL METHODS 2021; 5:e2001047. [PMID: 34927842 DOI: 10.1002/smtd.202001047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Indexed: 06/14/2023]
Abstract
Detection of mRNA expression in live cells during treatment is a challenging task, despite its importance in tumor biology and potential therapeutic leads. Here a multilayer ratiometric fluorescent nanomachine for live-cell perturbation and imaging of mRNA at single cell resolution is reported. The nanomachines fabricated by microfluidic approaches consist of fluorescent polymeric cores and multiple lipid layers, which can efficiently deliver siRNA and molecular beacons (MBs) to cytosol and then release the cargo in a sequential way. The siRNA molecules released from the outer lipid layers lead to silencing of multidrug resistance 1 (MDR1) gene, and the MBs from the middle lipid layers detect the presence of MDR1 mRNA. The fluorescent ratio of MBs to fluorescent polymeric cores positively correlates with the expression level of MDR1 mRNA in MCF-7/ADR cells during siRNA treatment. The nanomachines provide comparable results with traditional qPCR for quantifying mRNA, showing great potential for modulation and imaging of intratumoral mRNA in vitro and in vivo.
Collapse
Affiliation(s)
- Jianqiao Chang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yu Zhang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Yike Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Ziwei Han
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Fei Tian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Qiang Feng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
16
|
Lee K, Kim TS, Seo Y, Kim SY, Lee H. Combined hybrid structure of siRNA tailed IVT mRNA (ChriST mRNA) for enhancing DC maturation and subsequent anticancer T cell immunity. J Control Release 2020; 327:225-234. [PMID: 32791078 DOI: 10.1016/j.jconrel.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
RNA therapeutics have received much attention in the development of anti-cancer therapies. Among them, synthetic mRNA (IVT mRNA) was investigated for cancer immunotherapy due to its abilities to express tumor associated antigens with stimulation of immune responses in dendritic cells (DCs). Despite of its great potential, several hurdles were remained such as insufficient immune stimulation and DC maturation. In this study, we aimed to present a novel IVT mRNA that can simultaneously express tumor associated antigens while suppress STAT3 proteins. Combined functions of siRNA and IVT mRNA were investigated and the hybrid structure of siRNA tailed mRNA (ChriST mRNA) was developed. We prepared the ChriST mRNA by employing polyA tail structures with RNAi sequences at the 3' end of mRNA. Complementary strands were annealed to form duplex siRNA structure to induce STAT3 gene silencing. In addition, a hybrid structure of DNA/RNA was introduced into the ChriST mRNA between polyA tail and RNAi sequences. It was expected that DNA/RNA duplex would be readily cleaved by RNase H in the intracellular environment. After the cleavage, ChriST mRNA was fully functionalized in cells and exhibited enhanced tumor specific DC maturation.
Collapse
Affiliation(s)
- Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Tae-Shin Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
17
|
Chen X, Chen T, Zhang L, Wang Z, Zhou Q, Huang T, Ge C, Xu H, Zhu M, Zhao F, Yao M, Tian H, Li H, Zhu X, Li J. Cyclodextrin-mediated formation of porous RNA nanospheres and their application in synergistic targeted therapeutics of hepatocellular carcinoma. Biomaterials 2020; 261:120304. [PMID: 32882528 DOI: 10.1016/j.biomaterials.2020.120304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Spherical and porous nanoparticles are ideal nanostructures for drug delivery. But currently they are mainly composed of non-degradable inorganic materials, which hinder clinical applications. Here, biological porous nanospheres using RNA as the building blocks and cyclodextrin as the adhesive were synthesized. The RNA contained the aptamer of EpCAM for targeting delivery and siRNA for gene silencing of EpCAM, while cyclodextrin could load insoluble sorafenib, the core drug of targeted therapy for hepatocellular carcinoma (HCC), through its hydrophobic cavity. After being internalized into targeted HCC cells under the assistance of the aptamer, the porous nanospheres could be degraded by the cytoplasmic Dicer enzymes, releasing siRNA and sorafenib for synergistic therapy. The synergistic efficacy of the porous RNA nanospheres has been validated at in vitro function assay, subcutaneous tumor bearing mice, and orthotopic tumor bearing mice in vivo models. In view of the broad prospects of synergy of gene therapy with chemotherapy, and the fact that RNA and cyclodextrin of the porous nanospheres can be extended to load various types of siRNA and small molecule drugs, respectively, this form of biological porous nanospheres offers opportunities for targeted delivery of suitable drugs for treatment of specific tumors.
Collapse
Affiliation(s)
- Xiaoxia Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Zhenyu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Tingting Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Huili Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Miaoxin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, PR China.
| |
Collapse
|
18
|
Li Y, Yue S, Cao J, Zhu C, Wang Y, Hai X, Song W, Bi S. pH-responsive DNA nanomicelles for chemo-gene synergetic therapy of anaplastic large cell lymphoma. Am J Cancer Res 2020; 10:8250-8263. [PMID: 32724469 PMCID: PMC7381733 DOI: 10.7150/thno.45803] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-gene therapy is an emerging synergetic modality for the treatment of cancers. Herein, we developed pH-responsive multifunctional DNA nanomicelles (DNMs) as delivery vehicles for controllable release of doxorubicin (Dox) and anaplastic lymphoma kinase (ALK)-specific siRNA for the chemo-gene synergetic therapy of anaplastic large cell lymphoma (ALCL). Methods: DNMs were synthesized by performing in situ rolling circle amplification (RCA) on the amphiphilic primer-polylactide (PLA) micelles, followed by functionalization of pH-responsive triplex DNA via complementary base pairing. The anticancer drug Dox and ALK-specific siRNA were co-loaded to construct Dox/siRNA/DNMs for chemo-gene synergetic cancer therapy. When exposed to the acidic microenvironment (pH below 5.0), C-G·C+ triplex structures were formed, leading to the release of Dox and siRNA for gene silencing to enhance the chemosensitivity in ALCL K299 cells. The chemo-gene synergetic anticancer effect of Dox/siRNA/DNMs on ALCL was evaluated in vitro and in vivo. Results: The pH-responsive DNMs exhibited good monodispersity at different pH values, good biocompatibility, high drug loading capacity, and excellent stability even in the human serum. With the simultaneous release of anticancer drug Dox and ALK-specific siRNA in response to pH in the tumor microenvironment, the Dox/siRNA/DNMs demonstrated significantly higher treatment efficacy for ALCL compared with chemotherapy alone, because the silencing of ALK gene expression mediated by siRNA increased the chemosensitivity of ALCL cells. From the pathological analysis of tumor tissue, the Dox/siRNA/DNMs exhibited the superiority in inhibiting tumor growth, low toxic side effects and good biosafety. Conclusion: DNMs co-loaded with Dox and ALK-specific siRNA exhibited significantly enhanced apoptosis of ALCL K299 cells in vitro and effectively inhibited tumor growth in vivo without obvious toxicity, providing a potential strategy in the development of nanomedicines for synergetic cancer therapy.
Collapse
|
19
|
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188377. [PMID: 32418899 DOI: 10.1016/j.bbcan.2020.188377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Gyurin Kim
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea; DWI-Leibniz Institute for Interactive Materials, Aachen 52056, Germany.
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
20
|
|
21
|
Carli GJD, Rotela AT, Lubini G, Contiliani DF, Candia NB, Depintor TS, Abreu FCPD, Simões ZLP, Ríos DF, Pereira TC. SSD - a free software for designing multimeric mono-, bi- and trivalent shRNAs. Genet Mol Biol 2020; 43:e20190300. [PMID: 32141472 PMCID: PMC7197978 DOI: 10.1590/1678-4685-gmb-2019-0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is a powerful gene silencing technology, widely used in
analyses of reverse genetics, development of therapeutic strategies and
generation of biotechnological products. Here we present a free software tool
for the rational design of RNAi effectors, named siRNA and shRNA designer (SSD).
SSD incorporates our previously developed software Strand Analysis to construct
template DNAs amenable for the large scale production of mono-, bi- and
trivalent multimeric shRNAs, via in vitro rolling circle
transcription. We tested SSD by creating a trivalent multimeric shRNA against
the vitellogenin gene of Apis mellifera. RT-qPCR analysis
revealed that our molecule promoted a decrease in more than 50% of the target
mRNA, in a dose-dependent manner, when compared to the control group. Thus, SSD
software allows the easy design of multimeric shRNAs, for single or multiple
simultaneous knockdowns, which is especially interesting for studies involving
large amounts of double-stranded molecules.
Collapse
Affiliation(s)
- Gabriel José de Carli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Abdon Troche Rotela
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay.,Universidad Nacional de Asunción, Facultad Politécnica, San Lorenzo, Paraguay
| | - Greice Lubini
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danyel Fernandes Contiliani
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Nidia Benítez Candia
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Thiago S Depintor
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Fabiano Carlos Pinto de Abreu
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danilo Fernández Ríos
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Tiago Campos Pereira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. Fabrication and Biomedical Applications of “Polymer-Like” Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS APPLIED BIO MATERIALS 2019; 2:4106-4120. [DOI: 10.1021/acsabm.9b00622] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
23
|
Jedrzejczyk D, Chworos A. Self-Assembling RNA Nanoparticle for Gene Expression Regulation in a Model System. ACS Synth Biol 2019; 8:491-497. [PMID: 30649860 DOI: 10.1021/acssynbio.8b00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the search for enzymatically processed RNA fragments, we found the novel three-way junction motif. The structure prediction suggested the arrangement of helices at acute angle approx. 60°. This allows the design of a trimeric RNA nanoparticle that can be functionalized with multiple regulatory fragments. Such RNA nano-object of equilateral triangular shape was applied for gene expression regulation studies in two independent cellular systems. Biochemical and functional studies confirmed the predicted shape and structure of the nanoparticle. The regulatory siRNA fragments incorporated into the nanoparticle were effectively released and triggered gene silencing. The regulatory effect was prolonged when induced with structuralized RNA compared to unstructured siRNAs. In these studies, the enzymatic processing of the motif was utilized for function release from the nanoparticle, enabling simultaneous delivery of different regulatory functions. This methodology of sequence search, RNA structural prediction, and application for rational design opens a new way for creating enzymatically processed RNA nanoparticles.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| |
Collapse
|
24
|
Lee K, Jang B, Lee YR, Suh EY, Yoo JS, Lee MJ, Lee JY, Lee H. The cutting-edge technologies of siRNA delivery and their application in clinical trials. Arch Pharm Res 2018; 41:867-874. [PMID: 30136248 DOI: 10.1007/s12272-018-1069-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
siRNA therapeutics allows precise regulation of disease specific gene expression to treat various diseases. Although gene silencing approaches using siRNA therapeutics shows some promising results in the treatment of gene-related diseases, the practical applications has been limited by problems such as inefficient in vivo delivery to target cells and nonspecific immune responses after systemic or local administration. To overcome these issues, various in vivo delivery platforms have been introduced. Here we provide an overview for three different platform technologies for the in vivo delivery of therapeutic siRNAs (siRNA-GalNAc conjugate, SAMiRNA technology, and LNP-based delivery method) and their applications in the treatment of various diseases. In addition, a brief introduction to some rare diseases and mechanisms of siRNA therapeutics-mediated treatment is described.
Collapse
Affiliation(s)
- Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - You-Ri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Young Suh
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji-Seon Yoo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mi-Jin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Joo-Young Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|