1
|
Gonzalez-Casal S, Jouclas R, Arbouch I, Geerts YH, van Dyck C, Cornil J, Vuillaume D. Thermoelectric Properties of Benzothieno-Benzothiophene Self-Assembled Monolayers in Molecular Junctions. J Phys Chem Lett 2024; 15:11593-11600. [PMID: 39528246 DOI: 10.1021/acs.jpclett.4c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a combined experimental (C-AFM and SThM) and theoretical (DFT) study of the thermoelectric properties of molecular junctions made of self-assembled monolayers on Au of thiolated benzothieno-benzothiophene (BTBT) and alkylated BTBT derivatives (C8-BTBT-C8). We measure the thermal conductance per molecule at 15 and 8.8 pW/K, respectively, among the lowest values for molecular junctions so far reported (10-50 pW/K). The lower thermal conductance for C8-BTBT-C8 is consistent with two interfacial thermal resistances introduced by the alkyl chains, which reduce the phononic thermal transport in the molecular junction. The Seebeck coefficients are 36 and 245 μV/K, respectively, the latter due to the weak coupling of the core BTBT with the electrodes. We deduce a thermoelectric figure of merit ZT up to ≈10-4 for the BTBT molecular junctions at 300 K, on a par with the values reported for archetype molecular junctions (oligo(phenylene ethynylene) derivatives).
Collapse
Affiliation(s)
- Sergio Gonzalez-Casal
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq 59652, France
| | - Rémy Jouclas
- Laboratory of Polymer Chemistry, Université Libre de Bruxelles, Bd. du triomphe, Bruxelles 1050, Belgium
| | - Imane Arbouch
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| | - Yves Henri Geerts
- Laboratory of Polymer Chemistry, Université Libre de Bruxelles, Bd. du triomphe, Bruxelles 1050, Belgium
- International Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles, Bd. du Triomphe, Bruxelles 1050, Belgium
| | - Colin van Dyck
- Theoretical Chemical Physics group, University of Mons, Mons 7000, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq 59652, France
| |
Collapse
|
2
|
Shmueli S, Cohen Jungerman M, Shekhter P, Selzer Y. Efficient Molecular Rectification in Metal-Molecules-Semimetal Junctions. J Phys Chem Lett 2024; 15:10602-10608. [PMID: 39404737 PMCID: PMC11514003 DOI: 10.1021/acs.jpclett.4c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Molecular rectification is expected to be observed in metal-molecule-metal tunnel junctions in which the resonance levels responsible for their transport properties are spatially localized asymmetrically with respect to the leads. Yet, effects such as electrostatic screening and formation of metal induced gap states reduce the magnitude of rectification that can be realized in such junctions. Here we suggest that junctions of the form metal-molecule(s)-semimetal mitigate these interfacial effects. We report current rectification in junctions based on the semimetal bismuth (Bi) with high rectification ratios (>102) at 1.0 V using alkanethiols, molecules for which rectification has never been observed. In addition to the alleviation of screening and surface states, the efficient rectification is argued to be related to symmetry breaking of the applied bias in these junctions because of a built-in potential within the Bi lead. The significance of this built-in potential and its implications for the future and other applications are discussed.
Collapse
Affiliation(s)
- Shachar Shmueli
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Pini Shekhter
- The
Tel Aviv Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Yoram Selzer
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Li Y, Xie J, Sun L, Zeng J, Zhou L, Hao Z, Pan L, Ye J, Wang P, Li Y, Xu J, Shi Y, Wang X, He D. Monolayer Organic Crystals for Ultrahigh Performance Molecular Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305100. [PMID: 38145961 PMCID: PMC10933607 DOI: 10.1002/advs.202305100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Molecular diodes are of considerable interest for the increasing technical demands of device miniaturization. However, the molecular diode performance remains contact-limited, which represents a major challenge for the advancement of rectification ratio and conductance. Here, it is demonstrated that high-quality ultrathin organic semiconductors can be grown on several classes of metal substrates via solution-shearing epitaxy, with a well-controlled number of layers and monolayer single crystal over 1 mm. The crystals are atomically smooth and pinhole-free, providing a native interface for high-performance monolayer molecular diodes. As a result, the monolayer molecular diodes show record-high rectification ratio up to 5 × 108 , ideality factor close to unity, aggressive unit conductance over 103 S cm-2 , ultrahigh breakdown electric field, excellent electrical stability, and well-defined contact interface. Large-area monolayer molecular diode arrays with 100% yield and excellent uniformity in the diode metrics are further fabricated. These results suggest that monolayer molecular crystals have great potential to build reliable, high-performance molecular diodes and deeply understand their intrinsic electronic behavior.
Collapse
Affiliation(s)
- Yating Li
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jiacheng Xie
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Li Sun
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Junpeng Zeng
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Liqi Zhou
- National Laboratory of Solid‐State MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Ziqian Hao
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Lijia Pan
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jiandong Ye
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Peng Wang
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Yun Li
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jian‐Bin Xu
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong999077China
| | - Yi Shi
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Xinran Wang
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of Integrated CircuitsNanjing UniversitySuzhou215163China
| | - Daowei He
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| |
Collapse
|
4
|
Seo D, Seong S, Kim H, Oh HS, Lee JH, Kim H, Kim YO, Maeda S, Chikami S, Hayashi T, Noh J. Molecular Self-Assembly and Adsorption Structure of 2,2'-Dipyrimidyl Disulfides on Au(111) Surfaces. Molecules 2024; 29:846. [PMID: 38398598 PMCID: PMC10892263 DOI: 10.3390/molecules29040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.
Collapse
Affiliation(s)
- Dongjin Seo
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Sicheon Seong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Haeri Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hyun Su Oh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Jun Hyeong Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hongki Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Yeon O Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Shunta Chikami
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Kong GD, Jang J, Choi S, Lim G, Kim IS, Ohto T, Maeda S, Tada H, Yoon HJ. Dynamic Variation of Rectification Observed in Supramolecular Mixed Mercaptoalkanoic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305997. [PMID: 37726226 DOI: 10.1002/smll.202305997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Functionality in molecular electronics relies on inclusion of molecular orbital energy level within a transmission window. This can be achieved by designing the active molecule with accessible energy levels or by widening the window. While many studies have adopted the first approach, the latter is challenging because defects in the active molecular component cause low breakdown voltages. Here, it is shown that control over the packing structure of monolayer via supramolecular mixing transforms an inert molecule into a highly tunable rectifier. Binary mixed monolayer composed of alkanethiolates with and without carboxylic acid head group as a proof of concept is formed via a surface-exchange reaction. The monolayer withstands high voltages up to |4.5 V| and shows a dynamic rectification-external bias relationship in magnitude and polarity. Sub-highest occupied molecular orbital (HOMO) levels activated by the widened transmission window account for these observations. This work demonstrates that simple supramolecular mixing can imbue new electrical properties in electro-inactive organic molecules.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Suin Choi
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Gayoung Lim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Tatsuhiko Ohto
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi, 464-8603, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Seiya Maeda
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hirokazu Tada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
6
|
Sullivan RP, Morningstar JT, Castellanos-Trejo E, Welker ME, Jurchescu OD. The Stark Effect: A Tool for the Design of High-Performance Molecular Rectifiers. NANO LETTERS 2023. [PMID: 37974048 DOI: 10.1021/acs.nanolett.3c03068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Molecular electronic devices offer a path to the miniaturization of electronic circuits and could potentially facilitate novel functionalities that can be embedded into the molecular structure. Given their nanoscale dimensions, device properties are strongly influenced by quantum effects, yet many of these phenomena have been largely overlooked. We investigated the mechanism responsible for current rectification in molecular diodes and found that efficient rectification is achieved by enhancing the Stark effect strength and enabling a large number of molecules to participate in transport. These findings provided insights into the operation of molecular rectifiers and guided the development of high-performance devices via the design of molecules containing polarizable aromatic rings. Our results are consistent for different molecular structures and are expected to have broad applicability to all molecular devices by answering key questions related to charge transport mechanisms in such systems.
Collapse
Affiliation(s)
- Ryan P Sullivan
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - John T Morningstar
- Department of Chemistry and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Eduardo Castellanos-Trejo
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Mark E Welker
- Department of Chemistry and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
7
|
Li Z, Wang R, Li Y, Li Y, Ma C, Yang J, Li H. Reversible electric switching of NDI molecular wires by orthogonal stimuli. Chem Commun (Camb) 2023; 59:12743-12746. [PMID: 37807872 DOI: 10.1039/d3cc03486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The charge transport of 1,4,5,8-naphthalene diimide (NDI)-based molecules is explored. Experimental results show that the conductance of the TH-NDI molecular junction can be reversibly tuned by bias voltage and solvent, while the conductance of the PH-NDI junction is almost independent of the bias voltage and solvent. Based on these orthogonal stimuli, an AND logic gate of TH-NDI junction with an electric signal as the output is constructed. These results will advance the development of functional molecular devices.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yingjie Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
8
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
9
|
Kang H, Cho SJ, Kong GD, Yoon HJ. Li-Ion Intercalation, Rectification, and Solid Electrolyte Interphase in Molecular Tunnel Junctions. NANO LETTERS 2022; 22:4956-4962. [PMID: 35666178 DOI: 10.1021/acs.nanolett.2c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper describes Li-ion intercalation into a pyrenyl-terminated self-assembled monolayer (SAM) on gold, inspired by the graphite anode in a Li-ion battery, and its effect on tunneling performance in a molecular junction incorporating the SAM. As the concentration of the Li-ion precursor ([LiPF6]) increased from 0 to 10-2 M, the rectification ratio increased to ∼102. Further experiments revealed that the intercalation-induced changes in the orientation of PYR group and in the HOMO energy level account for the enhanced rectification. Treatment with high concentrations of LiPF6 (from 10-2 to 100 M) yielded a considerable solid electrolyte interphase (SEI), mainly composed of LiF, on the surface of the SAM, resulting in the disappearance of rectification. This was attributed to renormalization of the HOMO level back to that of the intact SAM, caused by the SEI layer. Our work demonstrates the interplay among Li-ion intercalation, SEI, and tunneling in the molecular junction, benefiting the research of molecular electronics as well as SAM-based batteries.
Collapse
Affiliation(s)
- Hungu Kang
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Soo Jin Cho
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Gyu Don Kong
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
10
|
Carlotti M, Soni S, Kovalchuk A, Kumar S, Hofmann S, Chiechi RC. Empirical Parameter to Compare Molecule-Electrode Interfaces in Large-Area Molecular Junctions. ACS PHYSICAL CHEMISTRY AU 2022; 2:179-190. [PMID: 35637782 PMCID: PMC9136952 DOI: 10.1021/acsphyschemau.1c00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
![]()
This paper describes
a simple model for comparing the degree of
electronic coupling between molecules and electrodes across different
large-area molecular junctions. The resulting coupling parameter can
be obtained directly from current–voltage data or extracted
from published data without fitting. We demonstrate the generalizability
of this model by comparing over 40 different junctions comprising
different molecules and measured by different laboratories. The results
agree with existing models, reflect differences in mechanisms of charge
transport and rectification, and are predictive in cases where experimental
limitations preclude more sophisticated modeling. We also synthesized
a series of conjugated molecular wires, in which embedded dipoles
are varied systematically and at both molecule–electrode interfaces.
The resulting current–voltage characteristics vary in nonintuitive
ways that are not captured by existing models, but which produce trends
using our simple model, providing insights that are otherwise difficult
or impossible to explain. The utility of our model is its demonstrative
generalizability, which is why simple observables like tunneling decay
coefficients remain so widely used in molecular electronics despite
the existence of much more sophisticated models. Our model is complementary,
giving insights into molecule–electrode coupling across series
of molecules that can guide synthetic chemists in the design of new
molecular motifs, particularly in the context of devices comprising
large-area molecular junctions.
Collapse
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saurabh Soni
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrii Kovalchuk
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sumit Kumar
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Stephan Hofmann
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Kong GD, Byeon SE, Jang J, Kim JW, Yoon HJ. Electronic Mechanism of In Situ Inversion of Rectification Polarity in Supramolecular Engineered Monolayer. J Am Chem Soc 2022; 144:7966-7971. [PMID: 35500106 DOI: 10.1021/jacs.2c02391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Communication describes polarity inversion in molecular rectification and the related mechanism. Using a supramolecular engineered, ultrastable, binary-mixed self-assembled monolayer (SAM) composed of an organic molecular diode (SC11BIPY) and an inert reinforcement molecule (SC8), we probed a rectification ratio (r)-voltage relationship over an unprecedentedly wide voltage range (up to |3.5 V|) with statistical significance. We observed positive polarity in rectification at |1.0 V| (r = 107), followed by disappearance of rectification at ∼|2.25 V|, and then eventual emergence of new rectification with the opposite polarity at ∼|3.5 V| (r = 0.006; 1/r = 162). The polarity inversion occurred with a span over 4 orders of magnitude in r. Low-temperature experiments, electronic structure analysis, and theoretical calculations revealed that the unusually wide voltage range permits access to molecular orbital energy levels that are inaccessible in the traditional narrow voltage regime, inducing the unprecedented in situ inversion of polarity.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seo Eun Byeon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Won Kim
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
12
|
Qiu X, Chiechi RC. Printable logic circuits comprising self-assembled protein complexes. Nat Commun 2022; 13:2312. [PMID: 35484124 PMCID: PMC9050843 DOI: 10.1038/s41467-022-30038-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics. Proteins are promising molecular materials for next-generation electronic devices. Here, the authors fabricated printable digital logic circuits comprising resistors and diodes from self-assembled photosystem I complexes that enable pulse modulation.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, United States.
| |
Collapse
|
13
|
Tian L, Martine E, Yu X, Hu W. Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12223-12233. [PMID: 34606290 DOI: 10.1021/acs.langmuir.1c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.
Collapse
Affiliation(s)
- Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
14
|
Xie Z, Bâldea I, Nguyen QV, Frisbie CD. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols. NANOSCALE 2021; 13:16755-16768. [PMID: 34604892 DOI: 10.1039/d1nr04410a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-molecule-metal junctions based on alkane thiol (CnT) and oligophenylene thiol (OPTn) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au-S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current-voltage (I-V) characteristics. Here we show that RR < 1 for CnT and RR > 1 for OPTn junctions, in contrast to expectation, and further, that RR behaves very differently for CnT and OPTn junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and ab initio quantum chemical calculations, allows us to explain the puzzling experimental findings for CnT and OPTn in terms of different current rectification mechanisms. Specifically, in CnT-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPTn junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Quyen Van Nguyen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
15
|
Park S, Kim HR, Kim J, Hong BH, Yoon HJ. Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103177. [PMID: 34453364 DOI: 10.1002/adma.202103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single-layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold-thiolate covalent contact. Thermoelectric junction measurements with a liquid-metal technique reveal that the value of Seebeck coefficient in large-area junctions based on n-alkylamine self-assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n-alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field-effect transistor analysis indicate that such enhancements benefit from the creation of new in-gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hwa Rang Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Juhee Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Hee Hong
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
16
|
Lee HJ, Cho SJ, Kang H, He X, Yoon HJ. Achieving Ultralow, Zero, and Inverted Tunneling Attenuation Coefficients in Molecular Wires with Extended Conjugation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005711. [PMID: 33543557 DOI: 10.1002/smll.202005711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Molecular tunnel junctions are organic devices miniaturized to the molecular scale. They serve as a versatile toolbox that can systematically examine charge transport behaviors at the atomic level. The electrical conductance of the molecular wire that bridges the two electrodes in a junction is significantly influenced by its chemical structure, and an intrinsically poor conductance is a major barrier for practical applications toward integrating individual molecules into electronic circuitry. Therefore, highly conjugated molecular wires are attractive as active components for the next-generation electronic devices, owing to the narrow highest occupied molecular orbital-lowest occupied molecular orbital gaps provided by their extended π-building blocks. This article aims to highlight the significance of highly conductive molecular wires in molecular electronics, the structures of which are inspired from conductive organic polymers, and presents a body of discussion on molecular wires exhibiting ultralow, zero, or inverted attenuation of tunneling probability at different lengths, along with future directions.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Soo Jin Cho
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hungu Kang
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Xin He
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
17
|
Belding L, Root SE, Li Y, Park J, Baghbanzadeh M, Rojas E, Pieters PF, Yoon HJ, Whitesides GM. Conformation, and Charge Tunneling through Molecules in SAMs. J Am Chem Soc 2021; 143:3481-3493. [DOI: 10.1021/jacs.0c12571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel E. Root
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yuan Li
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Junwoo Park
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Edwin Rojas
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Priscilla F. Pieters
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Qiu X, Rousseva S, Ye G, Hummelen JC, Chiechi RC. In Operando Modulation of Rectification in Molecular Tunneling Junctions Comprising Reconfigurable Molecular Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006109. [PMID: 33326147 PMCID: PMC11468418 DOI: 10.1002/adma.202006109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Indexed: 06/12/2023]
Abstract
The reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chemical packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on molecular tunneling junctions comprising self-assembled monolayers and bilayers.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Sylvia Rousseva
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Gang Ye
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Jan C. Hummelen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Ryan C. Chiechi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
19
|
Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903391. [PMID: 31583849 DOI: 10.1002/smll.201903391] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 05/20/2023]
Abstract
Liquid metals are emerging as fluidic inorganic materials in various research fields. Micro- and nanoparticles of Ga and its alloys have received particular attention in the last decade due to their non toxicity and accessibility in ambient conditions as well as their interesting chemical, physical, mechanical, and electrical properties. Unique features such as a fluidic nature and self-passivating oxide skin make Ga-based liquid metal particles (LMPs) distinguishable from conventional inorganic particles in the context of synthesis and applications. Here, recent advances in the bottom-up and top-down synthetic methods of Ga-based LMPs, their physicochemical properties, and their applications are summarized. Finally, the current status of the LMPs is highlighted and perspectives on future directions are also provided.
Collapse
Affiliation(s)
- Hyunsun Song
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Seohyun Kang
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Haneul Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
20
|
Li R, Li J, Sun Y, Zhang X, Hu W. Diphenylene-Tetracyanoquinodimethane Cocrystals as Stable Organic Rectifiers. Chempluschem 2020; 84:1245-1248. [PMID: 31944064 DOI: 10.1002/cplu.201900197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Indexed: 12/23/2022]
Abstract
A promising cocrystal material that acts as a rectifier was prepared by a simple procedure of solution volatilization. (E)-1,2-diphenylethene (STB) and 7,7',8,8'-tetracyanoquinodimethane (TCNQ) were used as donor and acceptor respectively, and aggregate in an ordered fashion in the stilbene-tetracyanoquinodimethane (STC) cocrystal that comprises 1 : 1 donor/acceptor mixed-stacked charge-transfer (CT) complexes. The strong CT interaction between the donor and acceptor is the main driving force for the self-assembly. The cocrystals show rectifying characteristics with a rectification ratio of 26. This result suggests that cocrystal engineering provides a great possibility to obtain rectifying materials from small, readily available organic molecules.
Collapse
Affiliation(s)
- Rui Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science, Tianjin University Collaborative Innovation Canter of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Jinfeng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science, Tianjin University Collaborative Innovation Canter of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science, Tianjin University Collaborative Innovation Canter of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science, Tianjin University Collaborative Innovation Canter of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science, Tianjin University Collaborative Innovation Canter of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing, 100190, P. R. China
| |
Collapse
|
21
|
Lee H, Choi U, Kim H, Lee JS. Binding Energy‐dependent Growth Behaviors and Surface Characteristics of Sequentially Polymerized Zincone Films. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyemi Lee
- Department of Chemistry, The Research Institute of Natural SciencesSookmyung Women's University Seoul 140‐742 Republic of Korea
| | - Ui‐Jin Choi
- Department of Chemistry, The Research Institute of Natural SciencesSookmyung Women's University Seoul 140‐742 Republic of Korea
| | - Heewon Kim
- Department of Chemistry, The Research Institute of Natural SciencesSookmyung Women's University Seoul 140‐742 Republic of Korea
| | - Jin Seok Lee
- Department of Chemistry, The Research Institute of Natural SciencesSookmyung Women's University Seoul 140‐742 Republic of Korea
| |
Collapse
|
22
|
Huang X, Chen J, Yan C, Shao H. Probing a Reversible Cationic Switch on a Mixed Self-Assembled Monolayer Using Scanning Electrochemical Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10772-10779. [PMID: 31361491 DOI: 10.1021/acs.langmuir.9b01429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Probing a switch on biomimic membrane surfaces would offer some references to the research on permeability of cytomembranes. In this work, a mixed 11-mercaptoundecanoic acid/1-undecanethiol self-assembled monolayer (MUA/UT SAM) was constructed as a model of a biomembrane. In this mixed SAM, the MUA molecules work as functional parts for the switch and the UT molecules work as diluents. The surface coverage, wetting property, and pKa of this mixed SAM all have been well-inspected. The mixed SAM exhibits excellent switchable properties for cations, which is well-monitored by scanning electrochemical microscopy. When the pH of a solution is higher than the pKa, protons would stimulate a shift of dissociation equilibrium of terminal carboxyl groups. The dissociated carboxylate ions would lead to a switch on the state of the SAM. Otherwise, the SAM shows an off state when the pH is lower than the pKa. In addition, the repeatability, applicability, and the mechanism of the switch all have been well-evaluated.
Collapse
Affiliation(s)
- Ximing Huang
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , P. R. China
| | - Jingchao Chen
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , P. R. China
| | - Chunxia Yan
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , P. R. China
| | - Huibo Shao
- Beijing Key Laboratory of Photoelectronic and Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , P. R. China
| |
Collapse
|
23
|
Kang S, Park S, Kang H, Cho SJ, Song H, Yoon HJ. Tunneling and thermoelectric characteristics of N-heterocyclic carbene-based large-area molecular junctions. Chem Commun (Camb) 2019; 55:8780-8783. [DOI: 10.1039/c9cc01585j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tunneling and thermoelectric characteristics of NHC-based large-area junctions were demonstrated for the first time.
Collapse
Affiliation(s)
- Seohyun Kang
- Department of Chemistry
- Korea University
- Seoul
- South Korea
| | - Sohyun Park
- Department of Chemistry
- Korea University
- Seoul
- South Korea
| | - Hungu Kang
- Department of Chemistry
- Korea University
- Seoul
- South Korea
| | - Soo Jin Cho
- Department of Chemistry
- Korea University
- Seoul
- South Korea
| | - Hyunsun Song
- Department of Chemistry
- Korea University
- Seoul
- South Korea
| | - Hyo Jae Yoon
- Department of Chemistry
- Korea University
- Seoul
- South Korea
| |
Collapse
|