1
|
Amitrano A, Choudhury D, Konstantopoulos K. Navigating confinement: Mechanotransduction and metabolic adaptation. Curr Opin Cell Biol 2025; 94:102487. [PMID: 39999674 DOI: 10.1016/j.ceb.2025.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Cell migration through confined spaces is a critical process influenced by the complex three-dimensional (3D) architecture of the local microenvironment and the surrounding extracellular matrix (ECM). Cells in vivo experience diverse fluidic signals, such as extracellular fluid viscosity, hydraulic resistance, and shear forces, as well as solid cues, like ECM stiffness and viscoelasticity. These fluidic and solid stressors activate mechanotransduction processes and regulate cell migration. They also drive metabolic reprogramming, dynamically altering glycolysis and oxidative phosphorylation to meet the cell's energy demands in different microenvironments. This review discusses recent advances on the mechanisms of cell migration in confinement and how confinement-induced cellular behavior leads to metabolic reprogramming.
Collapse
Affiliation(s)
- Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Debanik Choudhury
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
| |
Collapse
|
2
|
Wang Y, Shi P, Liu G, Chen W, Wang YJ, Hu Y, Yang A, Wei T, Chen YC, Liang L, Liu Z, Liu YJ, Wu C. Espin enhances confined cell migration by promoting filopodia formation and contributes to cancer metastasis. EMBO Rep 2025; 26:2574-2596. [PMID: 40185977 DOI: 10.1038/s44319-025-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Genes regulating the finger-like cellular protrusions-filopodia have long been implicated in cancer metastasis. However, depleting the flat lamellipodia but retaining filopodia drastically hampers cell migration on spread surface, obscuring the role of filopodia in cell motility. It has been noticed recently that cells under confinement may employ distinct migratory machineries. However, the regulating factors have mainly been focused on cell blebbing, nuclear deformation and cell rear contractility, without much emphasis on cell protrusions and even less on filopodia. Here, by micropore-based screening, we identified espin as an active regulator for confined migration and that its overexpression was associated with metastasis. In comparison to fascin, espin showed stronger actin bundling in vitro and induced shorter and thicker filopodia in cells. Combining the imaging-compatible microchannels and DNA-based tension probes, we uncovered that espin overexpression induced excessive filopodia at the leading edge and along the sides, exerting force for confined migration. Our results demonstrate an important role for filopodia and the regulating protein-espin in confined cell migration and shed new light on cytoskeletal mechanisms underlying metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Peng Shi
- Cancer Institute, Suzhou Medical College, Soochow University, 215000, Suzhou, Jiangsu, China.
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Yiping Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Ao Yang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China.
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
3
|
Ciccone G, Azevedo Gonzalez‐Oliva M, Versaevel M, Cantini M, Vassalli M, Salmeron‐Sanchez M, Gabriele S. Epithelial Cell Mechanoresponse to Matrix Viscoelasticity and Confinement Within Micropatterned Viscoelastic Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408635. [PMID: 39950757 PMCID: PMC12079340 DOI: 10.1002/advs.202408635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Indexed: 05/16/2025]
Abstract
Extracellular matrix (ECM) viscoelasticity has emerged as a potent regulator of physiological and pathological processes, including cancer progression. Spatial confinement within the ECM is also known to influence cell behavior in these contexts. However, the interplay between matrix viscoelasticity and spatial confinement in driving epithelial cell mechanotransduction is not well understood, as it relies on experiments employing purely elastic hydrogels. This work presents an innovative approach to fabricate and micropattern viscoelastic polyacrylamide hydrogels with independently tuneable Young's modulus and stress relaxation, specifically designed to mimic the mechanical properties observed during breast tumor progression, transitioning from a soft dissipative tissue to a stiff elastic one. Using this platform, this work demonstrates that matrix viscoelasticity differentially modulates breast epithelial cell spreading, adhesion, YAP nuclear import and cell migration, depending on the initial stiffness of the matrix. Furthermore, by imposing spatial confinement through micropatterning, this work demonstrates that confinement alters cellular responses to viscoelasticity, including cell spreading, mechanotransduction and migration. These findings establish ECM viscoelasticity as a key regulator of epithelial cell mechanoresponse and highlight the critical role of spatial confinement in soft, dissipative ECMs, which was a previously unexplored aspect.
Collapse
Affiliation(s)
- Giuseppe Ciccone
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Mechanobiology & Biomaterials GroupUniversity of MonsResearch Institute for BiosciencesCIRMAP, Place du ParcMons20 B‐7000Belgium
- Centre for the Cellular MicroenvironmentUniversity of GlasgowAdvanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Mariana Azevedo Gonzalez‐Oliva
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Centre for the Cellular MicroenvironmentUniversity of GlasgowAdvanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Marie Versaevel
- Mechanobiology & Biomaterials GroupUniversity of MonsResearch Institute for BiosciencesCIRMAP, Place du ParcMons20 B‐7000Belgium
| | - Marco Cantini
- Centre for the Cellular MicroenvironmentUniversity of GlasgowAdvanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Massimo Vassalli
- Centre for the Cellular MicroenvironmentUniversity of GlasgowAdvanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Manuel Salmeron‐Sanchez
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Centre for the Cellular MicroenvironmentUniversity of GlasgowAdvanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials GroupUniversity of MonsResearch Institute for BiosciencesCIRMAP, Place du ParcMons20 B‐7000Belgium
| |
Collapse
|
4
|
Allan C, Chaudhuri O. Regulation of cell migration by extracellular matrix mechanics at a glance. J Cell Sci 2025; 138:jcs263574. [PMID: 40183462 PMCID: PMC11993253 DOI: 10.1242/jcs.263574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cell migration occurs throughout development, tissue homeostasis and regeneration, as well as in diseases such as cancer. Cells migrate along two-dimensional (2D) surfaces or interfaces, within microtracks, or in confining three-dimensional (3D) extracellular matrices. Although the basic mechanisms of 2D migration are known, recent studies have elucidated unexpected migration behaviors associated with more complex substrates and have provided insights into their underlying molecular mechanisms. Studies using engineered biomaterials for 3D culture and microfabricated channels to replicate cell confinement observed in vivo have revealed distinct modes of migration. Across these contexts, the mechanical features of the surrounding microenvironment have emerged as major regulators of migration. In this Cell Science at a Glance article and the accompanying poster, we describe physiological contexts wherein 2D and 3D cell migration are essential, report how mechanical properties of the microenvironment regulate individual and collective cell migration, and review the mechanisms mediating these diverse modes of cell migration.
Collapse
Affiliation(s)
- Cole Allan
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Kane MA, Birmingham KG, Yeoman B, Patel N, Sperinde H, Molley TG, Beri P, Tuler J, Kumar A, Klein S, Zare S, Wallace A, Katira P, Engler AJ. Adhesion strength of tumor cells predicts metastatic disease in vivo. Cell Rep 2025; 44:115359. [PMID: 40049163 PMCID: PMC12014391 DOI: 10.1016/j.celrep.2025.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025] Open
Abstract
Although only a fraction of tumor cells contribute to metastatic disease, no prognostic biomarkers currently exist to identify these cells. We show that a physical marker-adhesion strength-predicts metastatic potential in a mouse breast cancer model and that it may stratify human disease. Cells disseminating from murine mammary tumors are weakly adherent, and, when pre-sorted by adhesion, primary tumors created from strongly adherent cells exhibit fewer lung metastases than weakly adherent cells do. We demonstrate that admixed cancer lines can be separated by label-free adhesive signatures. When applied to murine metastatic tumors, adhesion retrospectively predicts metastatic disease with 100% specificity, 85% sensitivity, and area under the curve (AUC) of 0.94. Cells from human reduction mammoplasties have a higher adhesion strength versus resected human tumors, which may also be stratified between invasive and more indolent cancers. Thus, highly metastatic cells may have a distinct physical phenotype that may be a predictive marker of clinical outcomes.
Collapse
Affiliation(s)
- Madison A Kane
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | | | - Benjamin Yeoman
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Neal Patel
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Hayley Sperinde
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Thomas G Molley
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Pranjali Beri
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Jeremy Tuler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Aditya Kumar
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Sarah Klein
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Somaye Zare
- Department of Pathology, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - Anne Wallace
- Department of Surgery, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA; Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Adam J Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Department of Pathology, UC San Diego, La Jolla, CA 92093, USA; Department of Surgery, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. APL Bioeng 2025; 9:016105. [PMID: 39974511 PMCID: PMC11836873 DOI: 10.1063/5.0233329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
Affiliation(s)
- Satomi Hirose
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tatsuya Osaki
- Authors to whom correspondence should be addressed: and
| | - Roger D. Kamm
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
Naggay BK, Farahani SK, Gao X, Holle A, Kemkemer R. Direct current electrical fields inhibit cancer cell motility in microchannel confinements. Sci Rep 2025; 15:4605. [PMID: 39920207 PMCID: PMC11806051 DOI: 10.1038/s41598-025-87737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
The capability of cells to sense and respond to endogenous electrical fields plays a crucial role in processes like nerve regeneration, wound healing, and development. In vitro, many cell types respond to electrical fields by migrating along the corresponding electrical field vectors. This process is known as galvano- or electrotaxis. Here we report on the combined impact of micro-confinements and direct current electrical fields (dcEFs) on the motility of MDA-MB-231 human breast cancer cells using a self-developed, easy-to-use platform with microchannels ranging from 3 μ m to 11 μ m in width and 11 μ m height. We found that MDA-MB-231 cells respond to exogenous electrical fields ranging from 100 mV mm- 1 to 1000 mV mm- 1 with altered cell motility depending on the confinement size. Our data show an overall inhibited galvanotaxis in confinements, while in contrast an enhancing effect in unconfined galvanotaxis is found. The application of direct current electrical fields to microchannels not only caused a reduction in migration speed but also decreased the number of permeating cells. By applying 1000 mV mm- 1 , single-cell permeation could be prevented in confinements of 5 μ m and smaller.
Collapse
Affiliation(s)
- Benjamin Karem Naggay
- Department of Life Sciences, Reutlingen University, 72762, Reutlingen, Germany
- Reutlingen Research Institute, Reutlingen University, 72762, Reutlingen, Germany
| | | | - Xu Gao
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Singapore
| | - Andrew Holle
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Singapore
| | - Ralf Kemkemer
- Department of Life Sciences, Reutlingen University, 72762, Reutlingen, Germany.
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Physical principles and mechanisms of cell migration. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:2. [PMID: 39829952 PMCID: PMC11738987 DOI: 10.1038/s44341-024-00008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025]
Abstract
Cell migration is critical in processes such as developmental biology, wound healing, immune response, and cancer invasion/metastasis. Understanding its regulation is essential for developing targeted therapies in regenerative medicine, cancer treatment and immune modulation. This review examines cell migration mechanisms, highlighting fundamental physical principles, key molecular components, and cellular behaviors, identifying existing gaps in current knowledge, and suggesting potential directions for future research.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
9
|
Li Y, Ong HT, Cui H, Gao X, Lee JWN, Guo Y, Li R, Pennacchio FA, Maiuri P, Efremov AK, Holle AW. Confinement-sensitive volume regulation dynamics via high-speed nuclear morphological measurements. Proc Natl Acad Sci U S A 2024; 121:e2408595121. [PMID: 39700138 DOI: 10.1073/pnas.2408595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips. Standard volumetric measurement relies on confocal microscopy, which suffers from high phototoxicity, slow speed, limited throughput, and artifacts in fast-moving cells. To address this, we developed a form of double fluorescence exclusion microscopy, designed to function at the interface of microchannel-based PDMS sidewalls, that can track cellular and nuclear volume dynamics during confined migration. By verifying the vertical symmetry of nuclei in confinement, we obtained computational estimates of nuclear surface area. We then tracked nuclear volume and surface area under physiological confinement at a time resolution exceeding 30 frames per minute. We find that during self-induced entrance into confinement, the cell rapidly expands its surface area until a threshold is reached, followed by a rapid decrease in nuclear volume. We next used osmotic shock as a tool to alter nuclear volume in confinement, and found that the nuclear response to hypo-osmotic shock in confinement does not follow classical scaling laws, suggesting that the limited expansion potential of the nuclear envelope might be a constraining factor in nuclear volume regulation in confining environments in vivo.
Collapse
Affiliation(s)
- Yixuan Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hongyue Cui
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yuqi Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Fabrizio A Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zurich 8006, Switzerland
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
10
|
van der Net A, Rahman Z, Bordoloi AD, Muntz I, ten Dijke P, Boukany PE, Koenderink GH. EMT-related cell-matrix interactions are linked to states of cell unjamming in cancer spheroid invasion. iScience 2024; 27:111424. [PMID: 39717087 PMCID: PMC11665421 DOI: 10.1016/j.isci.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels. Spheroids displayed solid-like (non-invasive) states in small-pore hydrogels and fluid-like (strand-based) or gas-like (disseminating cells) states in large-pore hydrogels or for mesenchymal-like cells. Our findings are consistent with different unjamming states as a function of cell motility and matrix confinement predicted in recent models for cancer invasion, but show that cell motility and matrix confinement are coupled via EMT-related matrix degradation.
Collapse
Affiliation(s)
- Anouk van der Net
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Zaid Rahman
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Ankur D. Bordoloi
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Iain Muntz
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Peter ten Dijke
- Leiden University Medical Center, Department of Cell and Chemical Biology and Oncode Institute, Leiden 2333 ZC, the Netherlands
| | - Pouyan E. Boukany
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Gijsje H. Koenderink
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| |
Collapse
|
11
|
Keith WC, Hemmati F, Vaghasiya RS, Amiri F, Mistriotis P. Differential Effects of Confinement-Induced ROS Accumulation on Highly Motile Cancerous and Non-Cancerous Cells. AIChE J 2024; 70:e18598. [PMID: 40099227 PMCID: PMC11913314 DOI: 10.1002/aic.18598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 03/19/2025]
Abstract
In vivo, migrating cells often encounter microenvironments that impose spatial constraints, leading to cell and nuclear deformation. As confinement-induced DNA damage has been linked to the accumulation of reactive oxygen species (ROS), we sought to investigate the impact of oxidative stress on cell behavior within confined spaces. Using microchannel devices that enable control of the degree and duration of cell confinement, we demonstrate that confined migration increases ROS levels in both HT-1080 fibrosarcoma cells and human dermal fibroblasts. Treatment with the antioxidant N-Acetyl-L-cysteine (NAC) counteracts confinement-induced ROS accumulation, suppressing p53 activation and supporting cell survival in both cell lines. This intervention preferentially reduces dorsal perinuclear actin fibers in confined cancer cells. Loss of these fibers is associated with reduced nuclear rupture frequency and increased confined migration. Collectively, this work provides insights into the differential effects of ROS on cancerous and non-cancerous cells and suggests that antioxidants may support tumor progression.
Collapse
Affiliation(s)
| | - Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | | | - Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | | |
Collapse
|
12
|
Chitnis MS, Gao X, Marlena J, Holle AW. The mechanical journey of primordial germ cells. Am J Physiol Cell Physiol 2024; 327:C1532-C1545. [PMID: 39466178 DOI: 10.1152/ajpcell.00404.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.
Collapse
Affiliation(s)
- Malhar S Chitnis
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Jennifer Marlena
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Zhao JZ, Xia J, Brangwynne CP. Chromatin compaction during confined cell migration induces and reshapes nuclear condensates. Nat Commun 2024; 15:9964. [PMID: 39557835 PMCID: PMC11574006 DOI: 10.1038/s41467-024-54120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cell migration through small constrictions during cancer metastasis requires significant deformation of the nucleus, with associated mechanical stress on the nuclear lamina and chromatin. However, how mechanical deformation impacts various subnuclear structures, including protein and nucleic acid-rich biomolecular condensates, is largely unknown. Here, we find that cell migration through confined spaces gives rise to mechanical deformations of the chromatin network, which cause embedded nuclear condensates, including nucleoli and nuclear speckles, to deform and coalesce. Chromatin deformations exhibit differential behavior in the advancing vs. trailing region of the nucleus, with the trailing half being more permissive for de novo condensate formation. We show that this results from increased chromatin heterogeneity, which gives rise to a shift in the binodal phase boundary. Taken together, our findings show how chromatin deformation impacts condensate assembly and properties, which can potentially contribute to cellular mechanosensing.
Collapse
Affiliation(s)
- Jessica Z Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jing Xia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Princeton Materials Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Lan BQ, Wang YJ, Yu SX, Liu W, Liu YJ. Physical effects of 3-D microenvironments on confined cell behaviors. Am J Physiol Cell Physiol 2024; 327:C1192-C1201. [PMID: 39246142 DOI: 10.1152/ajpcell.00288.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
Collapse
Affiliation(s)
- Bao-Qiong Lan
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| |
Collapse
|
15
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Amiri F, Akinpelu AA, Keith WC, Hemmati F, Vaghasiya RS, Bowen D, Waliagha RS, Wang C, Chen P, Mitra AK, Li Y, Mistriotis P. Confinement controls the directional cell responses to fluid forces. Cell Rep 2024; 43:114692. [PMID: 39207902 PMCID: PMC11495937 DOI: 10.1016/j.celrep.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Our understanding of how fluid forces influence cell migration in confining environments remains limited. By integrating microfluidics with live-cell imaging, we demonstrate that cells in tightly-but not moderately-confined spaces reverse direction and move upstream upon exposure to fluid forces. This fluid force-induced directional change occurs less frequently when cells display diminished mechanosensitivity, experience elevated hydraulic resistance, or sense a chemical gradient. Cell reversal requires actin polymerization to the new cell front, as shown mathematically and experimentally. Actin polymerization is necessary for the fluid force-induced activation of NHE1, which cooperates with calcium to induce upstream migration. Calcium levels increase downstream, mirroring the subcellular distribution of myosin IIA, whose activation enhances upstream migration. Reduced lamin A/C levels promote downstream migration of metastatic tumor cells by preventing cell polarity establishment and intracellular calcium rise. This mechanism could allow cancer cells to evade high-pressure environments, such as the primary tumor.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Ayuba A Akinpelu
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - William C Keith
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Ravi S Vaghasiya
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Dylan Bowen
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Amit K Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; UAB O'Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA
| | | |
Collapse
|
17
|
Yu H, Yan Z, Dreiss CA, Gaitano GG, Jarvis JA, Gentleman E, da Silva RMP, Grigoriadis AE. Injectable PEG Hydrogels with Tissue-Like Viscoelasticity Formed through Reversible Alendronate-Calcium Phosphate Crosslinking for Cell-Material Interactions. Adv Healthc Mater 2024; 13:e2400472. [PMID: 38809180 DOI: 10.1002/adhm.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 05/30/2024]
Abstract
Synthetic hydrogels provide controllable 3D environments, which can be used to study fundamental biological phenomena. The growing body of evidence that cell behavior depends upon hydrogel stress relaxation creates a high demand for hydrogels with tissue-like viscoelastic properties. Here, a unique platform of synthetic polyethylene glycol (PEG) hydrogels in which star-shaped PEG molecules are conjugated with alendronate and/or RGD peptides, attaining modifiable degradability as well as flexible cell adhesion, is created. Novel reversible ionic interactions between alendronate and calcium phosphate nanoparticles, leading to versatile viscoelastic properties with varying initial elastic modulus and stress relaxation time, are identified. This new crosslinking mechanism provides shear-thinning properties resulting in differential cellular responses between cancer cells and stem cells. The novel hydrogel system is an improved design to the other ionic crosslink platforms and opens new avenues for the development of pathologically relevant cancer models, as well as minimally invasive approaches for cell delivery for potential regenerative therapies.
Collapse
Affiliation(s)
- Hongqiang Yu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Ziqian Yan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Cecile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Gustavo G Gaitano
- Department of Chemistry, University of Navarra, Pamplona, 31080, Spain
| | - James A Jarvis
- Randall Division of Cell and Molecular Biophysics and NMR Facility, Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Ricardo M P da Silva
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | |
Collapse
|
18
|
Suh YJ, Li AT, Pandey M, Nordmann CS, Huang YL, Wu M. Decoding physical principles of cell migration under controlled environment using microfluidics. BIOPHYSICS REVIEWS 2024; 5:031302. [PMID: 39091432 PMCID: PMC11290890 DOI: 10.1063/5.0199161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
Living cells can perform incredible tasks that man-made micro/nano-sized robots have not yet been able to accomplish. One example is that white blood cells can sense and move to the site of pathogen attack within minutes. The robustness and precision of cellular functions have been perfected through billions of years of evolution. In this context, we ask the question whether cells follow a set of physical principles to sense, adapt, and migrate. Microfluidics has emerged as an enabling technology for recreating well-defined cellular environment for cell migration studies, and its ability to follow single cell dynamics allows for the results to be amenable for theoretical modeling. In this review, we focus on the development of microfluidic platforms for recreating cellular biophysical (e.g., mechanical stress) and biochemical (e.g., nutrients and cytokines) environments for cell migration studies in 3D. We summarize the basic principles that cells (including bacteria, algal, and mammalian cells) use to respond to chemical gradients learned from microfluidic systems. We also discuss about novel biological insights gained from studies of cell migration under biophysical cues and the need for further quantitative studies of cell function under well-controlled biophysical environments in the future.
Collapse
Affiliation(s)
- Young Joon Suh
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Alan T. Li
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mrinal Pandey
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Cassidy S. Nordmann
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
19
|
Lv Y, Wang C, Liu R, Wu S, Chen J, Zheng X, Jiang T, Chen L. NUP37 promotes the proliferation and invasion of glioma cells through DNMT1-mediated methylation. Cell Death Discov 2024; 10:373. [PMID: 39174498 PMCID: PMC11341718 DOI: 10.1038/s41420-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Nuclear regulation has potential in cancer therapy, with the nuclear pore complex (NPC) serving as a critical channel between the nucleus and cytoplasm, playing a role in regulating various biological processes and cancer. DNA methylation, an epigenetic modification mediated by DNA methyltransferases (DNMTs), influences gene expression and cell differentiation, and is crucial for the development and progression of tumor cells. Gliomas are the most common primary brain tumors, with glioblastoma being particularly aggressive, characterized by invasiveness, migration capability, and resistance to conventional treatments, resulting in poor prognosis. Our study revealed that the expression level of NUP37 affects the proliferation and invasion of glioma cells, and that the overexpression of DNMT1 can alleviate the adverse effects caused by NUP37 depletion. These findings suggest that NUP37 promotes the proliferation and invasion of glioma cells through its interaction with DNMT1.
Collapse
Affiliation(s)
- Yongqiang Lv
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Chaolian Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Ruoyu Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
20
|
Rodríguez-Cruz D, Boquet-Pujadas A, López-Muñoz E, Rincón-Heredia R, Paredes-Díaz R, Flores-Fortis M, Olivo-Marin JC, Guillén N, Aguilar-Rojas A. Three-dimensional cell culture conditions promoted the Mesenchymal-Amoeboid Transition in the Triple-Negative Breast Cancer cell line MDA-MB-231. Front Cell Dev Biol 2024; 12:1435708. [PMID: 39156975 PMCID: PMC11327030 DOI: 10.3389/fcell.2024.1435708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Breast cancer (BC) is the leading cause of death among women, primarily due to its potential for metastasis. As BC progresses, the extracellular matrix (ECM) produces more type-I collagen, resulting in increased stiffness. This alteration influences cellular behaviors such as migration, invasion, and metastasis. Specifically, cancer cells undergo changes in gene expression that initially promote an epithelial-to-mesenchymal transition (EMT) and subsequently, a transition from a mesenchymal to an amoeboid (MAT) migration mode. In this way, cancer cells can migrate more easily through the stiffer microenvironment. Despite their importance, understanding MATs remains challenging due to the difficulty of replicating in vitro the conditions for cell migration that are observed in vivo. Methods To address this challenge, we developed a three-dimensional (3D) growth system that replicates the different matrix properties observed during the progression of a breast tumor. We used this model to study the migration and invasion of the Triple-Negative BC (TNBC) cell line MDA-MB-231, which is particularly subject to metastasis. Results Our results indicate that denser collagen matrices present a reduction in porosity, collagen fiber size, and collagen fiber orientation, which are associated with the transition of cells to a rounder morphology with bleb-like protrusions. We quantified how this transition is associated with a more persistent migration, an enhanced invasion capacity, and a reduced secretion of matrix metalloproteinases. Discussion Our findings suggest that the proposed 3D growth conditions (especially those with high collagen concentrations) mimic key features of MATs, providing a new platform to study the physiology of migratory transitions and their role in BC progression.
Collapse
Affiliation(s)
- Daniela Rodríguez-Cruz
- Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit in Gynecology and Obstetrics No. 4 “Luis Castelazo Ayala”, Mexican Social Security Institute, Mexico City, Mexico
| | - Aleix Boquet-Pujadas
- École Polytechnique Fédérale de Lausanne, Biomedical Imaging Group, Lausanne, Switzerland
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
- National Center for Scientific Research, CNRS UMR3691, Paris, France
| | - Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit in Gynecology and Obstetrics No. 4 “Luis Castelazo Ayala”, Mexican Social Security Institute, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rodolfo Paredes-Díaz
- Microscopy Core Unit, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mauricio Flores-Fortis
- Cuajimalpa Unit, Engineering and Natural Science Doctoral Program, Metropolitan Autonomous University, Mexico City, Mexico
- Cuajimalpa Unit, Department of Natural Science, Metropolitan Autonomous University, Mexico City, Mexico
| | - Jean-Christophe Olivo-Marin
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
- National Center for Scientific Research, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
- National Center for Scientific Research, CNRS ERL9195, Paris, France
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit in Gynecology and Obstetrics No. 4 “Luis Castelazo Ayala”, Mexican Social Security Institute, Mexico City, Mexico
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
| |
Collapse
|
21
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601261. [PMID: 39005381 PMCID: PMC11244921 DOI: 10.1101/2024.06.28.601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
|
22
|
Liew HY, Liew XH, Lin WX, Lee YZ, Ong YS, Ogawa S, Chong LH. Cellular Traction Force Holds the Potential as a Drug Testing Readout for In Vitro Cancer Metastasis. Cell Mol Bioeng 2024; 17:203-217. [PMID: 39050509 PMCID: PMC11263313 DOI: 10.1007/s12195-024-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Metastasis is responsible for 90% of cancer-related deaths worldwide. However, the potential inhibitory effects of metastasis by various anticancer drugs have been left largely unexplored. Existing preclinical models primarily focus on antiproliferative agents on the primary tumor to halt the cancer growth but not in metastasis. Unlike primary tumors, metastasis requires cancer cells to exert sufficient cellular traction force through the actomyosin machinery to migrate away from the primary tumor site. Therefore, we seek to explore the potential of cellular traction force as a novel readout for screening drugs that target cancer metastasis. Methods In vitro models of invasive and non-invasive breast cancer were first established using MDA-MB-231 and MCF-7 cell lines, respectively. Cellular morphology was characterized, revealing spindle-like morphology in MDA-MB-231 and spherical morphology in MCF-7 cells. The baseline cellular traction force was quantified using the Traction force Microscopy technique. Cisplatin, a paradigm antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, were selected to evaluate the potential of cellular traction force as a drug testing readout for the in vitro cancer metastasis. Results MDA-MB-231 cells exhibited significantly higher baseline cellular traction force compared to MCF-7 cells. Treatment with Cisplatin, an antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, demonstrated distinct effects on cellular traction force in MDA-MB-231 but not in MCF-7 cells. These findings correlate with the invasive potential observed in the two models. Conclusion Cellular traction force emerges as a promising metric for evaluating drug efficacy in inhibiting cancer metastasis using in vitro models. This approach could enhance the screening and development of novel anti-metastatic therapies, addressing a critical gap in current anticancer drug research.
Collapse
Affiliation(s)
- Hui Yan Liew
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| | - Xiao Hui Liew
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| | - Wei Xuan Lin
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| | - Yee Zhen Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| | - Lor Huai Chong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Malaysia
| |
Collapse
|
23
|
Lee JWN, Holle AW. Engineering approaches for understanding mechanical memory in cancer metastasis. APL Bioeng 2024; 8:021503. [PMID: 38605886 PMCID: PMC11008915 DOI: 10.1063/5.0194539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Understanding cancer metastasis is crucial for advancing therapeutic strategies and improving clinical outcomes. Cancer cells face dynamic changes in their mechanical microenvironment that occur on timescales ranging from minutes to years and exhibit a spectrum of cellular transformations in response to these mechanical cues. A crucial facet of this adaptive response is the concept of mechanical memory, in which mechanosensitive cell behavior and function persists even when mechanical cues are altered. This review explores the evolving mechanical landscape during metastasis, emphasizing the significance of mechanical memory and its influence on cell behavior. We then focus on engineering techniques that are being utilized to probe mechanical memory of cancer cells. Finally, we highlight promising translational approaches poised to harness mechanical memory for new therapies, thereby advancing the frontiers of bioengineering applications in cancer research.
Collapse
Affiliation(s)
- Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | | |
Collapse
|
24
|
Akinpelu A, Akinsipe T, Avila LA, Arnold RD, Mistriotis P. The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev 2024; 43:823-844. [PMID: 38238542 PMCID: PMC11156564 DOI: 10.1007/s10555-024-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.
Collapse
Affiliation(s)
- Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - L Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
25
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
26
|
Weiß MS, Trapani G, Long H, Trappmann B. Matrix Resistance Toward Proteolytic Cleavage Controls Contractility-Dependent Migration Modes During Angiogenic Sprouting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305947. [PMID: 38477409 PMCID: PMC11109655 DOI: 10.1002/advs.202305947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Tissue homeostasis and disease states rely on the formation of new blood vessels through angiogenic sprouting, which is tightly regulated by the properties of the surrounding extracellular matrix. While physical cues, such as matrix stiffness or degradability, have evolved as major regulators of cell function in tissue microenvironments, it remains unknown whether and how physical cues regulate endothelial cell migration during angiogenesis. To investigate this, a biomimetic model of angiogenic sprouting inside a tunable synthetic hydrogel is created. It is shown that endothelial cells sense the resistance of the surrounding matrix toward proteolytic cleavage and respond by adjusting their migration phenotype. The resistance cells encounter is impacted by the number of covalent matrix crosslinks, crosslink degradability, and the proteolytic activity of cells. When matrix resistance is high, cells switch from a collective to an actomyosin contractility-dependent single cellular migration mode. This switch in collectivity is accompanied by a major reorganization of the actin cytoskeleton, where stress fibers are no longer visible, and F-actin aggregates in large punctate clusters. Matrix resistance is identified as a previously unknown regulator of angiogenic sprouting and, thus, provides a mechanism by which the physical properties of the matrix impact cell migration modes through cytoskeletal remodeling.
Collapse
Affiliation(s)
- Martin S. Weiß
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Giuseppe Trapani
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Hongyan Long
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Britta Trappmann
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto‐Hahn‐Straße 644227DortmundGermany
| |
Collapse
|
27
|
Liao Z, Lim JJH, Lee JXT, Chua D, Vos MIG, Yip YS, Too CB, Cao H, Wang JK, Shou Y, Tay A, Lehti K, Cheng HS, Tay CY, Tan NS. Attenuating Epithelial-to-Mesenchymal Transition in Cancer through Angiopoietin-Like 4 Inhibition in a 3D Tumor Microenvironment Model. Adv Healthc Mater 2024; 13:e2303481. [PMID: 37987244 DOI: 10.1002/adhm.202303481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Joseph Jing Heng Lim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Choon Boon Too
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Huan Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
28
|
Liu Y, Zhao T, Xu Z, Dai N, Zhao Q, Liang Y, Geng S, Lei M, Xu F, Wang L, Cheng B. Influence of Curvature on Cell Motility and Morphology during Cancer Migration in Confined Microchannels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9956-9967. [PMID: 38349958 DOI: 10.1021/acsami.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Microchannels often serve as highways for cancer migration, and their topology largely determines the migration efficiency. Curvature, a topological parameter in biological systems, has recently been reported to be efficient in guiding cell polarization and migration. Curvature varies widely along curved microchannels, while its influence on cell migration remains elusive. Here, we recapitulated the curved microchannels, as observed in clinical tumor tissues with hydrogels, and studied how cancer cells respond to curvature. We found that cells bend more significantly in a larger curvature and exhibit less spreading as well as lower motility. The underlying mechanism is probably based on the hindrance of the movement of cytoskeletal molecules at the curved microchannel walls. Collectively, our results demonstrated that the accelerated actin retrograde flow rate under local curvature has an effective negative regulation on cell motility and morphology, leading to shortened and bent cell morphologies as well as hampered cell migration efficiency.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Tianyu Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhao Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Ningman Dai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Qiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Yutong Liang
- College of Medicine, Xi'an International University, Xi'an, Shaanxi 710077, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Ming Lei
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Lin Wang
- College of Medicine, Xi'an International University, Xi'an, Shaanxi 710077, PR China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation Universities of Shaanxi Province, Xi'an 710077, China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| |
Collapse
|
29
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
30
|
Gehre C, Qiu W, Klaus Jäger P, Wang X, Marques FC, Nelson BJ, Müller R, Qin XH. Guiding bone cell network formation in 3D via photosensitized two-photon ablation. Acta Biomater 2024; 174:141-152. [PMID: 38061678 DOI: 10.1016/j.actbio.2023.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
A long-standing challenge in skeletal tissue engineering is to reconstruct a three-dimensionally (3D) interconnected bone cell network in vitro that mimics the native bone microarchitecture. While conventional hydrogels are extensively used in studying bone cell behavior in vitro, current techniques lack the precision to manipulate the complex pericellular environment found in bone. The goal of this study is to guide single bone cells to form a 3D network in vitro via photosensitized two-photon ablation of microchannels in gelatin methacryloyl (GelMA) hydrogels. A water-soluble two-photon photosensitizer (P2CK) was added to soft GelMA hydrogels to enhance the ablation efficiency. Remarkably, adding 0.5 mM P2CK reduced the energy dosage threshold five-fold compared to untreated controls, enabling more cell-compatible ablation. By employing low-energy ablation (100 J/cm2) with a grid pattern of 1 µm wide and 30 µm deep microchannels, we induced dendritic outgrowth in human mesenchymal stem cells (hMSC). After 7 days, the cells successfully utilized the microchannels and formed a 3D network. Our findings reveal that cellular viability after low-energy ablation was comparable to unablated controls, whereas high-energy ablation (500 J/cm2) resulted in 42 % cell death. Low-energy grid ablation significantly promoted network formation and >40 µm long protrusion outgrowth. While the broad-spectrum matrix metalloproteinase inhibitor (GM6001) reduced cell spreading by inhibiting matrix degradation, cells invaded the microchannel grid with long protrusions. Collectively, these results emphasize the potential of photosensitized two-photon hydrogel ablation as a high-precision tool for laser-guided biofabrication of 3D cellular networks in vitro. STATEMENT OF SIGNIFICANCE: The inaccessible nature of osteocyte networks in bones renders fundamental research on skeletal biology a major challenge. This limit is partly due to the lack of high-resolution tools that can manipulate the pericellular environment in 3D cultures in vitro. To create bone-like cellular networks, we employ a two-photon laser in combination with a two-photon sensitizer to erode microchannels with low laser dosages into GelMA hydrogels. By providing a grid of microchannels, the cells self-organized into a 3D interconnected network within days. Laser-guided formation of 3D networks from single cells at micron-scale resolution is demonstrated for the first time. In future, we envisage in vitro generation of bone cell networks with user-dictated morphologies for both fundamental and translational bone research.
Collapse
Affiliation(s)
| | - Wanwan Qiu
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | | | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | | | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
31
|
Chikina AS, Zholudeva AO, Lomakina ME, Kireev II, Dayal AA, Minin AA, Maurin M, Svitkina TM, Alexandrova AY. Plasma Membrane Blebbing Is Controlled by Subcellular Distribution of Vimentin Intermediate Filaments. Cells 2024; 13:105. [PMID: 38201309 PMCID: PMC10778383 DOI: 10.3390/cells13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.
Collapse
Affiliation(s)
- Aleksandra S. Chikina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
- Dynamics of Immune Responses Team, INSERM-U1223 Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Anna O. Zholudeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Maria E. Lomakina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Igor I. Kireev
- Department of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119992, Russia;
| | - Alexander A. Dayal
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Alexander A. Minin
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, 26 rue d’Ulm, 75248 Paris, France;
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonina Y. Alexandrova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| |
Collapse
|
32
|
Zholudeva AO, Potapov NS, Kozlova EA, Lomakina ME, Alexandrova AY. Impairment of Assembly of the Vimentin Intermediate Filaments Leads to Suppression of Formation and Maturation of Focal Contacts and Alteration of the Type of Cellular Protrusions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:184-195. [PMID: 38467554 DOI: 10.1134/s0006297924010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 03/13/2024]
Abstract
Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF-/-), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.
Collapse
Affiliation(s)
- Anna O Zholudeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Nikolay S Potapov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ekaterina A Kozlova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Maria E Lomakina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Antonina Y Alexandrova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
33
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
34
|
Mosier JA, Fabiano ED, Ludolph CM, White AE, Reinhart-King CA. Confinement primes cells for faster migration by polarizing active mitochondria. NANOSCALE ADVANCES 2023; 6:209-220. [PMID: 38125598 PMCID: PMC10729874 DOI: 10.1039/d3na00478c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Catherine M Ludolph
- Department of Chemical Engineering, University of Texas at Austin Austin TX USA
| | - Addison E White
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | | |
Collapse
|
35
|
Vahala D, Amos SE, Sacchi M, Soliman BG, Hepburn MS, Mowla A, Li J, Jeong JH, Astell C, Hwang Y, Kennedy BF, Lim KS, Choi YS. 3D Volumetric Mechanosensation of MCF7 Breast Cancer Spheroids in a Linear Stiffness Gradient GelAGE. Adv Healthc Mater 2023; 12:e2301506. [PMID: 37670531 PMCID: PMC11481087 DOI: 10.1002/adhm.202301506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The tumor microenvironment presents spatiotemporal shifts in biomechanical properties with cancer progression. Hydrogel biomaterials like GelAGE offer the stiffness tuneability to recapitulate dynamic changes in tumor tissues by altering photo-energy exposures. Here, a tuneable hydrogel with spatiotemporal control of stiffness and mesh-network is developed. The volume of MCF7 spheroids encapsulated in a linear stiffness gradient demonstrates an inverse relationship with stiffness (p < 0.0001). As spheroids are exposed to increased crosslinking (stiffer) and greater mechanical confinement, spheroid stiffness increases. Protein expression (TRPV4, β1 integrin, E-cadherin, and F-actin) decreases with increasing stiffness while showing strong correlations to spheroid volume (r2 > 0.9). To further investigate the role of volume, MCF7 spheroids are grown in a soft matrix for 5 days prior to a second polymerisation which presents a stiffness gradient to equally expanded spheroids. Despite being exposed to variable stiffness, these spheroids show even protein expression, confirming volume as a key regulator. Overall, this work showcases the versatility of GelAGE and demonstrates volume expansion as a key regulator of 3D mechanosensation in MCF7 breast cancer spheroids. This platform has the potential to further investigation into the role of stiffness and dimensionality in 3D spheroid culture for other types of cancers and diseases.
Collapse
Affiliation(s)
- Danielle Vahala
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Sebastian E. Amos
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Marta Sacchi
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Bram G. Soliman
- Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurch8140New Zealand
| | - Matt S. Hepburn
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Alireza Mowla
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Jiayue Li
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonan‐siChungcheongnam‐do31151South Korea
| | - Chrissie Astell
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonan‐siChungcheongnam‐do31151South Korea
| | - Brendan F. Kennedy
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Khoon S. Lim
- Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurch8140New Zealand
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|
36
|
Kumari A, Veena SM, Luha R, Tijore A. Mechanobiological Strategies to Augment Cancer Treatment. ACS OMEGA 2023; 8:42072-42085. [PMID: 38024751 PMCID: PMC10652740 DOI: 10.1021/acsomega.3c06451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Cancer cells exhibit aberrant extracellular matrix mechanosensing due to the altered expression of mechanosensory cytoskeletal proteins. Such aberrant mechanosensing of the tumor microenvironment (TME) by cancer cells is associated with disease development and progression. In addition, recent studies show that such mechanosensing changes the mechanobiological properties of cells, and in turn cells become susceptible to mechanical perturbations. Due to an increasing understanding of cell biomechanics and cellular machinery, several approaches have emerged to target the mechanobiological properties of cancer cells and cancer-associated cells to inhibit cancer growth and progression. In this Perspective, we summarize the progress in developing mechano-based approaches to target cancer by interfering with the cellular mechanosensing machinery and overall TME.
Collapse
Affiliation(s)
| | | | | | - Ajay Tijore
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
37
|
Kim Y, Tram LTH, Kim KA, Kim BC. Defining Integrin Tension Required for Chemotaxis of Metastatic Breast Cancer Cells in Confinement. Adv Healthc Mater 2023; 12:e2202747. [PMID: 37256848 DOI: 10.1002/adhm.202202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Cancer metastasis is affected by chemical factors and physical cues. From cell adhesion to migration, mechanical tension applied to integrin expresses on the cell membrane and physical confinement significantly regulates cancer cell behaviors. Despite the physical interplay between integrins in cells and ligands in the tumor microenvironment, quantitative analysis of integrin tension during cancer cell migration in microconfined spaces remains elusive owing to the limited experimental tools. Herein, a platform termed microconfinement tension gauge tether to monitor spatial integrin tension with single-molecule precision by analyzing the epithelial-growth-factor-induced chemotaxis of metastatic human breast cancer cells in microfluidic channels is developed. The results reveal that the metastatic cancer cells exert the strongest integrin tension in the range of 54-100 pN at the leading edges of cells during chemokinetic migration on a planar surface, while the cells exert the strongest integrin tension exceeding 100 pN at the cell rear when entering microconfinement. Further analysis demonstrates that cells undergo mesenchymal migration under high integrin tension and less confinement, which is converted to amoeboid migration under low integrin tension or high confinement. In summary, the results identify a basic mechanism underlying the mechanical interactions between integrin tension and microenvironment that determines cancer invasion and metastasis.
Collapse
Affiliation(s)
- Young Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Le Thi Hong Tram
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyung Ah Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byoung Choul Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
38
|
Mallin MM, Kim N, Choudhury MI, Lee SJ, An SS, Sun SX, Konstantopoulos K, Pienta KJ, Amend SR. Cells in the polyaneuploid cancer cell (PACC) state have increased metastatic potential. Clin Exp Metastasis 2023:10.1007/s10585-023-10216-8. [PMID: 37326720 DOI: 10.1007/s10585-023-10216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | | | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kenneth J Pienta
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Sarah R Amend
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
39
|
Atcha H, Choi YS, Chaudhuri O, Engler AJ. Getting physical: Material mechanics is an intrinsic cell cue. Cell Stem Cell 2023; 30:750-765. [PMID: 37267912 PMCID: PMC10247187 DOI: 10.1016/j.stem.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Advances in biomaterial science have allowed for unprecedented insight into the ability of material cues to influence stem cell function. These material approaches better recapitulate the microenvironment, providing a more realistic ex vivo model of the cell niche. However, recent advances in our ability to measure and manipulate niche properties in vivo have led to novel mechanobiological studies in model organisms. Thus, in this review, we will discuss the importance of material cues within the cell niche, highlight the key mechanotransduction pathways involved, and conclude with recent evidence that material cues regulate tissue function in vivo.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Hiraki HL, Matera DL, Wang WY, Prabhu ES, Zhang Z, Midekssa F, Argento AE, Buschhaus JM, Humphries BA, Luker GD, Pena-Francesch A, Baker BM. Fiber density and matrix stiffness modulate distinct cell migration modes in a 3D stroma mimetic composite hydrogel. Acta Biomater 2023; 163:378-391. [PMID: 36179980 PMCID: PMC10043045 DOI: 10.1016/j.actbio.2022.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/26/2023]
Abstract
The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.
Collapse
Affiliation(s)
- Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Eashan S Prabhu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Zane Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Firaol Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Anna E Argento
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brock A Humphries
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
41
|
Wu X, Yang K, He S, Zhu F, Kang S, Liu B, Sun C, Pang W, Wang Y. Dual-functional gold nanorods micro pattern guiding cell alignment and cellular microenvironment monitoring. J Colloid Interface Sci 2023; 647:429-437. [PMID: 37269739 DOI: 10.1016/j.jcis.2023.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Surface topography has become a powerful tool to control cell behaviors, however, it's still difficult to monitor cellular microenvironment changes during topography-induced cell responses. Here, a dual-functional platform integrating cell alignment with extracellular pH (pHe) measurement is proposed. The platform is fabricated by assembling gold nanorods (AuNRs) into micro pattern via wettability difference interface method, which provides topographical cues and surface-enhanced Raman scattering (SERS) effect for cell alignment and biochemical detection respectively. Results demonstrate that contact guidance and cell morphology changes are achieved by the AuNRs micro pattern, and pHe are also obtained by the changes of SERS spectra during cell alignment, where the pHe near cytoplasm is lower than nucleus, revealing the heterogeneity of extracellular microenvironment. Moreover, a correlation between lower extracellular pH and higher cell migration ability is revealed, and AuNRs micro pattern can differentiate cells with different migration ability, which may be an inheritable character during cell division. Furthermore, mesenchymal stem cells response dramatically to AuNRs micro pattern, showing different morphology and increased pHe level, offering the potential of impacting stem cell differentiation. This approach provides a new idea for the research of cell regulation and response mechanism.
Collapse
Affiliation(s)
- Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kai Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shenghui Kang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
42
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
43
|
Marcadis AR, Kao E, Wang Q, Chen CH, Gusain L, Powers A, Bakst RL, Deborde S, Wong RJ. Rapid cancer cell perineural invasion utilizes amoeboid migration. Proc Natl Acad Sci U S A 2023; 120:e2210735120. [PMID: 37075074 PMCID: PMC10151474 DOI: 10.1073/pnas.2210735120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/22/2023] [Indexed: 04/20/2023] Open
Abstract
The invasion of nerves by cancer cells, or perineural invasion (PNI), is potentiated by the nerve microenvironment and is associated with adverse clinical outcomes. However, the cancer cell characteristics that enable PNI are poorly defined. Here, we generated cell lines enriched for a rapid neuroinvasive phenotype by serially passaging pancreatic cancer cells in a murine sciatic nerve model of PNI. Cancer cells isolated from the leading edge of nerve invasion showed a progressively increasing nerve invasion velocity with higher passage number. Transcriptome analysis revealed an upregulation of proteins involving the plasma membrane, cell leading edge, and cell movement in the leading neuroinvasive cells. Leading cells progressively became round and blebbed, lost focal adhesions and filipodia, and transitioned from a mesenchymal to amoeboid phenotype. Leading cells acquired an increased ability to migrate through microchannel constrictions and associated more with dorsal root ganglia than nonleading cells. ROCK inhibition reverted leading cells from an amoeboid to mesenchymal phenotype, reduced migration through microchannel constrictions, reduced neurite association, and reduced PNI in a murine sciatic nerve model. Cancer cells with rapid PNI exhibit an amoeboid phenotype, highlighting the plasticity of cancer migration mode in enabling rapid nerve invasion.
Collapse
Affiliation(s)
- Andrea R. Marcadis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Elizabeth Kao
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Qi Wang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Laxmi Gusain
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ann Powers
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Richard L. Bakst
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY10029
| | - Sylvie Deborde
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
44
|
Cykowska A, Hofmann UK, Tiwari A, Kosnopfel C, Riester R, Danalache M. Biomechanical and biochemical assessment of YB-1 expression in A375 melanoma cell line: Exploratory study. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1050487. [PMID: 39086667 PMCID: PMC11285636 DOI: 10.3389/fmmed.2023.1050487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/23/2023] [Indexed: 08/02/2024]
Abstract
Malignant melanoma is the most lethal form of skin cancer. Y-box binding protein 1 (YB-1) plays a prominent role in mediating metastatic behavior by promoting epithelial-to-mesenchymal transition (EMT). Migratory melanoma cells exhibit two major migration modes: elongated mesenchymal or rounded amoeboid. Using A375 melanoma cell line and the YB-1 knock-out model, we aimed to elucidate biochemical and biomechanical changes in migration signaling pathways in the context of melanoma metastases. We subjected A375 YB-1 knock-out and parental cells to atomic force microscopy (stiffness determination), immunolabelling, and proteome analysis. We found that YB-1 expressing cells were significantly stiffer compared to the corresponding YB-1 knock-out cell line. Our study demonstrated that the constitutive expression of YB-1 in A375 melanoma cell line appears to be closely related to known biomarkers of epithelial-to-mesenchymal transition, nestin, and vimentin, resulting in a stiffer phenotype, as well as a wide array of proteins involved in RNA, ribosomes, and spliceosomes. YB-1 knock-out resulted in nestin depletion and significantly lower vimentin expression, as well as global upregulation of proteins related to the cytoskeleton and migration. YB-1 knock-out cells demonstrated both morphological features and biochemical drivers of mesenchymal/ameboid migration. Melanoma is a highly plastic, adaptable, and aggressive tumor entity, capable of exhibiting characteristics of different migratory modes.
Collapse
Affiliation(s)
- Anna Cykowska
- Department of Orthopaedic Surgery, University Hospital and Faculty of Medicine, University Hospital of Tübingen, Tübingen, Germany
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Aadhya Tiwari
- Department of System Biology, MD Anderson Cancer Center, Houston, TX, United States
| | - Corinna Kosnopfel
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Department of Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Rosa Riester
- Department of Orthopaedic Surgery, University Hospital and Faculty of Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Marina Danalache
- Department of Orthopaedic Surgery, University Hospital and Faculty of Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Nguyen DT, Pedro DI, Pepe A, Rosa JG, Bowman JI, Trachsel L, Golde GR, Suzuki I, Lavrador JM, Nguyen NTY, Kis MA, Smolchek RA, Diodati N, Liu R, Phillpot SR, Webber AR, Castillo P, Sayour EJ, Sumerlin BS, Sawyer WG. Bioconjugation of COL1 protein on liquid-like solid surfaces to study tumor invasion dynamics. Biointerphases 2023; 18:021001. [PMID: 36898958 PMCID: PMC10008099 DOI: 10.1116/6.0002083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/12/2023] Open
Abstract
Tumor invasion is likely driven by the product of intrinsic and extrinsic stresses, reduced intercellular adhesion, and reciprocal interactions between the cancer cells and the extracellular matrix (ECM). The ECM is a dynamic material system that is continuously evolving with the tumor microenvironment. Although it is widely reported that cancer cells degrade the ECM to create paths for migration using membrane-bound and soluble enzymes, other nonenzymatic mechanisms of invasion are less studied and not clearly understood. To explore tumor invasion that is independent of enzymatic degradation, we have created an open three-dimensional (3D) microchannel network using a novel bioconjugated liquid-like solid (LLS) medium to mimic both the tortuosity and the permeability of a loose capillary-like network. The LLS is made from an ensemble of soft granular microgels, which provides an accessible platform to investigate the 3D invasion of glioblastoma (GBM) tumor spheroids using in situ scanning confocal microscopy. The surface conjugation of the LLS microgels with type 1 collagen (COL1-LLS) enables cell adhesion and migration. In this model, invasive fronts of the GBM microtumor protruded into the proximal interstitial space and may have locally reorganized the surrounding COL1-LLS. Characterization of the invasive paths revealed a super-diffusive behavior of these fronts. Numerical simulations suggest that the interstitial space guided tumor invasion by restricting available paths, and this physical restriction is responsible for the super-diffusive behavior. This study also presents evidence that cancer cells utilize anchorage-dependent migration to explore their surroundings, and geometrical cues guide 3D tumor invasion along the accessible paths independent of proteolytic ability.
Collapse
Affiliation(s)
- D. T. Nguyen
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - D. I. Pedro
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - A. Pepe
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - J. G. Rosa
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - J. I. Bowman
- Department of Chemistry, College of Liberal Arts and Sciences, College of Medicine University of Florida, Gainesville, Florida 3261
| | - L. Trachsel
- Department of Chemistry, College of Liberal Arts and Sciences, College of Medicine University of Florida, Gainesville, Florida 3261
| | - G. R. Golde
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - I. Suzuki
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - J. M. Lavrador
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - N. T. Y. Nguyen
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - M. A. Kis
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - R. A. Smolchek
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - N. Diodati
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - R. Liu
- Department of Surgery, College of Medicine University of Florida, Gainesville, Florida 3261
| | - S. R. Phillpot
- Department of Materials Science and Engineering Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - A. R. Webber
- Department of Materials Science and Engineering Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261
| | - P. Castillo
- Department of Pediatrics, College of Medicine University of Florida, Gainesville, Florida 3261
| | | | - B. S. Sumerlin
- Department of Chemistry, College of Liberal Arts and Sciences, College of Medicine University of Florida, Gainesville, Florida 3261
| | - W. G. Sawyer
- Author to whom correspondence should be addressed:
| |
Collapse
|
46
|
Confined environments induce polarized paraspeckle condensates. Commun Biol 2023; 6:145. [PMID: 36737664 PMCID: PMC9898560 DOI: 10.1038/s42003-023-04528-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer cells experience confinement as they navigate the tumour microenvironment during metastasis. Recent studies have revealed that the nucleus can function as a 'ruler' for measuring physical confinement via membrane tension, allowing for compression-sensitive changes in migration. Cell nuclei contain many nuclear bodies that form when their components phase separate and condense within permissive local regions within the nucleus. However, how sub-nuclear organisation and phase separation changes with cell confinement and compression is largely unknown. Here we focus on paraspeckles, stress-responsive subnuclear bodies that form by phase separation around the long non-coding RNA NEAT1. As cells entered moderate confinement, a significant increase in paraspeckle number and size was observed compared to unconfined cells. Paraspeckle polarization bias towards the leading edge was also observed in confinement, correlating with regions of euchromatin. Increasing paraspeckle abundance resulted in increases in confined migration likelihood, speed, and directionality, as well as an enhancement of paraspeckle polarization towards the leading edge. This polarization of paraspeckle condensates may play a key role in regulating confined migration and invasion in cancer cells, and illustrates the utility of microchannel-based assays for identifying phenomena not observed on 2D or 3D bulk substrates.
Collapse
|
47
|
Zhang Y, Li Y, Thompson KN, Stoletov K, Yuan Q, Bera K, Lee SJ, Zhao R, Kiepas A, Wang Y, Mistriotis P, Serra SA, Lewis JD, Valverde MA, Martin SS, Sun SX, Konstantopoulos K. Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis. Nat Commun 2022; 13:6128. [PMID: 36253369 PMCID: PMC9576788 DOI: 10.1038/s41467-022-33683-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.
Collapse
Grants
- R01 CA254193 NCI NIH HHS
- R01 GM134542 NIGMS NIH HHS
- This work was supported, in part, by an NIH/NCI R01 CA254193 (K.K., S.S.M., S.X.S.), R01 GM134542 (S.X.S., K.K.), NSF 2045715 (Y.L.), the Spanish Ministry of Science, Education and Universities through grants RTI2018-099718-B-100 (M.A.V.), an institutional “Maria de Maeztu” Programme for Units of Excellence in R&D and FEDER funds (M.A.V.) and postdoctoral fellowships from the Fonds de recherche du Quebec - Nature et technologies and the Natural Sciences and Engineering Research Council of Canada (A.K.). The opinions, findings, and conclusions, or recommendations expressed are those of the authors and do not necessarily reflect the views of any of the funding agencies.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY, 13902, USA
| | - Keyata N Thompson
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Qinling Yuan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yao Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Selma A Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Miguel A Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Stuart S Martin
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sean X Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Nguyen LTS, Jacob MAC, Parajón E, Robinson DN. Cancer as a biophysical disease: Targeting the mechanical-adaptability program. Biophys J 2022; 121:3573-3585. [PMID: 35505610 PMCID: PMC9617128 DOI: 10.1016/j.bpj.2022.04.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
With the number of cancer cases projected to significantly increase over time, researchers are currently exploring "nontraditional" research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evidence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the mechanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as myosin II, α-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in cancer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treatments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion, metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges and shortcomings as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mark Allan C Jacob
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eleana Parajón
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
49
|
Conti M, Bolzan I, Dal Zilio S, Parisse P, Andolfi L, Lazzarino M. Water-Air Interface to Mimic In Vitro Tumoral Cell Migration in Complex Micro-Environments. BIOSENSORS 2022; 12:822. [PMID: 36290959 PMCID: PMC9599853 DOI: 10.3390/bios12100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The long-known role of cell migration in physiological and pathological contexts still requires extensive research to be fully understood, mainly because of the intricate interaction between moving cells and their surroundings. While conventional assays fail to capture this complexity, recently developed 3D platforms better reproduce the cellular micro-environment, although often requiring expensive and time-consuming imaging approaches. To overcome these limitations, we developed a novel approach based on 2D micro-patterned substrates, compatible with conventional microscopy analysis and engineered to create micro-gaps with a length of 150 µm and a lateral size increasing from 2 to 8 µm, where a curved water-air interface is created on which cells can adhere, grow, and migrate. The resulting hydrophilic/hydrophobic interfaces, variable surface curvatures, spatial confinements, and size values mimic the complex micro-environment typical of the extracellular matrix in which aggressive cancer cells proliferate and migrate. The new approach was tested with two breast cancer cell lines with different invasive properties. We observed that invasive cells (MDA-MB-231) can align along the pattern and modify both their morphology and their migration rate according to the size of the water meniscus, while non-invasive cells (MCF-7) are only slightly respondent to the surrounding micro-environment. Moreover, the selected pattern highlighted a significative matrix deposition process connected to cell migration. Although requiring further optimizations, this approach represents a promising tool to investigate cell migration in complex environments.
Collapse
Affiliation(s)
- Martina Conti
- Department of Physics, University of Trieste, 34127 Trieste, Italy
- IOM-CNR, Institute of Materials Foundry—National Research Council, 34149 Trieste, Italy
| | - Ilaria Bolzan
- Department of Physics, University of Trieste, 34127 Trieste, Italy
- IOM-CNR, Institute of Materials Foundry—National Research Council, 34149 Trieste, Italy
| | - Simone Dal Zilio
- IOM-CNR, Institute of Materials Foundry—National Research Council, 34149 Trieste, Italy
| | - Pietro Parisse
- IOM-CNR, Institute of Materials Foundry—National Research Council, 34149 Trieste, Italy
| | - Laura Andolfi
- IOM-CNR, Institute of Materials Foundry—National Research Council, 34149 Trieste, Italy
| | - Marco Lazzarino
- IOM-CNR, Institute of Materials Foundry—National Research Council, 34149 Trieste, Italy
| |
Collapse
|
50
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|