1
|
Wang B, Guo R, Qiu F, Zhang Z, Lu X, Zhang H. In situ vaccine "seeds" for enhancing cancer immunotherapy by exploiting apoptosis-associated morphological changes. J Control Release 2025; 379:757-767. [PMID: 39855398 DOI: 10.1016/j.jconrel.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Despite the development of many effective immunoadjuvants (IAs), the therapeutic efficacy of in situ vaccines for anti-tumor applications remains limited. Inspired by the morphological changes occurring during apoptosis, this study aims to leverage the release process of autologous tumor antigens (ATAs) to enhance the anti-tumor activity of in situ vaccines. We developed five distinct liposomes, each with unique characteristics and functions, incorporating FDA-approved monophosphoryl lipid A (MPLA) adjuvants into their lipid bilayers. Our findings revealed that the apoptotic bodies generated from tumor cells treated with membrane-fusion liposomes (MFLs) exhibited a greater capacity for immune activation. Mechanistic studies demonstrated that MFLs can utilize the morphological changes associated with apoptosis to accurately deliver adjuvants to apoptotic bodies. To further optimize the efficiency of antigen presentation by these apoptotic bodies as an adjuvant redistribution platform, we encapsulated a calcium chelator within the MFLs to inhibit the externalization of phosphatidylserine (PS) during apoptosis. Through a series of apoptosis-related cellular events, the vaccine can widely disseminate immunoadjuvants (IAs) within tumor tissues, similar to the dispersal of plant seeds. To the best of our knowledge, this is the first approach to utilize apoptosis-associated morphological changes to enhance the immunotherapeutic efficacy of cancer vaccines.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Rong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Furui Qiu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Xiang Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China.
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
2
|
Zhang Y, Zhang M, Hu X, Hao H, Quan C, Ren T, Gao H, Wang J. Engineering a porphyrin COFs encapsulated by hyaluronic acid tumor-targeted nanoplatform for sequential chemo-photodynamic multimodal tumor therapy. Int J Biol Macromol 2024; 279:135328. [PMID: 39242006 DOI: 10.1016/j.ijbiomac.2024.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Numerous barriers hinder the entry of drugs into cells, limiting the effectiveness of tumor pharmacotherapy. Effective penetration into tumor tissue and facilitated cellular uptake are crucial for the efficacy of nanotherapeutics. Photodynamic therapy (PDT) is a promising approach for tumor suppression. In this study, we developed a size-adjustable porphyrin-based covalent organic framework (COF), further modified with hyaluronic acid (HA), to sequentially deliver drugs for combined chemo-photodynamic tumor therapy. A larger COF (P-COF, approximately 500 nm) was loaded with the antifibrotic drug losartan (LST) to create LST/P-COF@HA (LCH), which accumulates at tumor sites. After injection, LCH releases LST, downregulating tumor extracellular matrix (ECM) component levels and decreasing collagen density, thus reducing tumor solid stress. Additionally, the reactive oxygen species (ROS) generated from LCH under 660 nm laser irradiation induce lipid peroxidation of cell membranes. Owing to its larger particle size, LCH primarily functions extracellularly, paving the way for subsequent treatments. Following intravenous administration, the smaller COF (p-COF, approximately 200 nm) loaded with doxorubicin (DOX) and modified with HA (DOX/p-COF@HA, DCH) readily enters cells in the altered microenvironment. Within tumor cells, ROS generated from DCH facilitates PDT, while the released DOX targets cancer cells via chemotherapy, triggered by disulfide bond cleavage in the presence of elevated glutathione (GSH) levels. This depletion of GSH further enhances the PDT effect. Leveraging the size-tunable properties of the porphyrin COF, this platform achieves a multifunctional delivery system that overcomes specific barriers at optimal times, leading to improved outcomes in chemo-photodynamic multimodal tumor therapy in vivo.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Han Hao
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Cuilu Quan
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Tiantian Ren
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan, Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064 Chengdu, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China.
| |
Collapse
|
3
|
Shi J, Ma W, Deng J, Zheng S, Xia F, Liu X, Kikkawa A, Tanaka K, Kamei KI, Tian C. Self-assembled hyaluronic acid nanomicelle for enhanced cascade cancer chemotherapy via self-sensitized ferroptosis. Carbohydr Polym 2024; 343:122489. [PMID: 39174141 DOI: 10.1016/j.carbpol.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024]
Abstract
The clinical utility of chemotherapy is often compromised by its limited efficacy and significant side effects. Addressing these concerns, we have developed a self-assembled nanomicelle, namely SANTA FE OXA, which consists of hyaluronic acid (HA) conjugated with ferrocene methanol (FC), oxaliplatin prodrug (OXA(IV)) and ethylene glycol-coupled linoleic acid (EG-LA). Targeted delivery is achieved by HA binding to the CD44 receptors that are overexpressed on tumor cells, facilitating drug uptake. Once internalized, hyaluronidase (HAase) catalyzes the digestion of the SANTA FE OXA, releasing FC and reducing OXA(IV) into an active form. The active oxaliplatin (OXA) induces DNA damage and increases intracellular hydrogen peroxide (H2O2) levels via cascade reactions. Simultaneously, FC disrupts the redox balance within tumor cells, inducing ferroptosis. Both in vivo and in vitro experiments confirmed that SANTA FE OXA inhibited tumor growth by combining cascade chemotherapy and self-sensitized ferroptosis, achieving a tumor inhibition rate of up to 76.61 %. Moreover, this SANTA FE OXA significantly mitigates the systemic toxicity commonly associated with platinum-based chemotherapeutics. Our findings represent a compelling advancement in nanomedicine for enhanced cascade cancer therapy.
Collapse
Affiliation(s)
- Jianbin Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenjing Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Deng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shunzhe Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fengli Xia
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ayumi Kikkawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kaho Tanaka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ken-Ichiro Kamei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States of America.
| | - Chutong Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhang X, Lou X, Qiao H, Jiang Z, Sun H, Shi X, He Z, Sun J, Sun M. Supramolecular self-sensitized dual-drug nanoassemblies potentiating chemo-photodynamic therapy for effective cancer treatment. Int J Pharm 2024; 662:124496. [PMID: 39033943 DOI: 10.1016/j.ijpharm.2024.124496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (∼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.
Collapse
Affiliation(s)
- Xu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xinyu Lou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Han Qiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhouyu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hang Sun
- Hong Kong Education University, Hong Kong SAR, 999077, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
5
|
Rahman MM, Wang J, Wang G, Su Z, Li Y, Chen Y, Meng J, Yao Y, Wang L, Wilkens S, Tan J, Luo J, Zhang T, Zhu C, Cho SH, Wang L, Lee LP, Wan Y. Chimeric nanobody-decorated liposomes by self-assembly. NATURE NANOTECHNOLOGY 2024; 19:818-824. [PMID: 38374413 PMCID: PMC11904852 DOI: 10.1038/s41565-024-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Jing Wang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, China
| | - Guosheng Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhipeng Su
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Yizeng Li
- Biophysics and Mathematical Biology Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Jinguo Meng
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Yao Yao
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Lefei Wang
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY, USA
| | - Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, IL, USA
| | - Juntao Luo
- Department of Pharmacology, Upstate Medical University, Syracuse, NY, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Johnson City, NY, USA
| | - Chuandong Zhu
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sung Hyun Cho
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Luke P Lee
- Harvard Medical School, Harvard University; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
6
|
Fang R, Li Y, Jin J, Yang F, Chen J, Zhang J. Development of Anticancer Ferric Complex Based on Human Serum Albumin Nanoparticles That Generate Oxygen in Cells to Overcome Hypoxia-Induced Resistance in Metal Chemotherapy. J Med Chem 2024; 67:1184-1196. [PMID: 38181502 DOI: 10.1021/acs.jmedchem.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
To achieve the remarkable therapeutic efficacy of a ferric (Fe) complex via a reactive oxygen species (ROS) mechanism in solid tumors, a therapeutic Fe-based Schiff-base complex (Fe1) was synthesized and encapsulated in human serum albumin (HSA) nanoparticles (NPs), which generated oxygen (O2) in cancer cells in situ. The HSA-Fe1-O2 NP (HSA-Fe1-O2NP) delivery system effectively overcame hypoxia-induced resistance in metal chemotherapy, alleviated the hypoxic condition of tumor tissues, and showed excellent tumor suppression by generating excess ROS and promoting the apoptosis of SK-N-MC tumor cells. The HSA-Fe1-O2NPs not only enhanced the ability of the Fe1 complex to target tumor cells but also decreased adverse effects in vivo.
Collapse
Affiliation(s)
- Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Yanping Li
- School of Public Health, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
7
|
Chu D, Qu H, Huang X, Shi Y, Li K, Lin W, Xu Z, Li D, Chen H, Gao L, Wang W, Wang H. Manganese Amplifies Photoinduced ROS in Toluidine Blue Carbon Dots to Boost MRI Guided Chemo/Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304968. [PMID: 37715278 DOI: 10.1002/smll.202304968] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Indexed: 09/17/2023]
Abstract
The contrast agents and tumor treatments currently used in clinical practice are far from satisfactory, due to the specificity of the tumor microenvironment (TME). Identification of diagnostic and therapeutic reagents with strong contrast and therapeutic effect remains a great challenge. Herein, a novel carbon dot nanozyme (Mn-CD) is synthesized for the first time using toluidine blue (TB) and manganese as raw materials. As expected, the enhanced magnetic resonance (MR) imaging capability of Mn-CDs is realized in response to the TME (acidity and glutathione), and r1 and r2 relaxation rates are enhanced by 224% and 249%, respectively. In addition, the photostability of Mn-CDs is also improved, and show an efficient singlet oxygen (1 O2 ) yield of 1.68. Moreover, Mn-CDs can also perform high-efficiency peroxidase (POD)-like activity and catalyze hydrogen peroxide to hydroxyl radicals, which is greatly improved under the light condition. The results both in vitro and in vivo demonstrate that the Mn-CDs are able to achieve real-time MR imaging of TME responsiveness through aggregation of the enhanced permeability and retention effect at tumor sites and facilitate light-enhanced chemodynamic and photodynamic combination therapies. This work opens a new perspective in terms of the role of carbon nanomaterials in integrated diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Dongchuan Chu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Hang Qu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yu Shi
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ke Li
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Wenzheng Lin
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Hao Chen
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Huihui Wang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
8
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
9
|
Kong L, Yang C, Zhang Z. Organism-Generated Biological Vesicles In Situ: An Emerging Drug Delivery Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204178. [PMID: 36424135 PMCID: PMC9839880 DOI: 10.1002/advs.202204178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biological vesicles, containing genetic materials and proteins of the original cells, are usually used for local or systemic communications among cells. Currently, studies on biological vesicles as therapeutic strategies or drug delivery carriers mainly focus on exogenously generated biological vesicles. However, the limitations of yield and purity caused by the complex purification process still hinder their clinical transformation. Recently, it has been reported that living organisms, including cells and bacteria, can produce functional/therapeutic biological vesicles within body automatically. Therefore, using organisms to produce endogenous biological vesicles in body as drug/bio-information delivery carriers has become a potential therapeutic strategy. In this review, the current development status and application prospects of in situ organism-produced biological vesicles are introduced. The advantages and effects of this endogenous biological vesicles-based strategy in drug delivery and disease treatments are analyzed. According to the type of endogenous biological vesicles, they are divided into four categories: exosomes, platelet-derived microparticles, apoptotic bodies, and bacteria-released outer membrane vesicles. And finally, the shortcomings of current research and future development are analyzed. This review is believed to open up the application of endogenous biological vesicles in the field of biomedicine and shed light on current research.
Collapse
Affiliation(s)
- Li Kong
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Conglian Yang
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zhiping Zhang
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
- Hubei Engineering Research Center for Novel Drug Delivery SystemHuazhong University of Science and TechnologyWuhan430030P. R. China
- National Engineering Research Center for NanomedicineHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
10
|
Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, Zhao D, Zhang J. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Cen J, Huang Y, Liu J, Liu Y. Thermo-responsive palladium-ruthenium nanozyme synergistic photodynamic therapy for metastatic breast cancer management. J Mater Chem B 2022; 10:10027-10041. [PMID: 36458841 DOI: 10.1039/d2tb01481e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species (ROS) have become an effective "weapon" for cancer therapy due to their strong oxidation and high anti-tumor activity. Photodynamic therapy (PDT) is one of the classical methods to induce reactive oxygen species. Therefore, an ultraminiature palladium ruthenium alloy (sPdRu) and Ru(II) were combined with thermally responsive phase change materials (PCMs). Polypyridyl-complex (RCE) co-encapsulation was performed to obtain thermally responsive nanoparticles (PdRu-RCE@PCMNPs) for multimodal synergistic anti-breast cancer therapy. On the one hand, the thermosensitive PCM protective layer can realize the slow release of sPdRu, and then catalyze the production of oxygen from tumor endogenous H2O2 to perform RCE-mediated PDT. At the same time, sPdRu further increased ROS levels through peroxidase (POD) activity. On the other hand, sPdRu has high photothermal conversion efficiency and can be effectively used for photothermal therapy and photodynamic therapy. Importantly, PdRu-RCE@PCM NPs not only can effectively inhibit primary tumor growth, but also can inhibit tumor metastasis. In addition, due to the effective accumulation of sPdRu and RCE, PdRu-RCE@PCM NPs also show excellent fluorescence and photothermal imaging capabilities of tumors, which can be used for tumor tracing and evaluation of treatment. Accordingly, PdRu-RCE@PCM NPs are useful in treating primary tumors and inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Jieqiong Cen
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China. .,College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Yuqin Huang
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China. .,College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| |
Collapse
|
12
|
Xie L, Chen W, Chen Q, Jiang Y, Song E, Zhu X, Song Y. Synergistic hydroxyl radical formation, system XC- inhibition and heat shock protein crosslinking tango in ferrotherapy: A prove-of-concept study of "sword and shield" theory. Mater Today Bio 2022; 16:100353. [PMID: 35865409 PMCID: PMC9294558 DOI: 10.1016/j.mtbio.2022.100353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis provide new insights into designing nanomedicines for enhanced cancer therapy; however, its antitumor efficacy is relatively low, mainly due to self-protective mechanism of cancer cells, e.g., heat shock protein (HSP) overexpression. Since HSPs can be modified/inhibited by lipid peroxidation (LPO) ending products, we construct a nanoplatform, namely MPDA@Fe3O4-Era, to amplify intracellular reactive oxygen species (ROS) and LPO for synergistic ferrotherapy. Upon tumor acidic microenvironment and local near-infrared stimuli, this nanoplatform releases Fe3O4 and reacts with intracellular hydrogen peroxide (H2O2) to promote Fenton reaction, and yields significant intracellular ROS (specifically hydroxyl radical, •OH) and LPO. In turn, LPO ending products crosslink HSPs to destroy self-preservation pathways of cancer cells to enhance anticancer effect. Meanwhile, the released erastin inhibits system XC− signal pathway to depletes glutathione. Fe3O4 loading further provides magnetic resonance imaging T2-weighted signal to guide anti-tumor treatment. Together, this nanoplatform not only provides •OH (as a “sword” to attack tumor cells), but also inhibits system XC− signal pathway and crosslinks HSP (break down the “shield” of tumor cells) to maximize synergistic ferro-therapeutic effect. MPDA@Fe3O4-Era plus laser irradiation possessed highly efficient tumor suppression with magnified the levels of •OH and inactive glutathione peroxidase 4 (GPX4), which can promote the development of precise cooperative cancer therapy.
Collapse
Affiliation(s)
- Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Wenjie Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Qifang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China
| |
Collapse
|
13
|
Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. J Control Release 2022; 348:346-356. [PMID: 35679965 DOI: 10.1016/j.jconrel.2022.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023]
Abstract
Ferroptosis is a recently identified regulated cell death pathway featured in iron prompted lipid peroxidation inside cells and found to be an effective approach to suppress tumor growth. Motived by the high efficacy of ferrous ions (Fe2+) in initiating intracellular lipid peroxidation via the Fenton reaction, this study herein prepares a pH-responsive Fe2+ delivery nanocarrier by coating calcium carbonate (CaCO3) nanoparticles with a metal-polyphenol coordination polymer composed of gallic acid (GA) and Fe2+. Together with simultaneous encapsulation of succinic acid conjugated cisplatin prodrugs (Pt(IV)-SA) and Fe2+, the yielded nanoparticles, coined as PGFCaCO3, are synthesized and exhibit uniform hollow structure. After PEGylation, the resulted PGFCaCO3-PEG shows increased physiological stability and pH-dependent decomposition, drug release and catalytic capability in initiating lipid peroxidation. After being endocytosed, PGFCaCO3-PEG effectively promoted intracellular generation of cytotoxic reactive oxygen species including lipid peroxide, thereby exhibited superior inhibition effect towards both murine 4T1 and CT26 cancer cells over Pt(IV)-SA and GFCaCO3-PEG. As a result, treatment with systemic administration of PGFCaCO3-PEG effectively suppressed 4T1 tumor growth via combined Fe2+ initiated ferroptosis and Pt(IV)-SA mediated chemotherapy. This work highlights that intracellular delivery of Fe2+ is a robust approach to enhance tumor chemotherapy by inducing ferroptosis.
Collapse
|
14
|
Zhong X, Bao X, Zhong H, Zhou Y, Zhang Z, Lu Y, Dai Q, Yang Q, Ke P, Xia Y, Wu L, Sui Z, Lu Y, Han M, Xu W, Gao J. Mitochondrial targeted drug delivery combined with manganese catalyzed Fenton reaction for the treatment of breast cancer. Int J Pharm 2022; 622:121810. [PMID: 35580685 DOI: 10.1016/j.ijpharm.2022.121810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
In previous studies, we found that triphenylphosphine-modified doxorubicin (TPP-DOX) can effectively kill drug-resistant tumor cells, but its effect on sensitive tumor cells is weakened. In this research, with albumin from Bovine Serum (BSA) as a carrier, TPP-DOX@MnBSA (TD@MB) nanoparticles were prepared by co-loading TPP-DOX and manganese which can realize the combination of chemotherapy and chemodynamic therapy (CDT). The uniform and stable nano-spherical nanoparticle can promote drug uptake, achieve mitochondrial-targeted drug delivery, increase intracellular reactive oxygen species (ROS) and catalyze the production of highly toxic oxidative hydroxyl radicals (OH·), further inhibiting the growth of both sensitive and drug-resistant MCF-7 cells. Besides, TD@MB can down-regulate the stemness-related proteins and the metastasis-related proteins, potentially decreasing the tumor stemness and metastasis. In vivo experiment indicated that TD@MB was able to exert desired antitumor effect, good tumor targeting and biocompatibility.
Collapse
Affiliation(s)
- Xincheng Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiyao Yang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Peng Ke
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiyi Xia
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zaiyun Sui
- Shandong Academy of Chinese Medicine, Jinan 250000, PR China
| | - Yan Lu
- Department of Pharmacy, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - WenHong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
15
|
He Y, Wang K, Lu Y, Sun B, Sun J, Liang W. Monensin Enhanced Generation of Extracellular Vesicles as Transfersomes for Promoting Tumor Penetration of Pyropheophorbide-a from Fusogenic Liposome. NANO LETTERS 2022; 22:1415-1424. [PMID: 35072479 DOI: 10.1021/acs.nanolett.1c04962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The current state of antitumor nanomedicines is severely restricted by poor penetration in solid tumors. It is indicated that extracellular vesicles (EVs) secreted by tumor cells can mediate the intercellular transport of antitumor drug molecules in the tumor microenvironment. However, the inefficient generation of EVs inhibits the application of this approach. Herein, we construct an EV-mediated self-propelled liposome containing monensin as the EV secretion stimulant and photosensitizer pyropheophorbide-a (PPa) as a therapeutic agent. Monensin and PPa are first transferred to the tumor plasma membrane with the help of membrane fusogenic liposomes. By hitchhiking EVs secreted by the outer tumor cells, both drugs are layer-by-layer transferred into the deep region of a solid tumor. Particularly, monensin, serving as a sustainable booster, significantly amplifies the EV-mediated PPa penetration by stimulating EV production. Our results show that this endogenous EV-driven nanoplatform leads to deep tumor penetration and enhanced phototherapeutic efficacy.
Collapse
Affiliation(s)
- Yifei He
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100864, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100864, P. R. China
| |
Collapse
|
16
|
Cao A, Liu W, Mei-Zhen Z, Qin SY, Cheng YJ, Zhang AQ. A nanodevice with lifetime-improved singlet oxygen for enhanced photodynamic therapy. Chem Commun (Camb) 2022; 58:6227-6230. [DOI: 10.1039/d2cc01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The short lifetime of singlet oxygn reduces its accumulation in the ehdoplasmic reticulum, which limited the output of photodynamic therapy. A nanodevice with functions of singlet oxygen production, storage and...
Collapse
|
17
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front Chem 2021; 9:746646. [PMID: 34869202 PMCID: PMC8636905 DOI: 10.3389/fchem.2021.746646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, drug delivery vehicles based on nanotechnology have significantly attracted the attention of researchers in the field of nanomedicine since they can achieve ideal drug release and biodistribution. Among the various organic or inorganic materials that used to prepare drug delivery vehicles for effective cancer treatment, serum albumin-based nanovehicles have been widely developed and investigated due to their prominent superiorities, including good biocompatibility, high stability, nontoxicity, non-immunogenicity, easy preparation, and functionalization, allowing them to be promising candidates for cancer diagnosis and therapy. This article reviews the recent advances on the applications of serum albumin-based nanovehicles in cancer diagnosis and therapy. We first introduce the essential information of bovine serum albumin (BSA) and human serum albumin (HSA), and discuss their drug loading strategies. We then discuss the different types of serum albumin-based nanovehicles including albumin nanoparticles, surface-functionalized albumin nanoparticles, and albumin nanocomplexes. Moreover, after briefly discussing the application of serum albumin-based nanovehicles used as the nanoprobes in cancer diagnosis, we also describe the serum albumin-based nanovehicle-assisted cancer theranostics, involving gas therapy, chemodynamic therapy (CDT), phototherapy (PTT/PDT), sonodynamic therapy (SDT), and other therapies as well as cancer imaging. Numerous studies cited in our review show that serum albumin-based nanovehicles possess a great potential in cancer diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xue Shen
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xiyang Liu
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Tingting Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Lin Zheng
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hong Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengqi Deng
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Pan X, Pei X, Huang H, Su N, Wu Z, Wu Z, Qi X. One-in-one individual package and delivery of CRISPR/Cas9 ribonucleoprotein using apoferritin. J Control Release 2021; 337:686-697. [PMID: 34389365 DOI: 10.1016/j.jconrel.2021.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
So far, most reported delivery of CRISPR/Cas9 is achieved by internalized or encapsulated multiple ribonucleoprotein units into only one carrier unit, with relatively large size. Here, we report a novel, small-sized, individual package of CRISPR/Cas9, via using tetralysine modified H-chian apoferritin (TL-HFn) as packaging material. In this paper, each CRISPR/Cas9 complex is proved to be successfully installed into one TL-HFn (~26 nm), and delivered into the targeting cell via TfR1-mediated endocytosis. We found that after 6 h of treatment, the CRISPR/Cas9 complex can be tracked within the nuclear of Hela cells for the purpose of gene editing of enhanced green fluorescent protein (EGFP). Moreover, TL-HFn individually packed CRISPR/Cas9 displayed higher genome editing activity compared with that of free CRISPR/Cas9 treated group both in vitro (up to 28.96%) and in vivo. Such satisfied genome editing efficiency could be attributed to the endosomal escape and pH-induced disassembly abilities given by TL-HFn after uptake into cytoplasm, which had been verified in our previous research. In all, those results prompted that TL-HFn possessed more potential for intracellular delivery of CRISPR/Cas9, with potential biocompatibility, stability and delivery efficiency.
Collapse
Affiliation(s)
- Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaochen Pei
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haiqin Huang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Su
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ziheng Wu
- Parkville campus, Monash University, VIC 3052, Australia
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
20
|
Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat Commun 2021; 12:4299. [PMID: 34262038 PMCID: PMC8280226 DOI: 10.1038/s41467-021-24604-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO3-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel. Upon being fixed inside the residual tumors post RFA, HLCaP NRs exhibit a suppression effect on residual tumors in mice and rabbits by triggering ferroptosis. Moreover, treatment with HLCaP NRs post RFA can prime antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, also in combination with immune checkpoint blockade. This work highlights that tumor-debris-fueled nanoreactors can benefit RFA by inhibiting tumor recurrence and preventing tumor metastasis.
Collapse
|
21
|
Li A, Liang C, Xu L, Wang Y, Liu W, Zhang K, Liu J, Shi J. Boosting 5-ALA-based photodynamic therapy by a liposomal nanomedicine through intracellular iron ion regulation. Acta Pharm Sin B 2021; 11:1329-1340. [PMID: 34094837 PMCID: PMC8148057 DOI: 10.1016/j.apsb.2021.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/10/2023] Open
Abstract
5-Aminolevulinic acid (5-ALA) has been approved for clinical photodynamic therapy (PDT) due to its negligible photosensitive toxicity. However, the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells. Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair, a liposomal nanomedicine (MFLs@5-ALA/DFO) with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA, which was prepared by co-encapsulating 5-ALA and DFO (deferoxamine, a special iron chelator) into the membrane fusion liposomes (MFLs). MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery. MFLs@5-ALA/DFO could efficiently reduce iron ion, thus blocking the biotransformation of photosensitive protoporphyrin IX (PpIX) to heme, realizing significant accumulation of photosensitivity. Meanwhile, the activity of DNA repair enzyme was also inhibited with the reduction of iron ion, resulting in the aggravated DNA damage in tumor cells. Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-Aminolevulinic acid
- ALKBH2
- Biotransformation interference
- CH, cholesterol
- CLs, custom liposomes
- Ce6, chlorine e6
- DFO, deferoxamine
- DNA repair inhibition
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, dioleoyl phosphatidy lethanolamine
- DPPC, dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- Iron ion regulation
- LMPA, low melting point agarose
- MFLs, membrane fusion liposomes
- Membrane fusion liposomes
- NMPA, normal melting point agarose
- PDT, photodynamic therapy
- PS, photosensitizers
- Photodynamic therapy
- PpIX, protoporphyrin IX
- ROS, reactive oxygen species
- SM, sphingomyelin
- TUNEL, terminal deoxynucleotidyl trans-ferase dUTP nick end labeling
- calcein-AM/PI, calcein-AM/ propidiumiodide
Collapse
|
22
|
Hou Y, Fu Q, Kuang Y, Li D, Sun Y, Qian Z, He Z, Sun J. Unsaturated fatty acid-tuned assembly of photosensitizers for enhanced photodynamic therapy via lipid peroxidation. J Control Release 2021; 334:213-223. [PMID: 33894305 DOI: 10.1016/j.jconrel.2021.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) destroys tumor cells mainly through singlet oxygen (1O2) generated by light-irradiated photosensitizers (PSs). However, the fleeting half-life of 1O2 greatly impairs PDT efficacy. Herein, we propose an unreported unsaturated fatty acid (UFA)-assisted PS co-assembly strategy to address this problem. Three UFAs, namely, oleic acid (OA), linoleic acid (LA) and linolenic acid (LNA), are capable of co-assembling with 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) into uniform nanoparticles. Under irradiation, TAPP produces 1O2, which directly attacks tumor cells and simultaneously oxidizes UFAs to generate lipid hydroperoxides with sustained damage. Interestingly, the unsaturation degree of UFAs is not only related to their peroxidation rate but also has a remarkable impact on the intracellular TAPP release characteristic of the nanoparticles (NPs). The TAPP-LA NPs could release the cargo rapidly and produce the highest lipid peroxidation and reactive oxygen species levels upon irradiation. Such a unique finding sheds new light on UFA-based combination applications for enhanced photodynamic efficacy by boosting lipid peroxidation.
Collapse
Affiliation(s)
- Yanxian Hou
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yafei Kuang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yixin Sun
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhe Qian
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jin Sun
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
Zhang J, Wei K, Shi J, Zhu Y, Guan M, Fu X, Zhang Z. Biomimetic Nanoscale Erythrocyte Delivery System for Enhancing Chemotherapy via Overcoming Biological Barriers. ACS Biomater Sci Eng 2021; 7:1496-1505. [PMID: 33651596 DOI: 10.1021/acsbiomaterials.1c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming multiple biological barriers, including circulation time in vivo, tumor vascular endothelium, reticuloendothelial system (RES), extracellular matrix (ECM), etc., is the key to improve the therapeutic efficacy of drug delivery systems in treating tumors. Inspired by the ability of natural erythrocytes to cross multiple barriers, in this study, a biomimetic delivery system named NE@DOX-Ang2 was developed for enhancing the chemotherapy of breast cancer, which employed nano-erythrocyte (NE) encapsulating doxorubicin (DOX) and surface modification with a targeted angiopep-2 peptide (Ang2). NE@DOX-Ang2 enhanced the capacity to cross biological barriers in a three-dimensional (3D) tumor spheroid model and in vivo in mice. Compared with a conventional drug delivery system of liposomes, the half-life of NE@DOX-Ang2 increased approximately 2.5 times. Moreover, NE@DOX-Ang2 exhibited excellent tumor-targeting ability and antitumor effects in vitro and in vivo. Briefly, the prepared nano-erythrocyte drug carrier has features of favorable biocompatibility and low immunogenicity and the advantage of prolonging the half-life of drugs, which may provide a novel perspective for development of clinically available nanomedicines.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Kaiyan Wei
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, 3 Kangfu Road, Zhengzhou 450052, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Yifan Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Mengting Guan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, 3 Kangfu Road, Zhengzhou 450052, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| |
Collapse
|
24
|
Zhang S, Lu X, Wang B, Zhang G, Liu M, Geng S, Sun L, An J, Zhang Z, Zhang H. A soft anti-virulence liposome realizing the explosive release of antibiotics at an infectious site to improve antimicrobial therapy. J Mater Chem B 2021; 9:147-158. [PMID: 33226396 DOI: 10.1039/d0tb02255a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pore-forming toxins (PFTs), the most common virulence proteins, are promising therapeutic keys in bacterial infections. CAL02, consisting of sphingomyelin (Sm) and containing a maximum ratio of cholesterol (Ch), has been applied to sequester PFTs. However, Sm, a saturated phospholipid, leads to structural rigidity of the liposome, which does not benefit PFT combination. Therefore, in order to decrease the membrane rigidity and improve the fluidity of liposomes, we have introduced an unsaturated phospholipid, phosphatidylcholine (Pc), to the saturated Sm. In this report, a soft nanoliposome (called CSPL), composed of Ch, Sm and Pc, was artificially prepared. In order to further improve its antibacterial effect, vancomycin (Van) was loaded into the hydrophilic core of CSPL, where Van can be released radically at the infectious site through transmembrane pores formed by the PFTs in CSPL. This soft Van@CSPL nanoliposome with detoxification/drug release was able to inhibit the possibility of antibiotic resistance and could play a better role in treating severe invasive infections in mice.
Collapse
Affiliation(s)
- Shudong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao F, Yu J, Gao W, Yang X, Liang L, Sun X, Su D, Ying Y, Li W, Li J, Zheng J, Qiao L, Cai W, Che S, Mou X. H 2O 2-independent chemodynamic therapy initiated from magnetic iron carbide nanoparticle-assisted artemisinin synergy. RSC Adv 2021; 11:37504-37513. [PMID: 35496387 PMCID: PMC9043768 DOI: 10.1039/d1ra04975e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Chemodynamic therapy (CDT) is a booming technology that utilizes Fenton reagents to kill tumor cells by transforming intracellular H2O2 into reactive oxygen species (ROS), but insufficient endogenous H2O2 makes it difficult to attain satisfactory antitumor results.
Collapse
Affiliation(s)
- Fan Zhao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiliang Gao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Liying Liang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolian Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Dan Su
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Cai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| |
Collapse
|
26
|
Wang B, Sun L, Zhao J, An J, Jin Y, Yang X, Li H, Zhang H, Zhang Z, Youmei A. Limiting tumor cells comprehensively at micro and macro levels to improve the therapeutic effect of chemotherapy. NANOTECHNOLOGY 2021; 32:015301. [PMID: 33078716 DOI: 10.1088/1361-6528/abb48f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clinical data shows that antitumor treatments are often ineffective if tumor cells have metastasized. To gain an effective antitumor therapeutic effect, in this report, the tumor cell was limited to the primary site and simultaneously ablated by chemotherapy. Considering the extremely complicated process of cancer metastasis, we seek to comprehensively suppress tumor metastases at both micro and macro levels, which closely link to migration and interact with each other. At the micro level, the motility of the tumor cell was decreased via accelerating mitochondria fusion. At the macro level, the unfavorable hypoxia environment was improved. A liposome-based multifunctional nanomedicine was designed by coloading latrunculin B (LAT-B), an inhibitor of actin polymerization, and doxorubicin (DOX) into the hydrophobic bilayers and aqueous cavity, respectively. Meanwhile, an oxygen reservoir named perfluoropentane (PFP) was encapsulated into the liposome core to fulfill synergistic treatment of metastatic tumors. In this paper, we demonstrated that the metastasis of the tumor cell could be effectively inhibited by LAT-B through promoting mitochondria fusion without affecting its function, making it as an encouraging candidate for effective anti-metastasis therapy. Meanwhile, we found that the combination of LAT-B and DOX shows a synergistic effect against tumors because the combined effect of these two drugs cover the entire cell proliferation process. In a word, this report presents a potential improvement in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Lulu Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Jing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingyi An
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yajie Jin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haixia Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - A Youmei
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
- School of Public Health, Zhengzhou University, 100, Kexue Avenue, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
27
|
Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
Affiliation(s)
- Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115 MA, USA
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
28
|
Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO 2-FeS 2 Nanocomposites. Int J Nanomedicine 2020; 15:8911-8920. [PMID: 33209024 PMCID: PMC7670305 DOI: 10.2147/ijn.s282689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. METHODS In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were successfully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. RESULTS In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 - and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. CONCLUSION TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yu-Cheng Hsiao
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | | | - Moh Alimansur
- Dharma Husada Nursing Academy, Kediri, East Java64114, Indonesia
| | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| |
Collapse
|
29
|
Yin J, Cao H, Wang H, Sun K, Li Y, Zhang Z. Phospholipid membrane-decorated deep-penetrated nanocatalase relieve tumor hypoxia to enhance chemo-photodynamic therapy. Acta Pharm Sin B 2020; 10:2246-2257. [PMID: 33304789 PMCID: PMC7714984 DOI: 10.1016/j.apsb.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a serious impediment to current treatments of many malignant tumors. Catalase, an antioxidant enzyme, is capable of decomposing endogenous hydrogen peroxide (H2O2) into oxygen for tumor reoxygenation, but suffered from in vivo instability and limited delivery to deep interior hypoxic regions in tumor. Herein, a deep-penetrated nanocatalase-loading DiIC18 (5, DiD) and soravtansine (Cat@PDS) were provided by coating catalase nanoparticles with PEGylated phospholipids membrane, stimulating the structure and function of erythrocytes to relieve tumor hypoxia for enhanced chemo-photodynamic therapy. After intravenous administration, Cat@PDS preferentially accumulated at tumor sites, flexibly penetrated into the interior regions of tumor mass and remarkably relieved the hypoxic status in tumor. Notably, the Cat@PDS + laser treatment produced striking inhibition of tumor growth and resulted in a 97.2% suppression of lung metastasis. Thus, the phospholipids membrane-coated nanocatalase system represents an encouraging nanoplatform to relieve tumor hypoxia and synergize the chemo-photodynamic cancer therapy.
Collapse
Affiliation(s)
- Junjing Yin
- School of Pharmacy, Yantai University, Yantai 264005, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaoxiang Sun
- School of Pharmacy, Yantai University, Yantai 264005, China
- Corresponding authors.
| | - Yaping Li
- School of Pharmacy, Yantai University, Yantai 264005, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Corresponding authors.
| |
Collapse
|
30
|
Hu F, Yue H, Lu T, Ma G. Cytosolic delivery of HBsAg and enhanced cellular immunity by pH-responsive liposome. J Control Release 2020; 324:460-470. [DOI: 10.1016/j.jconrel.2020.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023]
|
31
|
Ji X, Ma Y, Liu W, Liu L, Yang H, Wu J, Zong X, Dai J, Xue W. In Situ Cell Membrane Fusion for Engineered Tumor Cells by Worm-like Nanocell Mimics. ACS NANO 2020; 14:7462-7474. [PMID: 32453543 DOI: 10.1021/acsnano.0c03131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell-based therapy is a promising clinic strategy to address many unmet medical needs. However, engineering cells faces some inevitable challenges, such as limited sources of cells, cell epigenetic alterations, and short shelf life during in vitro culture. Here, the worm-like nanocell mimics are fabricated to engineer effectively the tumor cells in vivo through the synergistic combination of nongenetic membrane surface engineering and inside encapsulation using in situ cell membrane fusion. The specific targeting and deformability of nanocell mimics play a vital role in membrane fusion mechanisms. The engineered primary tumor cells improved the tumor penetration of therapeutic cargoes via extracellular vesicles, while the engineered circulating tumor cells (CTCs) can capture the homologous cells to form the CTC clusters in the bloodstream and eliminate the CTC clusters in the lung, thus achieving excellent antitumor and antimetastasis efficacy. Above all, we find an intriguing phenomenon, in situ cell membrane fusion by the worm-like nanocell mimics, and our finding of in situ cell membrane fusion inspired us to engineer tumor cells in vivo. The present study would be a particularly meaningful strategy to directly engineer cells in vivo for cell-based therapy.
Collapse
Affiliation(s)
- Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yandong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wen Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lamei Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Haiyuan Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jinpei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Yao H, Guo X, Zhou H, Ren J, Li Y, Duan S, Gong X, Du B. Mild Acid-Responsive "Nanoenzyme Capsule" Remodeling of the Tumor Microenvironment to Increase Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20214-20227. [PMID: 32248684 DOI: 10.1021/acsami.0c03022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dense extracellular matrix (ECM) severely impedes the spread of drugs in solid tumors and induces hypoxia, reducing chemotherapy efficiency. Different proteolytic enzymes, such as collagenase (Col) or bromelain, can directly attach to the surface of nanoparticles and improve their diffusion, but the method of ligation may also impair the enzymatic activity due to conformational changes or blockage of the active site. Herein, a "nanoenzyme capsule" was constructed by combining collagenase nanocapsules (Col-nc) with heavy-chain ferritin (HFn) nanocages encapsulating the chemotherapy drug doxorubicin (DOX) to enhance tumor penetration of the nanoparticles by hydrolyzing collagen from the ECM. Col-nc could protect the activity of the enzyme before reaching the site of action while being degraded under mildly acidic conditions in tumors, and the released proteolytic enzyme could digest collagen. In addition, HFn as a carrier could effectively load DOX and had a self-targeting ability, enabling the nanoparticles to internalize into cancer cells more effectively. From in vivo and in vitro studies, we found that collagen was effectively degraded by Col-nc/HFn(DOX) to increase the accumulation and penetration of nanoparticles in the solid tumor site and could alleviate hypoxia inside the tumor to enhance the antitumor effects of DOX. Therefore, the strategy of increasing nanoparticle penetration in this system is expected to provide a potential approach for the clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Xiaofang Guo
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Zhou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Ren
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Songchao Duan
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobao Gong
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
33
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
34
|
Luo L, Zeng F, Xie J, Fan J, Xiao S, Wang Z, Xie H, Liu B. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer. J Mater Chem B 2020; 8:4080-4092. [PMID: 32239064 DOI: 10.1039/c9tb02937k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the untargeted release of chemical drugs, the efficacy of chemotherapy is often compromised along with serious side effects on patients. Recently, the development of targeted delivery systems using nanomaterials as carriers has provided more alternatives for chemical drug transportation. In this study, we developed a novel targeted nanocomplex of GOQD-ICG-DOX@RBCM-FA NPs (GID@RF NPs). First, PEG modified graphene oxide quantum dots (GOQDs) were used to co-load the photosensitizer of indocyanine green (ICG) and DOX, to form GOQD-ICG-DOX NPs (GID NPs). Then, the red blood cell membrane (RBCM) was applied for GID NP camouflage to avoid immune clearance. Finally, folic acid was used to endow the targeting ability of GID@RF NPs. MTT assay showed that the survival rate of HeLa cells reduced by 71% after treatment with GID@RF NPs and laser irradiation. Meanwhile, membrane camouflage significantly prolonged the blood circulation time and enhanced the immune evading ability of GID NPs. Moreover, the drug accumulation at tumor sites was significantly improved through the strong interaction between FA and FA receptor highly expressed on the tumor cells. In vivo assay demonstrated the strongest tumor growth inhibition ability of the combinational chemo/photothermal therapy. H&E analysis indicated no significant abnormalities in the major organs of mice undergoing GID@RF NPs treatment. The level of blood and biochemical parameters remained stable as compared to the control. In summary, this combinational therapy system provides a safe, rapid and effective alternative for the treatment of cervical cancer in the future.
Collapse
Affiliation(s)
- Lin Luo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xie C, Cen D, Ren Z, Wang Y, Wu Y, Li X, Han G, Cai X. FeS@BSA Nanoclusters to Enable H 2S-Amplified ROS-Based Therapy with MRI Guidance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903512. [PMID: 32274323 PMCID: PMC7141047 DOI: 10.1002/advs.201903512] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Therapeutic systems to induce reactive oxygen species (ROS) have received tremendous success in the research of tumor theranostics, but suffered daunting challenges in limited efficacy originating from low presence of reactants and reaction kinetics within cancer cells. Here, ferrous sulfide-embedded bovine serum albumin (FeS@BSA) nanoclusters, in an amorphous nature, are designed and synthesized via a self-assembly approach. In acidic conditions, the nanoclusters degrade and simultaneously release H2S gas and Fe2+ ions. The in vitro study using Huh7 cancer cells reveals that Fe2+ released from FeS@BSA nanoclusters induces the toxic hydroxyl radical (·OH) effectively via the Fenton reaction. More interestingly, H2S gas released intracellularly presents the specific suppression effect to catalase activity of cancer cells, resulting in the promoted presence of H2O2 that facilitates the Fenton reaction of Fe2+ and consequently promotes ROS induction within the cells remarkably. After intravenous administration, the nanoclusters accumulate in the tumors of mice via the enhanced permeability and retention effect and present strong magnetic resonance imaging (MRI) signals. The findings confirm this therapeutic system can enable superior anti-tumor performance with MRI guidance and negligible side effects. This study, therefore, offers an alternative gas-amplified ROS-based therapeutic platform for synergetic tumor treatment.
Collapse
Affiliation(s)
- Congkun Xie
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Dong Cen
- Key Laboratory of Endoscopic Technique Research of Zhejiang ProvinceSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang ProvinceSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Yongjun Wu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang ProvinceSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310016P. R. China
| |
Collapse
|
36
|
Jiang J, Chen HY, Zhou XT, Chen YJ, Xue C, Ji HB. Biomimetic Aerobic Epoxidation of Alkenes Catalyzed by Cobalt Porphyrin under Ambient Conditions in the Presence of Sunflower Seeds Oil as a Co-Substrate. ACS OMEGA 2020; 5:4890-4899. [PMID: 32201774 PMCID: PMC7081295 DOI: 10.1021/acsomega.9b03714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/19/2020] [Indexed: 05/04/2023]
Abstract
In this work, a mild and sustainable catalytic aerobic epoxidation of alkenes catalyzed by cobalt porphyrin was performed in the presence of sunflower seeds oil. Under ambient conditions, the conversion rate of trans-stilbene reached 99%, and selectivity toward epoxide formation was 88%. The kinetic studies showed that the aerobic epoxidation followed the Michaelis-Menten kinetics. Mass spectroscopy and in situ electron spin resonance indicated that linoleic acid was converted to fatty aldehydes via hydroperoxide intermediates. A plausible mechanism of epoxidation of alkenes was accordingly proposed.
Collapse
Affiliation(s)
- Jun Jiang
- Fine
Chemical Industry Research Institute, the Key Laboratory of Low-carbon
Chemistry & Energy Conservation of Guangdong Province, School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong-Yu Chen
- Fine
Chemical Industry Research Institute, the Key Laboratory of Low-carbon
Chemistry & Energy Conservation of Guangdong Province, School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xian-Tai Zhou
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- E-mail: (X.-T. Zhou)
| | - Ya-Ju Chen
- School
of Chemical Engineering, Guangdong University
of Petrochemical Technology, Maoming 525000, P.R. China
| | - Can Xue
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hong-Bing Ji
- Fine
Chemical Industry Research Institute, the Key Laboratory of Low-carbon
Chemistry & Energy Conservation of Guangdong Province, School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School
of Chemical Engineering, Guangdong University
of Petrochemical Technology, Maoming 525000, P.R. China
- E-mail: . Tel.: +86-20-84113658. Fax: +86-20-84113654 (H.-B. Ji)
| |
Collapse
|
37
|
Zhou J, Geng S, Wang Q, Yin Q, Lou R, Wei L, Wu Y, Du B, Yao H. Ovalbumin-modified nanoparticles increase the tumor accumulation by a tumor microenvironment-mediated “giant”. J Mater Chem B 2020; 8:7528-7538. [DOI: 10.1039/d0tb00542h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We designed a pH intelligently driven self-assembled nano-platform (GOx@ZIF-OVA).
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Shizhen Geng
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qiaolei Wang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qianwen Yin
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Rui Lou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Liuliu Wei
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yuncong Wu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bin Du
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Hanchun Yao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| |
Collapse
|
38
|
Zhou Z, Ni K, Deng H, Chen X. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Deliv Rev 2020; 158:73-90. [PMID: 32526453 DOI: 10.1016/j.addr.2020.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play important roles in cell signaling and tissue homeostasis, in which the level of ROS is critical through the equilibrium between ROS generating and eliminating events. A disruption of the balance leads to disease development either by a surplus or a dearth of ROS, which requires ROS-modulating strategies to overturn the defect for disease treatment. Over the past decade, there have been tremendous advances in nanomedicine centering ROS generation and/or elimination as major mechanisms to treat a variety of diseases. In this review, we will discuss the research achievements on two opposite approaches of ROS-generating and ROS-eliminating strategies for treating cancer and other related diseases. Importantly, we will highlight the conceptual and strategic advances of ROS-mediated immunomodulation, including macrophage polarization, immunogenic cell death and T cell activation, which are currently rising as one of the mainstreams of cancer therapy. At the end, the future challenges and opportunities of mediating ROS-based mechanisms are envisioned. In light of the pleiotropic roles of ROS in different diseases, we hope this review is timely to deliver a clear logic of designing principles on ROS generation and elimination for different disease treatments.
Collapse
|
39
|
Ji P, Huang H, Yuan S, Wang L, Wang S, Chen Y, Feng N, Veroniaina H, Wu Z, Wu Z, Qi X. ROS-Mediated Apoptosis and Anticancer Effect Achieved by Artesunate and Auxiliary Fe(II) Released from Ferriferous Oxide-Containing Recombinant Apoferritin. Adv Healthc Mater 2019; 8:e1900911. [PMID: 31701665 DOI: 10.1002/adhm.201900911] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS)-mediated apoptosis is considered a crucial therapeutic mechanisms for artesunate (AS). As an Fe(II)-dependent drug, the anticancer effect of AS is often limited due to insufficient Fe(II) concentration in targeted cells. To overcome this problem, a recombinant apoferritin nanocarrier containing ferriferous oxide (M-HFn) is constructed to produce auxiliary exogenous Fe(II) when delivering AS to cancer cells. Here, the newly fabricated AS-loaded M-HFn nanoparticles (M-HFn@AS NPs) can significantly improve the tumor-specific targeting and intracellular uptake efficiency of AS in human cervical carcinoma cells. After being captured in the acidic cavity of endosomes, M-HFn@AS NPs can simultaneously release Fe(II) and allow AS to activate satisfactory ROS-mediated apoptosis. Furthermore, in vivo studies demonstrate that M-HFn@AS NPs can selectively accumulate in tumors to efficiently inhibit tumor growth. Thus, M-HFn@AS NPs are a promising system to enhance the therapeutic effect of Fe(II)-dependent drugs.
Collapse
Affiliation(s)
- Peng Ji
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Haiqin Huang
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Shirui Yuan
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Le Wang
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Siqi Wang
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Yiwei Chen
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Na Feng
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | | | - Ziheng Wu
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University Melbourne 3800 Australia
| | - Zhenghong Wu
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Xiaole Qi
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
40
|
Wang P, Liang C, Zhu J, Yang N, Jiao A, Wang W, Song X, Dong X. Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41140-41147. [PMID: 31603650 DOI: 10.1021/acsami.9b16617] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) with strong oxidizing and high activity have been regarded as an effective "weapon" for antitumor therapy, since it can induce organelle injury, oxidative damage, and cell death. Herein, hollow structured manganese carbonate (MnCO3) nanocubes are fabricated and loaded with photosensitizer (chlorin e6, Ce6), obtaining a responsive nanoplatform H-MnCO3/Ce6-PEG (HMCP NCs). Two different approaches to upregulate intracellular ROS level were realized by HMCP NCs. On one hand, with irradiation of external laser, Ce6 could generate singlet oxygen (1O2) through a multistep photochemical process applied in photodynamic therapy (PDT). On the other hand, MnCO3 could be specifically degraded into Mn2+ in an acidic tumor microenvironment (TME), triggering Mn2+-activated Fenton-like reaction to convert endogenous H2O2 into hydroxyl radical (•OH). In vitro combined chemodynamic therapy (CDT) and PDT showed that the metal ion-enhanced ROS production could break the intracellular redox equilibrium, thus leading to cell death. In vivo combined CDT/PDT with HMCP NCs exhibited remarkably enhanced therapeutic efficacy in inhibiting tumor growth, without resulting in noticeable damage to normal tissues. This work presents a unique type of manganese-based nanoplatform for efficiently generating ROS in solid tumors, favorable for ROS-involved therapeutic strategies.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Chen Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Jiawei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Aihong Jiao
- Department of Chemotherapy , Yuhuangding Hospital , Yantai , Shandong 264000 , China
| | - Wenjun Wang
- School of Physical Science and Information Technology , Liaocheng University , Liaocheng 252059 , China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
- School of Chemistry and Materials Science , Nanjing University of Information Science & Technology , Nanjing 210044 , China
| |
Collapse
|