1
|
Manini N, Forzanini M, Pagano S, Bellagente M, Colombo M, Bertazioli D, Salvalaggio T, Vanossi A, Vanossi D, Panizon E, Tosatti E, Santoro GE. Striped Twisted State in the Orientational Epitaxy on Quasicrystals. PHYSICAL REVIEW LETTERS 2025; 134:066202. [PMID: 40021175 DOI: 10.1103/physrevlett.134.066202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/10/2025] [Indexed: 03/03/2025]
Abstract
The optimal "twisted" geometry of a crystalline layer on a crystal has long been known, but that on a quasicrystal is still unknown and open. We predict analytically that the layer equilibrium configuration will generally exhibit a nonzero misfit angle. The theory perfectly agrees with numerical optimization of a colloid monolayer on a quasiperiodic decagonal optical lattice. Strikingly different from crystal-on-crystal epitaxy, the structure of the novel emerging twisted state exhibits an unexpected stripe pattern. Its high anisotropy should reflect on the tribomechanical properties of this unconventional interface.
Collapse
Affiliation(s)
- Nicola Manini
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Mario Forzanini
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Sebastiano Pagano
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Marco Bellagente
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Martino Colombo
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Dario Bertazioli
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Tommaso Salvalaggio
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
| | - Andrea Vanossi
- International School for Advanced Studies (SISSA), Istituto Officina dei Materiali, CNR-IOM, Consiglio Nazionale delle Ricerche-, c/o SISSA Via Bonomea 265, 34136 Trieste, Italy and , Via Bonomea 265, 34136 Trieste, Italy
| | - Davide Vanossi
- University of Modena and Reggio Emilia, Department of Chemical and Geological Science, DSCG, Via Campi 103, 41125 Modena, Italy
| | - Emanuele Panizon
- Area Science Park, The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy and , Località Padriciano 99, 34149 Trieste, Italy
| | - Erio Tosatti
- Istituto Officina dei Materiali, The Abdus Salam International Center for Theoretical Physics, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy; , Strada Costiera 11, 34151 Trieste, Italy; and CNR-IOM, Consiglio Nazionale delle Ricerche-, c/o SISSA Via Bonomea 265, 34136 Trieste, Italy
| | - Giuseppe E Santoro
- Istituto Officina dei Materiali, The Abdus Salam International Center for Theoretical Physics, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy; , Strada Costiera 11, 34151 Trieste, Italy; and CNR-IOM, Consiglio Nazionale delle Ricerche-, c/o SISSA Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
2
|
Wen Y, Coupin MJ, Hou L, Warner JH. Moiré Superlattice Structure of Pleated Trilayer Graphene Imaged by 4D Scanning Transmission Electron Microscopy. ACS NANO 2023; 17:19600-19612. [PMID: 37791789 DOI: 10.1021/acsnano.2c12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Moiré superlattices in graphene arise from rotational twists in stacked 2D layers, leading to specific band structures, charge density and interlayer electron and excitonic interactions. The periodicities in bilayer graphene moiré lattices are given by a simple moiré basis vector that describes periodic oscillations in atomic density. The addition of a third layer to form trilayer graphene generates a moiré lattice comprised of multiple harmonics that do not occur in bilayer systems, leading to nontrivial crystal symmetries. Here, we use atomic resolution 4D-scanning transmission electron microscopy to study atomic structure in bilayer and trilayer graphene moiré superlattices and use 4D-STEM to map the electric fields to show subtle variations in the long-range moiré patterns. We show that monolayer graphene folded into an S-bend graphene pleat produces trilayer moiré superlattices with both small (<2°) and larger twist angles (7-30°). Annular in-plane electric field concentrations are detected in high angle bilayers due to overlapping rotated graphene hexagons in each layer. The presence of a third low angle twisted layer in S-bend trilayer graphene, introduces a long-range modulation of the atomic structure so that no real space unit cell is detected. By directly imaging trilayer moiré harmonics that span from picoscale to nanoscale using 4D-STEM, we gain insights into the complex spatial distributions of atomic density and electric fields in trilayer twisted layered materials.
Collapse
Affiliation(s)
- Yi Wen
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Matthew J Coupin
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linlin Hou
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jamie H Warner
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Omambac KM, Kriegel MA, Petrović M, Finke B, Brand C, Meyer Zu Heringdorf FJ, Horn-von Hoegen M. Interplay of Kinetic Limitations and Disintegration: Selective Growth of Hexagonal Boron Nitride and Borophene Monolayers on Metal Substrates. ACS NANO 2023; 17:17946-17955. [PMID: 37676975 DOI: 10.1021/acsnano.3c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The CVD growth of bielemental 2D-materials by using molecular precursors involves complex formation kinetics taking place at the surface and sometimes also subsurface regions of the substrate. Competing microscopic processes fundamentally limit the parameter space for optimal growth of the desired material. Kinetic limitations for diffusion and nucleation cause a high density of small domains and grain boundaries. These are usually overcome by increasing the growth temperature and decreasing the growth rate. In contrast, the nature of molecular precursors with limited thermal stability can result in dissociation and preferential desorption, leading to an undesired or ill-defined composition of the 2D-material. Here we demonstrate these constraints in a combined low-energy electron diffraction and low-energy electron microscopy study by examining the selective formation of single-layer hexagonal boron nitride (hBN) and borophene on Ir(111) using a borazine precursor. We derive a temperature-pressure phase diagram and apply classical nucleation theory to describe our results. By considering the competing processes, we find an optimum growth temperature for hBN of 950 °C. At lower temperatures, the hBN island density is increased, while at higher temperatures the precursor disintegrates and borophene is formed. Our results introduce an additional aspect that must be considered in any high-temperature growth of bielemental 2D-materials from single molecular precursors.
Collapse
Affiliation(s)
- Karim M Omambac
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Marko A Kriegel
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Marin Petrović
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000 Zagreb, Croatia
| | - Birk Finke
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Christian Brand
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Frank J Meyer Zu Heringdorf
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN), Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Michael Horn-von Hoegen
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| |
Collapse
|
4
|
Wang L, Yin S, Yang J, Dou SX. Moiré Superlattice Structure in Two-Dimensional Catalysts: Synthesis, Property and Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300165. [PMID: 36974572 DOI: 10.1002/smll.202300165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) layered materials have been widely used as catalysts due to their high specific surface area, large fraction of uncoordinated surface atoms, and high charge carrier mobility. Moiré superlattice emerges in 2D layered materials with twist angle or lattice mismatch. By manipulating the moiré superlattice structure, 2D layered materials present modulated electronic band structure, topological edge states, and unconventional superconductivity which are tightly associated with the performance of catalysts. Hence, engineering moiré superlattice structures are proposed to be an important technology in modifying 2D layered materials for improved catalytic properties. However, currently, the investigation of moiré superlattice structure in a catalytic application is still in its infancy. This perspective starts with the discussion of structural features and fabrication strategy of 2D materials with moiré superlattice structure. Afterward, the catalytic applications, including electrocatalytic and photocatalytic applications, are summarized. In particular, the promotion mechanism of the catalytic performance caused by the moiré superlattice structure is proposed. Finally, the perspective is concluded by outlining the remaining challenges and possible solutions for the future development of 2D materials with moiré superlattice structure towards the catalytic applications.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Sisi Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
5
|
Heterostrain and temperature-tuned twist between graphene/h-BN bilayers. Sci Rep 2023; 13:4364. [PMID: 36928342 PMCID: PMC10020467 DOI: 10.1038/s41598-023-31233-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Two-dimensional materials stacked atomically at small twist angles enable the modification of electronic states, motivating twistronics. Here, we demonstrate that heterostrain can rotate the graphene flake on monolayer h-BN within a few degrees (- 4° to 4°), and the twist angle stabilizes at specific values with applied constant strains, while the temperature effect is negligible in 100-900 K. The band gaps of bilayers can be modulated from ~ 0 to 37 meV at proper heterostrain and twist angles. Further analysis shows that the heterostrain modulates the interlayer energy landscape by regulating Moiré pattern evolution. The energy variation is correlated with the dynamic instability of different stacking modes of bilayers, and arises from the fluctuation of interlayer repulsive interaction associated with p-orbit electrons. Our results provide a mechanical strategy to manipulate twist angles of graphene/h-BN bilayers, and may facilitate the design of rotatable electronic nanodevices.
Collapse
|
6
|
Jakub Z, Kurowská A, Herich O, Černá L, Kormoš L, Shahsavar A, Procházka P, Čechal J. Remarkably stable metal-organic frameworks on an inert substrate: M-TCNQ on graphene (M = Ni, Fe, Mn). NANOSCALE 2022; 14:9507-9515. [PMID: 35749122 DOI: 10.1039/d2nr02017c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potential applications of 2D metal-organic frameworks (MOF) require the frameworks to be monophase and well-defined at the atomic scale, to be decoupled from the supporting substrate, and to remain stable at the application conditions. Here, we present three systems meeting this elusive set of requirements: M-TCNQ (M = Ni, Fe, Mn) on epitaxial graphene/Ir(111). We study the systems experimentally by scanning tunneling microscopy, low energy electron microscopy and X-ray photoelectron spectroscopy. When synthesized on graphene, the 2D M-TCNQ MOFs are monophase with M1(TCNQ)1 stoichiometry, no alternative structure was observed with slight variation of the preparation protocol. We further demonstrate a remarkable chemical and thermal stability of TCNQ-based 2D MOFs: all the studied systems survive exposure to ambient conditions, with Ni-TCNQ doing so without any significant changes to its atomic-scale structure or chemical state. Thermally, the most stable system is Fe-TCNQ which remains stable above 500 °C, while all the tested MOFs survive heating to 250 °C. Overall, the modular M-TCNQ/graphene system combines the atomic-scale definition required for fundamental studies with the robustness and stability needed for applications, thus we consider it an ideal model for research in single atom catalysis, spintronics or high-density storage media.
Collapse
Affiliation(s)
- Zdeněk Jakub
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Anna Kurowská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Ondrej Herich
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Lenka Černá
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Lukáš Kormoš
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Azin Shahsavar
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Pavel Procházka
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Jan Čechal
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
7
|
Chakraborty SK, Kundu B, Nayak B, Dash SP, Sahoo PK. Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices. iScience 2022; 25:103942. [PMID: 35265814 PMCID: PMC8898921 DOI: 10.1016/j.isci.2022.103942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Jankowski M, Saedi M, La Porta F, Manikas AC, Tsakonas C, Cingolani JS, Andersen M, de Voogd M, van Baarle GJC, Reuter K, Galiotis C, Renaud G, Konovalov OV, Groot IMN. Real-Time Multiscale Monitoring and Tailoring of Graphene Growth on Liquid Copper. ACS NANO 2021; 15:9638-9648. [PMID: 34060320 PMCID: PMC8291761 DOI: 10.1021/acsnano.0c10377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/27/2021] [Indexed: 05/25/2023]
Abstract
The synthesis of large, defect-free two-dimensional materials (2DMs) such as graphene is a major challenge toward industrial applications. Chemical vapor deposition (CVD) on liquid metal catalysts (LMCats) is a recently developed process for the fast synthesis of high-quality single crystals of 2DMs. However, up to now, the lack of in situ techniques enabling direct feedback on the growth has limited our understanding of the process dynamics and primarily led to empirical growth recipes. Thus, an in situ multiscale monitoring of the 2DMs structure, coupled with a real-time control of the growth parameters, is necessary for efficient synthesis. Here we report real-time monitoring of graphene growth on liquid copper (at 1370 K under atmospheric pressure CVD conditions) via four complementary in situ methods: synchrotron X-ray diffraction and reflectivity, Raman spectroscopy, and radiation-mode optical microscopy. This has allowed us to control graphene growth parameters such as shape, dispersion, and the hexagonal supra-organization with very high accuracy. Furthermore, the switch from continuous polycrystalline film to the growth of millimeter-sized defect-free single crystals could also be accomplished. The presented results have far-reaching consequences for studying and tailoring 2D material formation processes on LMCats under CVD growth conditions. Finally, the experimental observations are supported by multiscale modeling that has thrown light into the underlying mechanisms of graphene growth.
Collapse
Affiliation(s)
- Maciej Jankowski
- Université
Grenoble Alpes, CEA, IRIG/MEM/NRS, 38000 Grenoble, France
- ESRF-The
European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Mehdi Saedi
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco La Porta
- ESRF-The
European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Anastasios C. Manikas
- FORTH/ICE-HT
and Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Christos Tsakonas
- FORTH/ICE-HT
and Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Juan S. Cingolani
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Mie Andersen
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Marc de Voogd
- Leiden Probe
Microscopy (LPM), Kenauweg
21, 2331 BA Leiden, The Netherlands
| | | | - Karsten Reuter
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Costas Galiotis
- FORTH/ICE-HT
and Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Gilles Renaud
- Université
Grenoble Alpes, CEA, IRIG/MEM/NRS, 38000 Grenoble, France
| | - Oleg V. Konovalov
- ESRF-The
European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Irene M. N. Groot
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2515-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|