1
|
Ramu C, Kumar MS, Shivakrishna A, Kumaraguru T, Ghosh S, Raji Reddy C, Sudhakar G. Development of a Concise Synthetic Approach to Gliflozin Aglycones from Regioselective Deprotonation of 1,4-Dihalobenzenes. J Org Chem 2025. [PMID: 40294375 DOI: 10.1021/acs.joc.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Herein, we report a concise synthetic approach to gliflozin (SGLT2 inhibitors) aglycones from generating regioselective ortho-lithiation based on differentiating the acidifying effect of 1,4-dihalobenzenes and reacting with (hetero)aromatic aldehydes. Then, the resulting diarylmethyl alcohol was converted to diarylmethane using acid-mediated reduction, offering a two-step practical method for synthesizing aglycones of various gliflozins such as Dapagliflozin, Empagliflozin, and Ipragliflozins.
Collapse
Affiliation(s)
- Chennam Ramu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manthani Shiva Kumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avula Shivakrishna
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thenkrishnan Kumaraguru
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Ghosh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gangarajula Sudhakar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Zambrano-Vásquez OR, Cortés-Camacho F, Castañeda-Sánchez JI, Aréchaga-Ocampo E, Valle-Velázquez E, Cabrera-Angeles JC, Sánchez-Gloria JL, Sánchez-Muñoz F, Arellano-Buendia AS, Sánchez-Lozada LG, Osorio-Alonso H. Update in non-alcoholic fatty liver disease management: role of sodium-glucose cotransporter 2 inhibitors. Life Sci 2025; 372:123638. [PMID: 40246191 DOI: 10.1016/j.lfs.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes without significant alcohol consumption. It is closely associated with sedentarism, hypercaloric diets, obesity, dyslipidemia, insulin resistance, type 2 diabetes mellitus, and genetic predisposition. NAFLD comprises a spectrum of liver disorders, from simple steatosis to non-alcoholic (NASH) and liver cirrhosis. The complex etiological mechanisms include oxidative stress, inflammation, apoptosis, and fibrosis; therefore, its management is challenging. Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), a class of antidiabetic drugs, have emerged as promising therapeutic agents due to their ability to improve key metabolic parameters, including obesity, dyslipidemia, insulin resistance, and hyperglycemia. This review explores the cellular mechanisms by which SGLT2i, either as monotherapy or combined with other treatments, modulate signaling pathways involved in lipid and carbohydrate metabolism. Additionally, we examine their effects on oxidative stress, inflammation, fibrosis, and apoptosis, which are critical drivers of NAFLD progression. This review is intended to summarize the multiple benefits of SGLT2 inhibitors and to educate healthcare providers on the therapeutic potential of these drugs in order to foster their incorporation into effective NAFLD management plans.
Collapse
Affiliation(s)
- Oscar R Zambrano-Vásquez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Fernando Cortés-Camacho
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Jorge I Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City 04960, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México City 05348, Mexico
| | - Estefanía Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Juan C Cabrera-Angeles
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José L Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Abraham S Arellano-Buendia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Laura G Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico.
| |
Collapse
|
3
|
France SP, Lindsey EA, McInturff EL, Berritt S, DeForest J, Flick AC, Fink S, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, Watson RB, Zhou Z. Synthetic Approaches to the New Drugs Approved during 2023. J Med Chem 2025; 68:2147-2182. [PMID: 39898601 DOI: 10.1021/acs.jmedchem.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This review is the next installment of an annual series that discusses the synthetic routes to access 28 small molecule drugs that were approved worldwide in 2023. A brief description of each drug's mechanism of action, the history of its discovery and development, and the synthetic approaches published in primary or patent literature that were most likely used for clinical studies or development are included. Synthetic chemistry, used to convert complex intermediates to active compounds or build a new drug from basic building block chemicals, is critical to delivery of new drugs and treatments for disease to patients.
Collapse
Affiliation(s)
- Scott P France
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erick A Lindsey
- Takeda San Diego, 9265 Town Center Drive, San Diego, California 92121, United States
| | - Emma L McInturff
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Simon Berritt
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jacob DeForest
- Medicine Design, Pfizer, Inc., La Jolla, California 92121, United States
| | - Andrew C Flick
- Takeda San Diego, 9265 Town Center Drive, San Diego, California 92121, United States
| | - Sarah Fink
- Crosswalk Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Tony S Gibson
- Takeda San Diego, 9265 Town Center Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Subham Mahapatra
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Rebecca B Watson
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Zhiyao Zhou
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
5
|
Li M, Zhou Y, Wen Z, Ni Q, Zhou Z, Liu Y, Zhou Q, Jia Z, Guo B, Ma Y, Chen B, Zhang ZM, Wang JB. An efficient C-glycoside production platform enabled by rationally tuning the chemoselectivity of glycosyltransferases. Nat Commun 2024; 15:8893. [PMID: 39406733 PMCID: PMC11480083 DOI: 10.1038/s41467-024-53209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Despite the broad potential applications of C-glycosides, facile synthetic methods remain scarce. Transforming glycosyltransferases with promiscuous or natural O-specific chemoselectivity to C-glycosyltransferases is challenging. Here, we employ rational directed evolution of the glycosyltransferase MiCGT to generate MiCGT-QDP and MiCGT-ATD mutants which either enhance C-glycosylation or switch to O-glycosylation, respectively. Structural analysis and computational simulations reveal that substrate binding mode govern C-/O-glycosylation selectivity. Notably, directed evolution and mechanism analysis pinpoint the crucial residues dictating the binding mode, enabling the rational design of four enzymes with superior non-inherent chemoselectivity, despite limited sequence homology. Moreover, our best mutants undergo testing with 34 substrates, demonstrating superb chemoselectivities, regioselectivities, and activities. Remarkably, three C-glycosides and an O-glycoside are produced on a gram scale, demonstrating practical utility. This work establishes a highly selective platform for diverse glycosides, and offers a practical strategy for creating various types of glycosylation platforms to access pharmaceutically and medicinally interesting products.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ziqin Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Yiling Liu
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Qiang Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China.
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China.
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| |
Collapse
|
6
|
Miyagishi HV, Kimuro Y, Ashikari Y, Nagaki A. Expanding the Scope of C-Glycoside Synthesis from Unstable Organolithium Reagents Using Flow Microreactors. Org Lett 2024; 26:5032-5036. [PMID: 38819107 DOI: 10.1021/acs.orglett.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
C-glycosides are versatile scaffolds for drugs and bioactive compounds. The common organolithium-based synthesis of C-glycosides is limited by low reaction temperatures and a restricted substrate scope. To address these issues, a flow microreactor (FMR) was utilized for rapid mixing and precise temperature control, enabling C-glycoside synthesis at temperatures up to 40 °C and expanding the substrate scope. Continuous C-glycoside synthesis was achieved with a throughput of 21.9 g h-1, demonstrating the industrial potential of FMRs.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Yusuke Kimuro
- Research and Development Center, Juzen Chemical Corporation, 1-10 Kiba-cho, Toyama 930-0806, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Jiang X, Yu KS, Nam DH, Oh J. A Population Pharmacokinetic Study to Compare a Novel Empagliflozin L-Proline Formulation with Its Conventional Formulation in Healthy Subjects. Pharmaceuticals (Basel) 2024; 17:522. [PMID: 38675482 PMCID: PMC11054906 DOI: 10.3390/ph17040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Empagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that is commonly used for the treatment of type 2 diabetes mellitus (T2DM). CKD-370 was newly developed as a cocrystal formulation of empagliflozin with co-former L-proline, which has been confirmed to be bioequivalent in South Korea. This study aimed to quantify the differences in the absorption phase and pharmacokinetic (PK) parameters of two empagliflozin formulations in healthy subjects by using population PK analysis. The plasma concentration data of empagliflozin were obtained from two randomized, open-label, crossover, phase 1 clinical studies in healthy Korean subjects after a single-dose administration. A population PK model was constructed by using a nonlinear mixed-effects (NLME) approach (Monolix Suite 2021R1). Interindividual variability (IIV) and interoccasion variability (IOV) were investigated. The final model was evaluated by goodness-of-fit (GOF) diagnostic plots, visual predictive checks (VPCs), prediction errors, and bootstrapping. The PK of empagliflozin was adequately described with a two-compartment combined transit compartment model with first-order absorption and elimination. Log-transformed body weight significantly influenced systemic clearance (CL) and the volume of distribution in the peripheral compartment (V2) of empagliflozin. GOF plots, VPCs, prediction errors, and the bootstrapping of the final model suggested that the proposed model was adequate and robust, with good precision at different dose strengths. The cocrystal form did not affect the absorption phase of the drug, and the PK parameters were not affected by the different treatments.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University and Hospital, Seoul 03080, Republic of Korea;
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Dong Hyuk Nam
- Department of Chemical Research Laboratory, Chong Kun Dang Research Institute, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea;
| | - Jaeseong Oh
- Department of Pharmacology, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Clinical Research Institute, Jeju National University Hospital, Jeju 63243, Republic of Korea
| |
Collapse
|
8
|
Zang Y, Ma Y, Xu Q, Li G, Chen N, Li X, Zhu F. TiCl 4-mediated deoxygenative reduction of aromatic ketones to alkylarenes with ammonia borane. Org Biomol Chem 2024; 22:932-939. [PMID: 38180250 DOI: 10.1039/d3ob01977b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A rapid and mild protocol for the exhaustive deoxygenation of various aromatic ketones to corresponding alkanes was described, which was mediated by TiCl4 and used ammonia borane (AB) as the reductant. This reduction protocol applies to a wide range of substrates in moderate to excellent yields at room temperature. The gram-scale reaction and syntheses of some key building blocks for SGLT2 inhibitors demonstrated the practicability of this methodology. Preliminary mechanistic studies revealed that the ketone is first converted into an alcohol, which then undergoes a carbocation to give the alkane via hydrogenolysis.
Collapse
Affiliation(s)
- Yongjun Zang
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, P.R. China.
| | - Yunfeng Ma
- Anhui Anlito Biological Technology Co., Ltd, Anhui Huoshan Economic and Technological Development Zone, 237200, Anhui, P.R. China
| | - Qilin Xu
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, P.R. China.
| | - Guosi Li
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, P.R. China.
| | - Naidong Chen
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, P.R. China.
| | - Xing Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, P.R. China.
| | - Fucheng Zhu
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, P.R. China.
| |
Collapse
|
9
|
Moriyama T, Yoritate M, Kato N, Saika A, Kusuhara W, Ono S, Nagatake T, Koshino H, Kiya N, Moritsuka N, Tanabe R, Hidaka Y, Usui K, Chiba S, Kudo N, Nakahashi R, Igawa K, Matoba H, Tomooka K, Ishikawa E, Takahashi S, Kunisawa J, Yamasaki S, Hirai G. Linkage-Editing Pseudo-Glycans: A Reductive α-Fluorovinyl- C-Glycosylation Strategy to Create Glycan Analogs with Altered Biological Activities. J Am Chem Soc 2024; 146:2237-2247. [PMID: 38196121 DOI: 10.1021/jacs.3c12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.
Collapse
Affiliation(s)
- Takahiro Moriyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Kato
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Azusa Saika
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Wakana Kusuhara
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ono
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro Nagatake
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Noriaki Kiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Natsuho Moritsuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riko Tanabe
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yu Hidaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suzuka Chiba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noyuri Kudo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Rintaro Nakahashi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Eri Ishikawa
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Kunisawa
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Lee H, Chung JY, Yu KS, Park SJ, Lee S. Pharmacokinetic Comparison Between a Fixed-Dose Combination of Empagliflozin L-Proline/Metformin and Empagliflozin/Metformin in Healthy Korean Subjects. Clin Pharmacol Drug Dev 2023; 12:1156-1163. [PMID: 37489552 DOI: 10.1002/cpdd.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Empagliflozin and metformin are oral antidiabetic drugs commonly used to treat type 2 diabetes mellitus as a combination therapy. This study aimed to compare the pharmacokinetics and safety of a newly developed fixed-dose combination of 5-mg empagliflozin L-proline and 1000-mg metformin with the reference drug. A randomized, open-label, single-dose, 2-period, 2-treatment, crossover study was conducted in healthy Korean subjects. The subjects received a single oral dose of reference drug or test drug at each period. The pharmacokinetic (PK) parameters were calculated using a noncompartmental method. The geometric mean ratios and 90% confidence intervals of the plasma maximum concentration (Cmax ) and area under the concentration-time curve from time zero to the last quantifiable concentration (AUClast ) were calculated. A total of 27 healthy subjects were included in the PK analysis. For empagliflozin, the geometric mean ratios (90% confidence intervals) of the test to reference drug for Cmax and AUClast were 1.03 (0.99-1.08) and 1.03 (1.00-1.06), respectively. For metformin, the corresponding values for Cmax and AUClast were 0.99 (0.92-1.06) and 1.00 (0.94-1.06), respectively. In conclusion, a fixed-dose combination of empagliflozin L-proline and metformin showed similar PK characteristics to the reference drug, and both drugs were safe in healthy subjects.
Collapse
Affiliation(s)
- HyunJoon Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yong Chung
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Shin-Jung Park
- Department of Pharmaceutical Research Laboratory, Chong Kun Dang Research Institute, Chong Kun Dan Pharmaceutical Corporation, Seoul, South Korea
| | - Soyoung Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
11
|
Mu QQ, Guo AX, Cai X, Qin YY, Liu XL, Ye FZ, Yang HJ, Xiao X, Liu XW. Cobalt's Dual Role in Promoting C3-Glycosylation of Indoles: Unraveling Mechanistic Insights. Org Lett 2023; 25:7040-7045. [PMID: 37721454 DOI: 10.1021/acs.orglett.3c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In this study, we present a cobalt-catalyzed C3-glycosylation of indoles using unfunctionalized glycals, yielding 3-indolyl-C-deoxyglycosides. These compounds hold promise as sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for treating type 2 diabetes. Control experiments unveiled that cobalt assumes a dual role, facilitating catalytic C-glycosylation while unexpectedly driving the anomerization of α-anomers through endocyclic cleavage of the C1-O5 bond, resulting in the formation of β-C-deoxyglycosides. Furthermore, density functional theory (DFT) calculations shed light on the reaction mechanism, emphasizing the significant role of the pyridine group of indole in stabilizing transition states and intermediates.
Collapse
Affiliation(s)
- Qiu-Qi Mu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Ao-Xin Guo
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xin Cai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yang-Yang Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xing-Le Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Fang-Zhen Ye
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Hui-Jie Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Jiang X, Bae S, Yoon DY, Park SJ, Oh J, Cho JY, Yu KS. Comparison of the Pharmacokinetics, Safety, and Tolerability of Two Empagliflozin Formulations in Healthy Korean Subjects. Drug Des Devel Ther 2023; 17:2137-2145. [PMID: 37521035 PMCID: PMC10377562 DOI: 10.2147/dddt.s409368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Empagliflozin is a sodium-glucose cotransporter 2 inhibitor that is commonly used for the treatment of type 2 diabetes mellitus. As cocrystal formulation can improve the chemical properties of drugs, CKD-370 was newly developed as a cocrystal formulation of empagliflozin with solvate L-proline. This study aimed to compare the pharmacokinetics, safety, and tolerability of these two empagliflozin formulations in healthy Korean subjects. Methods A randomized, open-label, two-sequence, two-period crossover study was conducted on healthy Korean participants. The subjects received a single oral 25 mg dose of either test (CKD-370) or reference treatment (Jardiance®) tablet at each period. Plasma empagliflozin concentrations were determined using liquid chromatography with tandem mass spectrometry. Pharmacokinetic (PK) parameters were analyzed using non-compartmental methods. The primary PK parameters included the maximum concentration (Cmax) and the area under the concentration-time curve from 0 to last (AUClast). The safety of both formulations was monitored and evaluated. Results A total of 28 healthy Korean adult subjects were randomized, and 27 subjects were included in the PK analysis. The mean ± standard deviation values of the primary PK parameters, Cmax and AUClast after administration of the test treatment, were 442.02 ± 103.37 μg/L and 3131.08 ± 529.30 μg·h/L, respectively, and those after administration of the reference treatment were 436.29 ± 118.74 μg/L and 3006.88 ± 514.21 μg·h/L, respectively. The geometric mean ratio and its 90% confidence interval of test to reference treatment for Cmax and AUClast were 1.0221 (0.9527-1.0967) and 1.0411 (1.0153-1.0677), respectively, which were within the commonly accepted bioequivalence criteria of 0.80 to 1.25. Both treatments were well-tolerated. Conclusion The two formulations of empagliflozin showed similar PK characteristics and were generally well tolerated in healthy subjects.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sungyeun Bae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Shin Jung Park
- Department of Pharmaceutical Research Laboratory, Chong Kun Dang Research Institute, Chong Kun Dang Pharmaceutical Corporation, Yongin, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Seki M, Tapkir SR, Nadiveedhi MR, Mulani SK, Mashima K. New Synthesis of Diarylmethanes, Key Building Blocks for SGLT2 Inhibitors. ACS OMEGA 2023; 8:17288-17295. [PMID: 37214716 PMCID: PMC10193421 DOI: 10.1021/acsomega.3c01972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Synthesis of diarylmethanes, a key building block for SGLT2 inhibitors, has been developed through ketone synthesis by Friedel-Crafts acylation with TiCl4, followed by reduction with TiCl4/NaBH4. The new protocol proceeded more cleanly than the previous methods employing AlCl3 and BF3·OEt2/Et3SiH to provide the diarylmethanes corresponding to canagliflozin, empagliflozin, and luseogliflozin in a highly expedient and affordable manner. In the case of a diarylmethane for the synthesis of dapagliflozin, the reduction step took place by an alternative method using InCl3/Al/BF3·OEt2.
Collapse
Affiliation(s)
- Masahiko Seki
- R&D
Planning Department, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sandeep Ramesharao Tapkir
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Shaheen Kasim Mulani
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazushi Mashima
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Hoehlschen J, Hofreither D, Tomin T, Birner-Gruenberger R. Redox-driven cardioprotective effects of sodium-glucose co-transporter-2 inhibitors: comparative review. Cardiovasc Diabetol 2023; 22:101. [PMID: 37120524 PMCID: PMC10148992 DOI: 10.1186/s12933-023-01822-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023] Open
Abstract
Sodium-glucose co-transporter-2 inhibitors are used in the treatment of diabetes but are also emerging as cardioprotective agents in heart diseases even in the absence of type 2 diabetes. In this paper, upon providing a short overview of common pathophysiological features of diabetes, we review the clinically reported cardio- and nephroprotective potential of sodium-glucose co-transporter-2 inhibitors currently available on the market, including Dapagliflozin, Canagliflozin, and Empagliflozin. To that end, we summarize findings of clinical trials that have initially drawn attention to the drugs' organ-protective potential, before providing an overview of their proposed mechanism of action. Since we particularly expect that their antioxidative properties will broaden the application of gliflozins from therapeutic to preventive care, special emphasis was put on this aspect.
Collapse
Affiliation(s)
- Julia Hoehlschen
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Dominik Hofreither
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria.
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
15
|
Venkatesh R, Tiwari V, Kandasamy J. Copper(I)-Catalyzed Sandmeyer-Type S-Arylation of 1-Thiosugars with Aryldiazonium Salts under Mild Conditions. J Org Chem 2022; 87:11414-11432. [PMID: 35994736 DOI: 10.1021/acs.joc.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of S-aryl thioglycosides from 1-thiosugars via S-arylation was demonstrated under mild reaction conditions. A wide range of protected and unprotected 1-thiosugars derived from glucose, glucosamine, galactose, mannose, ribose, maltose, and lactose underwent cross-coupling reactions with functionalized aryldiazonium salts in the presence of copper(I) chloride and DBU. The desired products were obtained in 55-88% yields within 5 min. Various functional groups, including halogens, were tolerated under standard reaction conditions. Synthesis of the biologically relevant antidiabetic dapagliflozin S-analogue and arbutin S-analogues (tyrosinase inhibitors) was demonstrated.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
16
|
Moinul M, Amin SA, Kumar P, Patil UK, Gajbhiye A, Jha T, Gayen S. Exploring sodium glucose cotransporter (SGLT2) inhibitors with machine learning approach: A novel hope in anti-diabetes drug discovery. J Mol Graph Model 2021; 111:108106. [PMID: 34923429 DOI: 10.1016/j.jmgm.2021.108106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Conventional anti-diabetes agents exhibit some undesirable side effects. Recently, lactic acidosis and/or bladder cancer were also reported with the use of these agents. Hence, there is an urgent need for alternative anti-diabetes in order to reduce/avoid the unwanted effects. In this scenario sodium glucose cotransporter 2 (SGLT2) inhibitors has already been established as an important class of anti-diabetic drug. The search for new generation SGLT2 inhibitors with high affinity is still an ongoing process. Here, we aim to develop computational models to predict the SGLT2 inhibitory activity of small molecules based on chemical structures. This work provides in-silico analysis to propose possible fragment/fingerprint identification recommended for SGLT2 inhibitors. Up-to-our knowledge, this study is an initiative to propose fingerprints responsible for SGLT2 inhibition. Furthermore, we used nine different algorithms to build machine learning (ML) models that could be used to prioritize compounds as SGLT2 inhibitors from large libraries. The best performing ML models were applied to virtually screen a large collection of FDA approved drugs. The best predicted compounds have been recommended to be biologically investigated in future in order to identify next generation SGLT2 inhibitors with different chemical structure.
Collapse
Affiliation(s)
- Md Moinul
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Prabhat Kumar
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Asmita Gajbhiye
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
17
|
Telescoped lithiation, C-arylation and methoxylation in flow-batch hybrid toward the synthesis of canagliflozin. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Vaňková K, Rahm M, Choutka J, Pohl R, Parkan K. Facile Approach to C-Glucosides by Using a Protecting-Group-Free Hiyama Cross-Coupling Reaction: High-Yielding Dapagliflozin Synthesis. Chemistry 2021; 27:10583-10588. [PMID: 34048112 DOI: 10.1002/chem.202101052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Access to unprotected (hetero)aryl pseudo-C-glucosides via a mild Pd-catalysed Hiyama cross-coupling reaction of protecting-group-free 1-diisopropylsilyl-d-glucal with various (hetero)aryl halides has been developed. In addition, selected unprotected pseudo-C-glucosides were stereoselectively converted into the corresponding α- and β-C-glucosides, as well as 2-deoxy-β-C-glucosides. This methodology was applied to the efficient and high-yielding synthesis of dapagliflozin, a medicament used to treat type 2 diabetes mellitus. Finally, the versatility of our methodology was proved by the synthesis of other analogues of dapagliflozin.
Collapse
Affiliation(s)
- Karolína Vaňková
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Choutka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
19
|
Murakata M. Synthesis of C-Arylglucosides as SGLT2 Inhibitors. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masatoshi Murakata
- API Process Development Department, Pharmaceutical Technology Division, Chugai Pharmaceutical Co., LTD
| |
Collapse
|
20
|
Mou Z, Wang J, Zhang X, Niu D. Stereoselective Preparation of
C
‐Aryl Glycosides
via
Visible‐Light‐Induced Nickel‐Catalyzed Reductive Cross‐Coupling of Glycosyl Chlorides and Aryl Bromides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100343] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy and Cancer Center West China Hospital
- School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Jia‐Xi Wang
- Department of Emergency State Key Laboratory of Biotherapy and Cancer Center West China Hospital
- School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy and Cancer Center West China Hospital
- School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy and Cancer Center West China Hospital
- School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| |
Collapse
|
21
|
Sipos Á, Szennyes E, Hajnal NÉ, Kun S, Szabó KE, Uray K, Somsák L, Docsa T, Bokor É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14040364. [PMID: 33920838 PMCID: PMC8071193 DOI: 10.3390/ph14040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (β-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-β-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(β-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(β-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(β-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(β-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-β-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(β-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 μM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.
Collapse
Affiliation(s)
- Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Nikolett Éva Hajnal
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Katalin E. Szabó
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| |
Collapse
|
22
|
de Matos AM, Calado P, Washburn W, Rauter AP. Recent Advances on
SGLT
2 Inhibitors: Synthetic Approaches, Therapeutic Benefits, and Adverse Events. SUCCESSFUL DRUG DISCOVERY 2021:111-157. [DOI: 10.1002/9783527826872.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
Sun Y, Liu J, Lin Q, Yao K, Tong W, Qian Q. Facile Preparation of Aryl C-Glycosides by Nickel-Catalyzed Reductive Coupling of Glycosyl Halides with Aryl Halides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Future Med Chem 2020; 12:1961-1990. [DOI: 10.4155/fmc-2020-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetes is a chronic progressive metabolic disease caused by insulin deficiency or insulin resistance. In spite of the availability of several antihyperglycaemics, there is a need for the development of safer antidiabetic drugs due to their undesirable effects. Sodium-glucose cotransporter-2 inhibitors are a class of antidiabetics, which hinder the reabsorption of glucose in the kidneys, causing excretion of glucose via urine. Sodium-glucose cotransporter-2 inhibitors are a well-tolerated class with no significant adverse effects and are found to be favorable in certain conditions, which may be rudimentary to cardiovascular and renal diseases. The current advancements in their design and development, their mechanism of action, structure–activity relationship, synthesis and in silico development along with their auxiliary roles have been extensively reviewed.
Collapse
|
25
|
Zhao MM, Zhang H, Iimura S, Bednarz MS, Song QL, Lim NK, Yan J, Wu W, Dai K, Gu X, Wang Y. Process Development of Sotagliflozin, a Dual Inhibitor of Sodium–Glucose Cotransporter-1/2 for the Treatment of Diabetes. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Matthew M. Zhao
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Haiming Zhang
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Shinya Iimura
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Mark S. Bednarz
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Qiu-Ling Song
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Ngiap-Kie Lim
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Jie Yan
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Wenxue Wu
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Kuangchu Dai
- Process R&D, WuXi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Gu
- Process R&D, WuXi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Youchu Wang
- Process R&D, WuXi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
26
|
Sharma VK, Barde A, Rattan S. A short review on synthetic strategies toward glitazone drugs. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1821223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vijay Kumar Sharma
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
- Integral BioSciences Pvt. Ltd, Phase-II Noida, Uttar Pradesh, India
| | - Anup Barde
- Integral BioSciences Pvt. Ltd, Phase-II Noida, Uttar Pradesh, India
| | - Sunita Rattan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
27
|
Singh AK, Kanaujiya VK, Tiwari V, Sabiah S, Kandasamy J. Development of Routes for the Stereoselective Preparation of β-Aryl- C-glycosides via C-1 Aryl Enones. Org Lett 2020; 22:7650-7655. [PMID: 32941050 DOI: 10.1021/acs.orglett.0c02843] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide range of enones derived from d-glucal, d-galactal, l-rhamnal, d-rhamnal, and l-arabinal underwent Heck-coupling with various arylboronic acids bearing electron-donating and -withdrawing groups in the presence of palladium acetate and 1,10-phenanthroline. These reactions provided synthetically useful C-1 aryl enones in good yields. Many sensitive functional groups as well as protecting groups present in arylboronic acids and enones, respectively, remained intact under optimized conditions. The stereoselective hydrogenation of C-1 aryl enones with Pd-C/H2 provides the β-isomer of 2-deoxy-aryl-C-glycosides in excellent yield. The C-1 aryl enones were also used as precursors for the synthesis of 2-hydroxy-β-aryl-C-glycosides. Regioselective C-2 halogenations and vinylations of C-1 aryl enones were achieved in excellent yields.
Collapse
Affiliation(s)
- Adesh Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vimlesh Kumar Kanaujiya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | | | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
28
|
Talode J, Kato D, Nagae H, Tsurugi H, Seki M, Mashima K. Syntheses of SGLT2 Inhibitors by Ni- and Pd-Catalyzed Fukuyama Coupling Reactions. J Org Chem 2020; 85:12382-12392. [PMID: 32911934 DOI: 10.1021/acs.joc.0c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel- and palladium-catalyzed Fukuyama coupling reactions of a d-gluconolactone-derived thioester with arylzinc reagents at ambient temperature provided the corresponding multifunctional aryl ketones in high yield. Ligand screening for the nickel-catalyzed Fukuyama coupling reactions indicated that 1,2-bis(dicyclohexylphosphino)ethane (dCype) served as a superior supporting ligand to improve the product yield. In addition, Pd/C was a practical alternative that enabled ligand-free Fukuyama coupling reactions and was efficiently applied to the key C-C bond-forming step to prepare canagliflozin and dapagliflozin, which are diabetic SGLT2 inhibitors of current interest.
Collapse
Affiliation(s)
- Jalindar Talode
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Daiki Kato
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiko Seki
- MA Group, Tokuyama Corporation, Tsukuba, Ibaraki 300-4247, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
29
|
Wang Q, Duan J, Tang P, Chen G, He G. Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9813-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Pivaloyl-protected glucosyl iodide as a glucosyl donor for the preparation of β-C-glucosides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Evans M, Hicks D, Patel D, Patel V, McEwan P, Dashora U. Optimising the Benefits of SGLT2 Inhibitors for Type 1 Diabetes. Diabetes Ther 2020; 11:37-52. [PMID: 31813092 PMCID: PMC6965597 DOI: 10.1007/s13300-019-00728-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitor clinical studies in type 1 diabetes mellitus (T1DM) have demonstrated reduced HbA1c and lower glucose variability with increased time in optimal glucose range as well as additional benefits of reductions in weight and insulin dose without increasing the incidence of hypoglycaemia. However, the appropriate use of SGLT2 inhibitor therapies within clinical practise to treat people with T1DM remains unclear. In this article we have used consensus expert opinion alongside the available evidence, product indication and most recent clinical guidance to provide support for the diabetes healthcare community regarding the appropriate use of SGLT2 inhibitors, focussing on specific considerations for appropriate prescribing of dapagliflozin within the T1DM management pathway. Its purpose is to provide awareness of the issues surrounding treatment with dapagliflozin in T1DM as well as offer practical guidance that also includes a checklist tool for appropriate dapagliflozin prescribing. The checklist aims to support clinicians in identifying those people with T1DM most likely to benefit from dapagliflozin treatment as well as situations where caution may be required.Funding: AstraZeneca UK Ltd.
Collapse
Affiliation(s)
- Marc Evans
- Diabetes Resource Centre, University Hospital Llandough, Cardiff, UK.
| | | | - Dipesh Patel
- Department of Diabetes, Division of Medicine, University College London, Royal Free NHS Trust, London, UK
| | - Vinod Patel
- Warwick Medical School, University of Warwick, George Eliot Hospital NHS Trust, Nuneaton, UK
| | - Phil McEwan
- Health Economics and Outcomes Research Ltd., Cardiff, UK
| | | |
Collapse
|
32
|
Otte F, Schmidt B. Matsuda–Heck Arylation of Glycals for the Stereoselective Synthesis of Aryl C-Glycosides. J Org Chem 2019; 84:14816-14829. [DOI: 10.1021/acs.joc.9b02410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabian Otte
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Kun S, Kánya N, Galó N, Páhi A, Mándi A, Kurtán T, Makleit P, Veres S, Sipos Á, Docsa T, Somsák L. Glucopyranosylidene-spiro-benzo[ b][1,4]oxazinones and -benzo[ b][1,4]thiazinones: Synthesis and Investigation of Their Effects on Glycogen Phosphorylase and Plant Growth Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6884-6891. [PMID: 31135156 DOI: 10.1021/acs.jafc.9b00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glucopyranosylidene-spiro-benzo[ b][1,4]oxazinones were obtained via the corresponding 2-nitrophenyl glycosides obtained by two methods: (a) AgOTf-promoted glycosylation of 2-nitrophenol derivatives by O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate or (b) Mitsunobu-type reactions of O-perbenzoylated methyl (α-d-gluculopyranose)heptonate with bulky 2-nitrophenols in the presence of diethyl azodicarboxylate (DEAD) and PPh3. Catalytic hydrogenation (H2-Pd/C) or partial reduction (e.g., H2-Pd/C, pyridine) of the 2-nitro groups led to spiro-benzo[ b][1,4]oxazinones and spiro-benzo[ b][1,4]-4-hydroxyoxazinones by spontaneous ring closure of the intermediate 2-aminophenyl or 2-hydroxylamino glycosides, respectively. The analogous 2-aminophenyl thioglycosides, prepared by reactions of O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate with 2-aminothiophenols, were cyclized in m-xylene at reflux temperature to the corresponding spiro-benzo[ b][1,4]thiazinones. O-Debenzoylation was effected by Zemplén transesterification in both series. Spiro-configurations were determined by NMR and electronic circular dichroism time-dependent density functional theory (ECD-TDDFT) methods. Inhibition assays with rabbit muscle glycogen phosphorylase b showed (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} and (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]thiazin-3(4 H)-one} to be the most efficient inhibitors (27 and 28% inhibition at 625 μM, respectively). Plant growth tests with white mustard and garden cress indicated no effect except for (1' R)-4-hydroxyspiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} with the latter plant to show modest inhibition of germination (95% relative to control).
Collapse
Affiliation(s)
- Sándor Kun
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Nándor Kánya
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Norbert Galó
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - András Páhi
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Péter Makleit
- Department of Agricultural Botany, Crop Physiology and Biotechnology , University of Debrecen , Böszörményi út 138 , H-4032 Debrecen , Hungary
| | - Szilvia Veres
- Department of Agricultural Botany, Crop Physiology and Biotechnology , University of Debrecen , Böszörményi út 138 , H-4032 Debrecen , Hungary
| | - Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - László Somsák
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| |
Collapse
|
34
|
Liu J, Lei C, Gong H. Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9501-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Abstract
Abstract
Glycomimetics are compounds that resemble carbohydrate molecules in their chemical structure and/or biological effect. A large variety of compounds can be designed and synthesized to get glycomimetics, however, C-glycosyl derivatives represent one of the most frequently studied subgroup. In the present survey syntheses of a range of five- and six membered C-glycopyranosyl heterocycles, anhydro-aldimine type compounds, exo-glycals, C-glycosyl styrenes, carbon-sulfur bonded oligosaccharide mimics are described. Some of the C-glycopyranosyl azoles, namely 1,2,4-triazoles and imidazoles belong to the most efficient glucose analog inhibitors of glycogen phosphorylase known to date. Biological studies revealed the therapeutical potential of such inhibitors. Other synthetic derivatives offer versatile possibilities to get further glycomimetics.
Collapse
|
36
|
Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, O’Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2017. J Med Chem 2019; 62:7340-7382. [DOI: 10.1021/acs.jmedchem.9b00196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew C. Flick
- Seattle Genetics, Inc. 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Carolyn A. Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X. Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing, 100085, China
| | - Emma McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah J. Fink
- BioDuro, 11011 Torreyana Road, San Diego, California 92121, United States
| | - Christopher J. Helal
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. O’Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
37
|
|
38
|
Murakata M, Kawase A, Kimura N, Ikeda T, Nagase M, Koizumi M, Kuwata K, Maeda K, Shimizu H. Synthesis of Tofogliflozin as an SGLT2 Inhibitor via Construction of Dihydroisobenzofuran by Intramolecular [4 + 2] Cycloaddition. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masatoshi Murakata
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Akira Kawase
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Nobuaki Kimura
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Takuma Ikeda
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Masahiro Nagase
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Masatoshi Koizumi
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Kazuaki Kuwata
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Kenji Maeda
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| | - Hitoshi Shimizu
- API Process Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-Ku, Tokyo 115-8543, Japan
| |
Collapse
|
39
|
Ansary TM, Nakano D, Nishiyama A. Diuretic Effects of Sodium Glucose Cotransporter 2 Inhibitors and Their Influence on the Renin-Angiotensin System. Int J Mol Sci 2019; 20:E629. [PMID: 30717173 PMCID: PMC6387046 DOI: 10.3390/ijms20030629] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
The renin-angiotensin system (RAS) plays an important role in regulating body fluids and blood pressure. However, inappropriate activation of the RAS contributes to the pathogenesis of cardiovascular and renal diseases. Recently, sodium glucose cotransporter 2 (SGLT2) inhibitors have been used as anti-diabetic agents. SGLT2 inhibitors induce glycosuria and improve hyperglycemia by inhibiting urinary reabsorption of glucose. However, in the early stages of treatment, these inhibitors frequently cause polyuria and natriuresis, which potentially activate the RAS. Nevertheless, the effects of SGLT2 inhibitors on RAS activity are not straightforward. Available data indicate that treatment with SGLT2 inhibitors transiently activates the systemic RAS in type 2 diabetic patients, but not the intrarenal RAS. In this review article, we summarize current evidence of the diuretic effects of SGLT2 inhibitors and their influence on RAS activity.
Collapse
Affiliation(s)
- Tuba M Ansary
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
40
|
Sirois LE, Zhao MM, Lim NK, Bednarz MS, Harrison BA, Wu W. Process Development for a Locally Acting SGLT1 Inhibitor, LX2761, Utilizing sp3–sp2 Suzuki Coupling of a Benzyl Carbonate. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lauren E. Sirois
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Matthew M. Zhao
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Ngiap-Kie Lim
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Mark S. Bednarz
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Bryce A. Harrison
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Wenxue Wu
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| |
Collapse
|
41
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Rethinking Carbohydrate Synthesis: Stereoretentive Reactions of Anomeric Stannanes. Chemistry 2018; 25:3147-3155. [PMID: 30051523 DOI: 10.1002/chem.201803082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Indexed: 12/29/2022]
Abstract
In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon-metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| | - Maciej A Walczak
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| |
Collapse
|
42
|
Liu J, Gong H. Stereoselective Preparation of α- C-Vinyl/Aryl Glycosides via Nickel-Catalyzed Reductive Coupling of Glycosyl Halides with Vinyl and Aryl Halides. Org Lett 2018; 20:7991-7995. [PMID: 30525666 DOI: 10.1021/acs.orglett.8b03567] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Facile preparation of the α- C-vinyl and -aryl glycosides has been developed via mild Ni-catalyzed reductive vinylation and arylation of C1-glycosyl halides with vinyl/aryl halides. Good to high α-selectivities were achieved for C-glucosides, galactosides, maltoside, and mannosides, which were dictated by the employment of pyridine type ligands. As such, the present work represents unprecedented control for a high level of α-selectivity for C-vinyl-glucosides using cross-coupling approaches and offers hitherto optimal α-selective preparation of C-aryl glucosides via catalyst-controlled coupling strategies.
Collapse
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry , Shanghai University , 99 Shang-Da Road , Shanghai 200444 , China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry , Shanghai University , 99 Shang-Da Road , Shanghai 200444 , China
| |
Collapse
|
43
|
|
44
|
Sadurní A, Gilmour R. Stereocontrolled Synthesis of 2-Fluorinated C-Glycosides. European J Org Chem 2018; 2018:3684-3687. [PMID: 30147438 PMCID: PMC6099233 DOI: 10.1002/ejoc.201800618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 11/22/2022]
Abstract
A systematic study of the addition of C-based nucleophiles to fluorinated lactones based on 2-deoxy-2-fluoro-d-pyranoses is disclosed. This high yielding, α-selective process was found to be independent on the nature or configuration [(R)-C(sp3)-F, (S)-C(sp3)-F] of the substituent at C2. Representative, fluorinated analogues of Trehalose, Carminic acid, and the spirocyclic cores of Tofogliflozin and Papulacandin D are also reported. These glycomimics constitute a valuable series of 19F NMR active probes for application in structural biology.
Collapse
Affiliation(s)
- Anna Sadurní
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 4048149MünsterGermany
- Excellence Cluster EXC 1003Cells in MotionGermany
| |
Collapse
|