1
|
Lo R, Manna D, Vacek J, Bouř P, Wu T, Osifová Z, Socha O, Dračínský M, Hobza P. Striking Impact of Solvent Polarity on the Strength of Hydrogen-Bonded Complexes: A Nexus Between Theory and Experiment. Angew Chem Int Ed Engl 2025; 64:e202422594. [PMID: 39714343 PMCID: PMC11914941 DOI: 10.1002/anie.202422594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity. Contrary to the established understanding, we have demonstrated that the hydrogen-bonded complex (CH3CH2COOH⋅⋅⋅2,4,6-trimethylpyridine) can be better stabilized in a solvent with higher polarity. In this case, a significant charge transfer between the subsystems results in an increased dipole moment of the complex, leading to its stabilization in a more polar solvent. The expected inverse relationship between binding free energy and solvent dielectric constant is observed when the charge transfer between the subsystems is low. Thus, the magnitude of the charge transfer between subsystems is possibly the key factor in determining the stabilization or destabilization of H-bonded complexes in different solvents. Here, we present a comprehensive study that combines experimental and theoretical approaches, including nuclear magnetic resonance (NMR), infrared (IR) spectroscopies and quantum chemical calculations to validate the findings.
Collapse
Affiliation(s)
- Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Debashree Manna
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Jaroslav Vacek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
- Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Tao Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Zuzana Osifová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
Fernández S, Assaf EA, Ahmad S, Travis BD, Curley JB, Hazari N, Ertem MZ, Miller AJM. Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2025; 64:e202416061. [PMID: 39571086 DOI: 10.1002/anie.202416061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp*=pentamethylcyclopentadienyl, bpy=2,2'-bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H-PNP)Ir(H)3 (H-PNP=HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room-temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.
Collapse
Affiliation(s)
- Sergio Fernández
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric A Assaf
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shahbaz Ahmad
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin D Travis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia B Curley
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
3
|
Chernyshov IY, Pidko EA. MACE: Automated Assessment of Stereochemistry of Transition Metal Complexes and Its Applications in Computational Catalysis. J Chem Theory Comput 2024; 20:2313-2320. [PMID: 38365199 PMCID: PMC10938507 DOI: 10.1021/acs.jctc.3c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Computational chemistry pipelines typically commence with geometry generation, well-established for organic compounds but presenting a considerable challenge for transition metal complexes. This paper introduces MACE, an automated computational workflow for converting chemist SMILES/MOL representations of the ligands and the metal center to 3D coordinates for all feasible stereochemical configurations for mononuclear octahedral and square planar complexes directly suitable for quantum chemical computations and implementation in high-throughput computational chemistry workflows. The workflow is validated through a structural screening of a data set of transition metal complexes extracted from the Cambridge Structural Database. To further illustrate the power and capabilities of MACE, we present the results of a model DFT study on the hemilability of pincer ligands in Ru, Fe, and Mn complexes, which highlights the utility of the workflow for both focused mechanistic studies and larger-scale high-throughput pipelines.
Collapse
Affiliation(s)
- Ivan Yu. Chernyshov
- Inorganic Systems Engineering,
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering,
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
4
|
Kundu A, Mandal B, Maji B, Adhikari D. DFT-Guided Mechanistic Insights into Chemodivergence: A Mixed Explicit-Implicit Solvent Description to Dictate the Chemoselectivity. J Phys Chem A 2023; 127:10068-10074. [PMID: 37990876 DOI: 10.1021/acs.jpca.3c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Herein we report a density functional theory (DFT)-guided mechanistic investigation of the nitrile reduction reaction, which exhibits a solvent-dependent chemodivergence. This study reveals an interesting mechanistic picture, highlighting the exact role of a protic solvent, isopropanol, in regulating the reaction outcome. The explicit solvent effect involving polar protic isopropanol favors imine metathesis by proton hopping through stepwise addition and elimination steps and thus produces a secondary amine as the final product. In contrast, the nonpolar solvent n-hexane is incapable of facilitating the proton migration and stops the solvent-assisted imine metathesis. As a result, only primary amines are obtained as the final product. This DFT study provides a recipe for the choice of solvents that can dictate chemoselectivity in product formation.
Collapse
Affiliation(s)
- Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar 140306, India
| | - Baishanal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar 140306, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar 140306, India
| |
Collapse
|
5
|
Hashemi A, Bougueroua S, Gaigeot MP, Pidko EA. ReNeGate: A Reaction Network Graph-Theoretical Tool for Automated Mechanistic Studies in Computational Homogeneous Catalysis. J Chem Theory Comput 2022; 18:7470-7482. [PMID: 36321652 DOI: 10.1021/acs.jctc.2c00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exploration of the chemical reaction space of chemical transformations in multicomponent mixtures is one of the main challenges in contemporary computational chemistry. To remove expert bias from mechanistic studies and to discover new chemistries, an automated graph-theoretical methodology is proposed, which puts forward a network formalism of homogeneous catalysis reactions and utilizes a network analysis tool for mechanistic studies. The method can be used for analyzing trajectories with single and multiple catalytic species and can provide unique conformers of catalysts including multinuclear catalyst clusters along with other catalytic mixture components. The presented three-step approach has the integrated ability to handle multicomponent catalytic systems of arbitrary complexity (mixtures of reactants, catalyst precursors, ligands, additives, and solvents). It is not limited to predefined chemical rules, does not require prealignment of reaction mixture components consistent with a reaction coordinate, and is not agnostic to the chemical nature of transformations. Conformer exploration, reactive event identification, and reaction network analysis are the main steps taken for identifying the pathways in catalytic systems given the starting precatalytic reaction mixture as the input. Such a methodology allows us to efficiently explore catalytic systems in realistic conditions for either previously observed or completely unknown reactive events in the context of a network representing different intermediates. Our workflow for the catalytic reaction space exploration exclusively focuses on the identification of thermodynamically feasible conversion channels, representative of the (secondary) catalyst deactivation or inhibition paths, which are usually most difficult to anticipate based solely on expert chemical knowledge. Thus, the expert bias is sought to be removed at all steps, and the chemical intuition is limited to the choice of the thermodynamic constraint imposed by the applicable experimental conditions in terms of threshold energy values for allowed transformations. The capabilities of the proposed methodology have been tested by exploring the reactivity of Mn complexes relevant for catalytic hydrogenation chemistry to verify previously postulated activation mechanisms and unravel unexpected reaction channels relevant to rare deactivation events.
Collapse
Affiliation(s)
- Ali Hashemi
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sana Bougueroua
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
6
|
Wiedemaier F, Belaj F, Mösch-Zanetti NC. Elucidating the role of amine donors in manganese catalyzed transfer hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|