1
|
Xu M, Li YB, Wang H, Glorius F, Qi X. Mechanism Switch Between Radical-Polar Crossover and Radical Buffering. Angew Chem Int Ed Engl 2025; 64:e202500522. [PMID: 40080046 DOI: 10.1002/anie.202500522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Radical-polar crossover (RPC) is a classic concept that bridges one- and two-electron chemistry. It has been widely used in Cr-catalyzed carbonyl addition reactions to clarify the formation of alkyl chromium(III) intermediate and subsequent carbonyl insertion. Herein, we proposed an orthogonal bonding model, the radical buffering scenario, for Cr-catalyzed carbonyl alkylation. This radical bonding model features the radical dissociation from the alkyl chromium(III) complex followed by the Cr(II)-carbonyl-coupled radical addition to form the C─C bond. The mechanism switch between the radical and polar bonding models is affected by the radical stability, radical nucleophilicity, radical size, and the presence of an α-heteroatom or α-π bond. The collaborative computational and experimental studies have verified the reliability of the radical mechanism. More importantly, we demonstrated that this radical buffering scenario possesses a different stereoselectivity control model from that in the RPC scenario. A general enantioselectivity and diastereoselectivity control model derived from the multiple ligand-radical interactions is thus established for CrCl2/bisoxazoline-catalyzed asymmetric radical addition.
Collapse
Affiliation(s)
- Minghao Xu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, P.R. China
| | - Yan-Bo Li
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Huamin Wang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, P.R. China
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Xie X, Liu HW, Zhu T, Zhang JJ, Hu MY, Chen Z. Visible-Light-Induced Synergistic W/Cr Catalyzed gem-Difluoroallylation of Unactivated Alkanes. Org Lett 2025; 27:2016-2021. [PMID: 39967465 DOI: 10.1021/acs.orglett.5c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Currently, the scope of the Nozaki-Hiyama-Kishi (NHK) reaction is limited to aldehydes and ketones to construct alcohol derivatives. Herein, we have described a visible-light-induced synergistic W/Cr(III)-catalyzed NHK-type gem-difluoroallylation reaction of unactivated cyclic and linear alkanes. The reaction merits feedstock materials, mild reaction conditions, and a wide functionality tolerance. Mechanistic studies imply the favorable reduction of CrCl3 to CrCl2 by reduced decatungstate W10O325-, thus closing the catalytic cycle.
Collapse
Affiliation(s)
- Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hua-Wei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meng-Yang Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Li L, Zhang SQ, Cui X, Zhao G, Tang Z, Li GX. Catalytic Asymmetric Hydrogen Atom Transfer Based on a Chiral Hydrogen Atom Donor Generated from TBADT and Chiral BINOL. Org Lett 2024; 26:8371-8376. [PMID: 39316028 DOI: 10.1021/acs.orglett.4c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Enantioselective radical reactions mediated by TBADT have seldom been seen due to the inherent challenges. Herein, we disclose a new chiral hydrogen atom transfer (HAT) reagent that was generated easily from 8H-BINOL, potassium carbonate, and TBADT under irradiation. The new complex 8H-BINOL/DTs could be used as a chiral H donor. A series of azaarenes could be converted into the corresponding chiral compounds via radical addition followed by enantioselective HAT.
Collapse
Affiliation(s)
- Ling Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Liu D, Hazra A, Liu X, Maity R, Tan T, Luo L. CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202403186. [PMID: 38900647 PMCID: PMC11780880 DOI: 10.1002/anie.202403186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
Here, we report CdS quantum dot (QD) gels, a three-dimensional network of interconnected CdS QDs, as a new type of direct hydrogen atom transfer (d-HAT) photocatalyst for C-H activation. We discovered that the photoexcited CdS QD gel could generate various neutral radicals, including α-amido, heterocyclic, acyl, and benzylic radicals, from their corresponding stable molecular substrates, including amides, thio/ethers, aldehydes, and benzylic compounds. Its C-H activation ability imparts a broad substrate and reaction scope. The mechanistic study reveals that this reactivity is intrinsic to CdS materials, and the neutral radical generation did not proceed via the conventional sequential electron transfer and proton transfer pathway. Instead, the C-H bonds are activated by the photoexcited CdS QD gel via a d-HAT mechanism. This d-HAT mechanism is supported by the linear correlation between the logarithm of the C-H bond activation rate constant and the C-H bond dissociation energy (BDE) with a Brønsted slope α=0.5. Our findings expand the currently limited direct hydrogen atom transfer photocatalysis toolbox and provide new possibilities for photocatalytic C-H activation.
Collapse
Affiliation(s)
- Daohua Liu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Luo
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| |
Collapse
|
6
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
7
|
Hu Q, Song S, Zeng T, Wang L, Li Z, Wu J, Zhu J. 1,3-Butadiene Dicarbofunctionalization Enabled by the Dual Role of Diaryl Ketone in Photo-HAT/Chromium Catalysis. Org Lett 2024; 26:1550-1555. [PMID: 38364868 DOI: 10.1021/acs.orglett.3c04205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
We report a three-component Nozaki-Hiyama-Kishi type reaction of 1,3-dioxolane, 1,3-butadienes, and aldehydes to access masked aldehyde-incorporated homoallylic alcohols, facilitated by photo-hydrogen atom transfer (HAT)/chromium dual catalysis. The diaryl ketone serves dual roles both in the HAT process and in facilitating the turnover of the chromium catalyst. A range of functional groups are tolerated owing to the mild conditions. Both aromatic and aliphatic aldehydes are suitable substrates for coupling with several 1,3-butadienes and 1,3-dioxolane.
Collapse
Affiliation(s)
- Qiang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shuo Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tianlong Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lele Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhongxian Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiacheng Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
8
|
Gao Y, Jiang B, Friede NC, Hunter AC, Boucher DG, Minteer SD, Sigman MS, Reisman SE, Baran PS. Electrocatalytic Asymmetric Nozaki-Hiyama-Kishi Decarboxylative Coupling: Scope, Applications, and Mechanism. J Am Chem Soc 2024; 146:4872-4882. [PMID: 38324710 PMCID: PMC11456316 DOI: 10.1021/jacs.3c13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The first general enantioselective alkyl-Nozaki-Hiyama-Kishi (NHK) coupling reactions are disclosed herein by employing a Cr-electrocatalytic decarboxylative approach. Using easily accessible aliphatic carboxylic acids (via redox-active esters) as alkyl nucleophile synthons, in combination with aldehydes and enabling additives, chiral secondary alcohols are produced in a good yield with high enantioselectivity under mild reductive electrolysis. This reaction, which cannot be mimicked using stoichiometric metal or organic reductants, tolerates a broad range of functional groups and is successfully applied to dramatically simplify the synthesis of multiple medicinally relevant structures and natural products. Mechanistic studies revealed that this asymmetric alkyl e-NHK reaction was enabled by using catalytic tetrakis(dimethylamino)ethylene, which acts as a key reductive mediator to mediate the electroreduction of the CrIII/chiral ligand complex.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Baiyang Jiang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Nathan C. Friede
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Arianne C. Hunter
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dylan G. Boucher
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Department of Chemistry, Missouri University of Science and Technology, 400 W 11th Street, Rolla, MO 65409, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah E. Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
9
|
Yi Y, Xi C. Organo-Photoredox Catalyzed C(sp 3 )-H Bond Arylation of Aliphatic Amides. CHEMSUSCHEM 2023:e202301585. [PMID: 38126961 DOI: 10.1002/cssc.202301585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
A C(sp3 )-H bond arylation of aliphatic amides has been achieved via organophotoredox catalysis. The reaction could be realized at room temperature with visible light source and metal-free catalyst. Quinuclidine is employed as an efficient HAT reagent and a range of aliphatic amides is employed as both substrate and solvent in the reaction. This photocatalyzed transformation provides a convenient protocol to afford a board range of N-benzyl amides.
Collapse
Affiliation(s)
- Yaping Yi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
10
|
Fan P, Chen Z, Wang C. Nickel/Photo-Cocatalyzed Three-Component Alkyl-Acylation of Aryl-Activated Alkenes. Org Lett 2023. [PMID: 38048426 DOI: 10.1021/acs.orglett.3c03669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we disclose a nickel/photo-cocatalyzed three-component alkyl-acylation of aryl-substituted alkenes with aldehydes and electron-withdrawing-group-activated alkyl bromides, providing straightforward access to various ketones under mild and ligand-free conditions. The photocatalyst TBADT plays a dual role in activating the acyl C-H bond of aldehydes via hydrogen atom transfer and reducing the C-Br bond of alkyl bromides via single-electron transfer. While the terminal C-C bond is forged through polarity-matched radical-type addition, nickel is likely involved in the acylation step.
Collapse
Affiliation(s)
- Pei Fan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Zhe Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
12
|
Abstract
Here we show that a primary amine can engage in the nucleophilic addition to an aldehyde to synthesize an alcohol following preactivation of the amine. The enabling reagent for this radical-polar crossover process is CrCl2. This reaction is selective for aldehydes and compatible with numerous functional groups, which are not tolerated under classical Grignard-type conditions. Complementary to the well-established imine synthesis, this deaminative alcohol synthesis can broadly expand the chemical space constructed by aldehydes and amines.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengqiang Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Wang R, Wang C. Asymmetric imino-acylation of alkenes enabled by HAT-photo/nickel cocatalysis. Chem Sci 2023; 14:6449-6456. [PMID: 37325152 PMCID: PMC10266448 DOI: 10.1039/d3sc01945d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
By merging nickel-mediated facially selective aza-Heck cyclization and radical acyl C-H activation promoted by tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst, we accomplish an asymmetric imino-acylation of oxime ester-tethered alkenes with readily available aldehydes as the acyl source, enabling the synthesis of highly enantioenriched pyrrolines bearing an acyl-substituted stereogenic center under mild conditions. Preliminary mechanistic studies support a Ni(i)/Ni(ii)/Ni(iii) catalytic sequence involving the intramolecular migratory insertion of a tethered olefinic unit into the Ni(iii)-N bond as the enantiodiscriminating step.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
14
|
Peng P, Zhong Y, Zhou C, Tao Y, Li D, Lu Q. Unlocking the Nucleophilicity of Strong Alkyl C-H Bonds via Cu/Cr Catalysis. ACS CENTRAL SCIENCE 2023; 9:756-762. [PMID: 37122460 PMCID: PMC10141608 DOI: 10.1021/acscentsci.2c01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/03/2023]
Abstract
Direct functionalization of inert C-H bonds is one of the most attractive yet challenging strategies for constructing molecules in organic chemistry. Herein, we disclose an unprecedented and Earth abundant Cu/Cr catalytic system in which unreactive alkyl C-H bonds are transformed into nucleophilic alkyl-Cr(III) species at room temperature, enabling carbonyl addition reactions with strong alkyl C-H bonds. Various aryl alkyl alcohols are furnished under mild reaction conditions even on a gram scale. Moreover, this new radical-to-polar crossover approach is further applied to the 1,1-difunctionalization of aldehydes with alkanes and different nucleophiles. Mechanistic investigations reveal that the aldehyde not only acts as a reactant but also serves as a photosensitizer to recycle the Cu and Cr catalysts.
Collapse
Affiliation(s)
- Pan Peng
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yifan Zhong
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Dandan Li
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials,
College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Qingquan Lu
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| |
Collapse
|
15
|
Cheng YY, Hou HY, Liu Y, Yu JX, Chen B, Tung CH, Wu LZ. α-Acylation of Alkenes by a Single Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202208831. [PMID: 36202761 DOI: 10.1002/anie.202208831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/05/2022]
Abstract
A direct strategy for the difunctionalization of alkenes, with acylation occurring at the more substituted alkene position, would be attractive for complex ketone synthesis. We report herein a reaction driven by a single photocatalyst that enables α-acylation in this way with the introduction of a fluoromethyl, alkyl, sulfonyl or thioether group at the β-position of the alkene with high chemo- and regioselectivity under extremely mild conditions. Crucial to the success of this method are rate differences in the kinetics of radical generation through single-electron transfer (SET) between different radical precursors and the excited photocatalyst (PC*). Thus, the β-position of the alkene is first occupied by the group derived from the radical precursor that can be generated most readily, and α-keto acids could be used as an electrophilic reagent for the α-acylation of alkenes.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Abstract
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
17
|
Calogero F, Potenti S, Magagnano G, Mosca G, Gualandi A, Marchini M, Ceroni P, Cozzi PG. A Photoredox Nozaki‐Hiyama Reaction Catalytic in Chromium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Francesco Calogero
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Simone Potenti
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Giandomenico Magagnano
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Giampaolo Mosca
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Andrea Gualandi
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Marianna Marchini
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Paola Ceroni
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Pier Giorgio Cozzi
- Universita di Bologna Dipartimento di chimica Via Selmi 2 40126 Bologna ITALY
| |
Collapse
|
18
|
Mitsunuma H, Kanai M, Katayama Y. Recent Progress in Chromium-Mediated Carbonyl Addition Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1696-6429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOrganochromium(III) species are versatile nucleophiles in complex molecule synthesis due to their high functional group tolerance and chemoselectivity for aldehydes. Traditionally, carbonyl addition reactions of organochromium(III) species were performed through reduction of organohalides either using stoichiometric chromium(II) salts or catalytic chromium salts in the presence of stoichiometric reductants [such as Mn(0)]. Recently, alternative methods emerged involving organoradical formation from readily available starting materials (e.g., N-hydroxyphthalimide esters, alkenes, and alkanes), followed by trapping the radical with stoichiometric or catalytic chromium(II) salts. Such methods, especially using catalytic chromium(II) salts, will lead to the development of sustainable chemical processes minimizing salt wastes and number of synthetic steps. In this review, methods for generation of organochromium(III) species for addition reactions to carbonyl compounds, classified by nucleophiles are described.1 Introduction2 Alkylation2.1 Branch-Selective Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2 Linear-Selective Alkylation of Aldehydes2.2.1 Catalytic Decarboxylative Alkylation of Aldehydes Using NHPI Esters2.2.2 Catalytic Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2.3 Alkylation of Aldehydes via C(sp3)–H Bond Functionalization of Unactivated Alkanes2.3 Catalytic α-Aminoalkylation of Carbonyl Compounds3 Allylation3.1 Catalytic Allylation of Aldehydes via Three-Component Coupling3.2 Catalytic Allylation of Aldehydes via C(sp3)–H Bond Functionalization of Alkenes4 Propargylation: Catalytic Propargylation of Aldehydes via Three-Component Coupling5 Conclusion
Collapse
|
19
|
Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp 3)–H Bonds in Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathiravan Murugesan
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Karsten Donabauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Rok Narobe
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Armin Bauer
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
20
|
Photocatalyzed site-selective C(sp3)-H sulfonylation of toluene derivatives and cycloalkanes with inorganic sulfinates. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63953-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Yamane M, Kanzaki Y, Mitsunuma H, Kanai M. Titanium(IV) Chloride-Catalyzed Photoalkylation via C(sp 3)-H Bond Activation of Alkanes. Org Lett 2022; 24:1486-1490. [PMID: 35166548 DOI: 10.1021/acs.orglett.2c00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the sophistication of C-H functionalization as one of the most powerful tools in organic synthesis, methodology for performing hydrogen-atom transfer of unactivated alkanes remains rather scarce. Herein, we describe chlorine radical-catalyzed C(sp3)-H photoalkylation using titanium(IV) chloride via a ligand-to-metal charge transfer process. Enabled by the unique properties of this abundant metal salt, the reaction not only effected the coupling of various alkanes with radical acceptors but also was shown to be applicable to direct photoalkylation of aromatic ketones.
Collapse
Affiliation(s)
- Mina Yamane
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yamato Kanzaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
23
|
Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P, Giorgio Cozzi P. Nickel‐Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Simone Potenti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
- Laboratorio SMART Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Elena Bassan
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Jacopo Monaldi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Busra Dereli
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
24
|
Cozzi PG, Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P. Nickel Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2021; 61:e202114981. [PMID: 34937125 DOI: 10.1002/anie.202114981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Here we report a practical, highly enantioselective photoredox allylation of aldehydes mediated by chiral nickel complexes with commercially available allyl acetate as the allylating agent. The methodology allows the clean stereoselective allylation of aldehydes in good to excellent yields and up to 93% e.e. using a catalytic amount of NiCl 2 (glyme) in the presence of the chiral aminoindanol-derived bis(oxazoline) as the chiral ligand. The photoredox system is constituted by the organic dye 3DPAFIPN and a Hantzsch's ester as the sacrificial reductant. The reaction proceeds under visible light irradiation (blue LEDs, 456 nm) at 8-12 °C with excellent stereoselectivities. Compared to other published procedures, no metal reductants (such as Zn or Mn), additives (e.g. CuI) or air-sensitive Ni(COD) 2 are necessary for this reaction. Accurate DFT calculations and photophysical experiments have clarified the mechanistic picture of this stereoselective allylation reaction showing a key role played by Hantzsch's ester for the turnover of the catalyst.
Collapse
Affiliation(s)
- Pier Giorgio Cozzi
- Universita di Bologna, Dipartimento di chimica, Via Selmi 2, 40126, Bologna, ITALY
| | - Francesco Calogero
- Università degli Studi di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo CIamician, ITALY
| | - Simone Potenti
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo CIamician, ITALY
| | - Elena Bassan
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Andrea Fermi
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Andrea Gualandi
- Università di Bologna: Universita di Bologna, Dipartimento di CHimica Gicacomo Ciamician, ITALY
| | - Jacopo Monaldi
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Busra Dereli
- King Abdullah University of Science and Technology, KAUST Catalysis Center, SAUDI ARABIA
| | - Bholanath Maity
- King Abdullah University of Science and Technology, Kaust Catalysis Center, SAUDI ARABIA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Kaust Catalysis Center, SAUDI ARABIA
| | - Paola Ceroni
- Università di Bologna: Universita di Bologna, Dipartimento di CHimica Giacomo Ciamician, ITALY
| |
Collapse
|
25
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 666] [Impact Index Per Article: 166.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
26
|
Ye Z, Lin Y, Gong L. The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for C−H Functionalization of Alkanes and Cycloalkanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Yu‐Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| |
Collapse
|
27
|
Fan P, Wang R, Wang C. Nickel/Photo-Cocatalyzed C(sp 2)-H Allylation of Aldehydes and Formamides. Org Lett 2021; 23:7672-7677. [PMID: 34553950 DOI: 10.1021/acs.orglett.1c02938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a nickel/photo-cocatalyzed C(sp2)-H allylation of aldehydes and formamides wherein both allyl acetates and allyl alcohols can be used as the allylating agents. In this reaction, radical-type umpolung of the formyl moiety is enabled by tetrabutylammonium decatungstate as a hydrogen-atom-transfer photocatalyst, whereas nickel serves to cleave the C-O bond of allyl acetates or allyl alcohols. The synergistic effect of these two catalysts provides new access to various β,γ-unsaturated ketones and amides with high selectivities.
Collapse
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
28
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
29
|
|
30
|
Sarver PJ, Bissonnette NB, MacMillan DWC. Decatungstate-Catalyzed C( sp3)-H Sulfinylation: Rapid Access to Diverse Organosulfur Functionality. J Am Chem Soc 2021; 143:9737-9743. [PMID: 34161084 PMCID: PMC8627221 DOI: 10.1021/jacs.1c04722] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report the direct conversion of strong, aliphatic C(sp3)-H bonds into the corresponding alkyl sulfinic acids via decatungstate photocatalysis. This transformation has been applied to a diverse range of C(sp3)-rich scaffolds, including natural products and approved pharmaceuticals, providing efficient access to complex sulfur-containing products. To demonstrate the broad potential of this methodology for the divergent synthesis of pharmaceutically relevant molecules, procedures for the diversification of the sulfinic acid products into a range of medicinally relevant functional groups have been developed.
Collapse
Affiliation(s)
- Patrick J Sarver
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Murugesan V, Ganguly A, Karthika A, Rasappan R. C-H Alkylation of Aldehydes by Merging TBADT Hydrogen Atom Transfer with Nickel Catalysis. Org Lett 2021; 23:5389-5393. [PMID: 34170145 DOI: 10.1021/acs.orglett.1c01716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyst controlled site-selective C-H functionalization is a challenging but powerful tool in organic synthesis. Polarity-matched and sterically controlled hydrogen atom transfer (HAT) provides an excellent opportunity for site-selective functionalization. As such, the dual Ni/photoredox system was successfully employed to generate acyl radicals from aldehydes via selective formyl C-H activation and subsequently cross-coupled to generate ketones, a ubiquitous structural motif present in the vast majority of natural and bioactive molecules. However, only a handful of examples that are constrained to the use of aryl halides are developed. Given the wide availability of amines, we developed a cross-coupling reaction via C-N bond cleavage using the economic nickel and TBADT catalyst for the first time. A range of alkyl and aryl aldehydes were cross-coupled with benzylic and allylic pyridinium salts to afford ketones with a broad spectrum of functional group tolerance. High regioselectivity toward formyl C-H bonds even in the presence of α-methylene carbonyl or α-amino/oxy methylene was obtained.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ardra Karthika
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
32
|
Bao QF, Li M, Xia Y, Wang YZ, Zhou ZZ, Liang YM. Visible-Light-Mediated Decarboxylative Radical Addition Bifunctionalization Cascade for the Production of 1,4-Amino Alcohols. Org Lett 2021; 23:1107-1112. [DOI: 10.1021/acs.orglett.1c00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhao-Zhao Zhou
- Department of Chemistry, Nanchang Normal University, Nanchang 330000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Sekerová L, Černá H, Vyskočilová E, Vrbková E, Červený L. Preparation of α-Terpineol from Biomass Resource Catalysed by Acid Treated Montmorillonite K10. Catal Letters 2021. [DOI: 10.1007/s10562-020-03514-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Donabauer K, König B. Strategies for the Photocatalytic Generation of Carbanion Equivalents for Reductant-Free C-C Bond Formations. Acc Chem Res 2021; 54:242-252. [PMID: 33325678 PMCID: PMC7871440 DOI: 10.1021/acs.accounts.0c00620] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/18/2022]
Abstract
ConspectusThe use of photocatalysis in organic chemistry has encountered a surge of novel transformations since the start of the 21st century. The majority of these transformations are driven by the generation and subsequent reaction of radicals, owing to the intrinsic property of common photocatalysts to transfer single electrons from their excited state. While this is a powerful and elegant method to develop novel transformations, several research groups recently sought to further extend the toolbox of photocatalysis into the realm of polar ionic reactivity by the formation of cationic as well as anionic key reaction intermediates to furnish a desired product.Our group became especially interested in the photocatalytic formation of anionic carbon nucleophiles, as the overall transformation resembles classical organometallic reactions like Grignard, Barbier, and Reformatsky reactions, which are ubiquitous in organic synthesis with broad applications especially in the formation of valuable C-C bonds. Although these classical reactions are frequently applied, their use still bears certain disadvantages; one is the necessity of an (over)stoichiometric amount of a reducing metal. The reducing, low-valent, metal is solely applied to activate the starting material to form the organometallic carbanion synthon, while the final reaction product does generally not contain a metal species. Hence, a stoichiometric amount of metal salt is bound to be generated at the end of each reaction, diminishing the atom economy. The use of visible light as mild and traceless activation agent to drive chemical reactions can be a means to arrive at a more atom economic transformation, as a reducing metal source is avoided. Beyond this, the vast pool of photocatalytic activation methods offers the potential to employ easily available starting materials, as simple as unfunctionalized alkanes, to open novel and more facile retrosynthetic pathways. However, as mentioned above, photocatalysis is dominated by open-shell radical reactivity. With neutral radicals showing an intrinsically different reactivity than ionic species, novel strategies to form intermediates expressing a polar behavior need to be developed in order to achieve this goal.In the last couple of years, several methods toward this aim have been reported by our group and others. This Account aims to give an overview of the different existing strategies to photocatalytically form carbon centered anions or equivalents of those in order to form C-C bonds. As the main concept is to omit a stoichiometric reductant source (like a low-valent metal in classical organometallic reactions), only redox-neutral and reductant-free transformations were taken into closer consideration. We present selected examples of important strategies and try to illustrate the intentions and concepts behind the methods developed by our group and others.
Collapse
Affiliation(s)
- Karsten Donabauer
- Institute for Organic Chemistry, University of
Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany
| | - Burkhard König
- Institute for Organic Chemistry, University of
Regensburg, Universitätsstraße 31, 93053 Regensburg,
Germany
| |
Collapse
|
35
|
Hirao Y, Katayama Y, Mitsunuma H, Kanai M. Chromium-Catalyzed Linear-Selective Alkylation of Aldehydes with Alkenes. Org Lett 2020; 22:8584-8588. [PMID: 33074009 DOI: 10.1021/acs.orglett.0c03180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed a chromium-catalyzed, photochemical, and linear-selective alkylation of aldehydes with alkylzirconium species generated in situ from a wide range of alkenes and Schwartz's reagent. Photochemical homolysis of the C-Zr bond afforded alkyl radicals, which were then trapped by a chromium complex catalyst to generate the alkylchromium(III) species for polar addition to aldehydes. The reaction proceeded with high functional group tolerance at ambient temperature under visible-light irradiation.
Collapse
Affiliation(s)
- Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuri Katayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Donabauer K, Murugesan K, Rozman U, Crespi S, König B. Photocatalytic Reductive Radical-Polar Crossover for a Base-Free Corey-Seebach Reaction. Chemistry 2020; 26:12945-12950. [PMID: 32686166 PMCID: PMC7589390 DOI: 10.1002/chem.202003000] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Indexed: 01/07/2023]
Abstract
A metal-free generation of carbanion nucleophiles is of prime importance in organic synthesis. Herein we report a photocatalytic approach to the Corey-Seebach reaction. The presented method operates under mild redox-neutral and base-free conditions giving the desired product with high functional group tolerance. The reaction is enabled by the combination of photo- and hydrogen atom transfer (HAT) catalysis. This catalytic merger allows a C-H to carbanion activation by the abstraction of a hydrogen atom followed by radical reduction. The generated nucleophilic intermediate is then capable of adding to carbonyl electrophiles. The obtained dithiane can be easily converted to the valuable α-hydroxy carbonyl in a subsequent step. The proposed reaction mechanism is supported by emission quenching, radical-radical homocoupling and deuterium labeling studies as well as by calculated redox-potentials and bond strengths.
Collapse
Affiliation(s)
- Karsten Donabauer
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Kathiravan Murugesan
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Urša Rozman
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Stefano Crespi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Burkhard König
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
37
|
Schäfers F, Quach L, Schwarz JL, Saladrigas M, Daniliuc CG, Glorius F. Direct Access to Monoprotected Homoallylic 1,2-Diols via Dual Chromium/Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03697] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Schäfers
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Linda Quach
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - J. Luca Schwarz
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Mar Saladrigas
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
38
|
Bao QF, Xia Y, Li M, Wang YZ, Liang YM. Visible-Light-Mediated Trifluoromethylation/Benzylation of Styrenes Catalyzed by 4-CzIPN. Org Lett 2020; 22:7757-7761. [DOI: 10.1021/acs.orglett.0c03022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
39
|
Yahata K, Yoshioka S, Hori S, Sakurai S, Kaneko Y, Hasegawa K, Akai S. One-Pot Formal Dehydrogenative Ketone Synthesis from Aldehydes and Non-activated Hydrocarbons. Chem Pharm Bull (Tokyo) 2020; 68:336-338. [PMID: 32074521 DOI: 10.1248/cpb.c20-00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ketones are a fundamental functionality found throughout a range of natural and synthetic compounds, making their synthesis essential throughout the chemical disciplines. Herein, we describe a one-pot synthesis of ketones via decatungstate-mediated formal dehydrogenative coupling between aldehydes and non-activated hydrocarbons. A variety of substituted benzaldehydes and cycloalkanes could be used in the optimized reaction to produce the desired ketones in moderate yields. The decatungstate photocatalyst functions in two reactions in this synthesis, catalyzing both the coupling and oxidation steps of the process. Notably, the reaction displays both high atom economy and sustainability, as it uses light and oxygen as key energy sources.
Collapse
Affiliation(s)
- Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shin Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shuhei Hori
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shu Sakurai
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yuki Kaneko
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kai Hasegawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
40
|
Gualandi A, Calogero F, Mazzarini M, Guazzi S, Fermi A, Bergamini G, Cozzi PG. Cp2TiCl2-Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00348] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Francesco Calogero
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Martino Mazzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Simone Guazzi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Andrea Fermi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| |
Collapse
|