1
|
Nguyen TVT, Brownsey DK, Bossonnet A, Wodrich MD, Waser J. Homologation of Alkenyl Carbonyls via a Cyclopropanation/Light-Mediated Selective C-C Cleavage Strategy. Angew Chem Int Ed Engl 2025; 64:e202417719. [PMID: 39478669 DOI: 10.1002/anie.202417719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Indexed: 11/22/2024]
Abstract
We report herein our studies on the direct photoactivation of carbonyl cyclopropanes to give biradical intermediates, leading to selective cleavage of the more substituted carbon-carbon bond. Depending on the substrate structure, extended alkenes were isolated or directly reacted in a photo-Nazarov process to give bicyclic products. Based on these results, a unified reductive ring-opening reaction was developed by using diphenyl disulfide as a hydrogen atom transfer (HAT) reagent. By performing a sequential cyclopropanation/selective ring opening reaction, we achieved a CH2 insertion into the α,β bond of both acyclic and cyclic unsaturated carbonyl compounds. Our protocol provides a further tool for the modification of the carbon framework of organic compounds, complementing the recent progress in "skeletal editing".
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Duncan K Brownsey
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Sead FF, Jain V, Ballal S, Singh A, Devi A, Chandra Sharma G, Joshi KK, Kazemi M, Javahershenas R. Research on transition metals for the multicomponent synthesis of benzo-fused γ-lactams. RSC Adv 2025; 15:2334-2346. [PMID: 39867320 PMCID: PMC11756498 DOI: 10.1039/d4ra08798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp2)-H to C(sp2)-N bonds, streamlining the creation of these compounds. Furthermore, biocatalytic approaches have emerged, providing asymmetric synthesis of lactams with high yield and enantioselectivity. This review examined the transition metal-catalyzed synthesis techniques for producing benzo-fused γ-lactams, marking a significant leap in organic synthesis by proposing more effective, selective, and greener production methods. It serves as a valuable resource for researchers in the fields of transition metal catalysts and those engaged in synthesizing these lactams.
Collapse
Affiliation(s)
- Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University Najaf Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon Babylon Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot-360003 Gujarat India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura Punjab 140401 India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri Mohali140307 Punjab India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan Jaipur India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University Dehradun India
- Graphic Era Deemed to be (b) University Dehradun Uttarakhand India
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| |
Collapse
|
3
|
Hu H, Zhang C, Ma Z, Wang C, Zhao D, Bai Y, Ni X, Wang J. Palladium-catalyzed regioselective carbonylation of 2-amino-2,3-diphenylpropanoate to 5/6-membered benzolactams. Org Biomol Chem 2024; 22:8407-8412. [PMID: 39350651 DOI: 10.1039/d4ob01310g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Five/six-membered benzolactams are significant blocks in both organic and medicinal chemistry. Achieving 5/6-membered benzolactams from the same starting compound under varying reaction conditions presents a significant challenge. Herein, palladium-catalyzed free amine-oriented regioselective C-H activations/carbonylations mediated by hexacarbonylmolybdenum, leading to diverse sizes of benzolactams, respectively, have been developed. Six-membered dihydroisoquinolinones can be obtained selectively in acetic acid using benzoquinone as an oxidant. While unfavorable five-membered isoindolinones were formed in the presence of Cu(II) as an oxidant and dihydrooxazole ligands in 1,2-dichlorobenzene. The substituents on the phenyl ring also had a great influence on the regioselectivity of the reaction. In addition, an asymmetric version of the reaction has also been attempted preliminarily.
Collapse
Affiliation(s)
- Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Can Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Zhehao Ma
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213164, P. R. China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|
4
|
Agrawal SK, Majhi PK, Goodfellow AS, Tak RK, Cordes DB, McKay AP, Kasten K, Bühl M, Smith AD. Synthesis of Tetra-Substituted 3-Hydroxyphthalide Esters by Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202402909. [PMID: 38713305 DOI: 10.1002/anie.202402909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
A general and highly enantioselective method for the preparation of tetra-substituted 3-hydroxyphthalide esters via isothiourea-catalysed acylative dynamic kinetic resolution (DKR) is reported. Using (2S,3R)-HyperBTM (5 mol %) as the catalyst, the scope and limitations of this methodology have been extensively probed, with high enantioselectivity and good to excellent yields observed (>40 examples, up to 99 %, 99 : 1 er). Substitution of the aromatic core within the 3-hydroxyphthalide skeleton, as well as aliphatic and aromatic substitution at C(3), is readily tolerated. A diverse range of anhydrides, including those from bioactive and pharmaceutically relevant acids, can also be used. The high enantioselectivity observed in this DKR process has been probed computationally, with a key substrate heteroatom donor O⋅⋅⋅acyl-isothiouronium interaction identified through DFT analysis as necessary for enantiodiscrimination.
Collapse
Affiliation(s)
- Shubham K Agrawal
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Pankaj K Majhi
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Raj K Tak
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
5
|
Mahajan R, Kumar S, Parupalli R, Khemchandani R, Kanchupalli V, Nanduri S, Samanthula G, Asthana A. Structural characterization and in silico toxicity prediction of degradation impurities of roxadustat. J Pharm Biomed Anal 2023; 234:115517. [PMID: 37320975 DOI: 10.1016/j.jpba.2023.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Roxadustat is the first drug approved for anemia due to chronic kidney disease. Drug degradation profile is very crucial for assessing the quality and safety of the drug substances and their formulations. Forced degradation studies are conducted for quick prediction of drug degradation products. Forced degradation of roxadustat was carried out as per ICH guidelines, and nine degradation products (DPs) were observed. These DPs (DP-1 to DP-9) were separated using the reverse phase HPLC gradient method with an XBridge column (250 mm × 4.6 mm, 5 µm). The mobile phase consisted of 0.1% formic acid (solvent A) and acetonitrile (solvent B) at a flow rate of 1.0 ml/min. The chemical structures of all the DPs were proposed by using LC-Q-TOF/MS. DP-4 and DP-5, the two major degradation impurities, were isolated, and NMR was used to confirm their chemical structures. Based on our experiments, the roxadustat was found stable to thermal degradation in solid state and oxidative conditions. However, it was unstable in acidic, basic, and photolytic conditions. A very remarkable observation was made about DP-4 impurity. DP-4 was generated as a common degradation impurity in alkaline hydrolysis, neutral hydrolysis as well as photolysis conditions. DP-4 has a similar molecular mass to roxadustat but is structurally different. DP-4 is chemically, (1a-methyl-6-oxo-3-phenoxy-1,1a,6,6a-tetrahydroindeno [1,2-b] aziridine-6a-carbonyl) glycine. In silico toxicity study was conducted using Dereck software to gain the best knowledge of the drug and its degradation products towards carcinogenicity, mutagenicity, teratogenicity, and skin sensitivity. A further study using molecular docking confirmed the potential interaction of DPs with proteins responsible for toxicity. DP-4 shows a toxicity alert due to the presence of aziridine moiety.
Collapse
Affiliation(s)
- Rupali Mahajan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sanjeev Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramulu Parupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Kim S, Song SL, Zhang J, Kim D, Hong S, Chang S. Regio- and Enantioselective Catalytic δ-C-H Amidation of Dioxazolones Enabled by Open-Shell Copper-Nitrenoid Transfer. J Am Chem Soc 2023; 145:16238-16248. [PMID: 37462685 DOI: 10.1021/jacs.3c05258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Controlling regio- and enantioselectivity in C-H functionalization reactions is of paramount importance due to their versatile synthetic utilities. Herein, we describe a new approach for the asymmetric δ-C(sp3)-H amidation catalysis of dioxazolones using a Cu(I) precursor with a chiral bisoxazoline ligand to access six-membered lactams with high to excellent regio- and enantioselectivity (up to >19:1 rr and >99:1 er). Combined experimental and computational mechanistic studies unveiled that the open-shell character of the postulated Cu-nitrenoids enables the regioselective hydrogen atom abstraction and subsequent enantio-determining radical rebound of the resulting carbon radical intermediates. The synthetic utility of this asymmetric cyclization was demonstrated in the diastereoselective introduction of additional functional groups into the chiral δ-lactam skeleton as well as in the rapid access to biorelevant azacyclic compounds.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Se Lin Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jianbo Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
7
|
Sunbal, Alamzeb M, Omer M, Abid OUR, Ullah M, Sohail M, Ullah I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles-a transition metal-catalyzed approach. Front Chem 2023; 11:1185669. [PMID: 37564110 PMCID: PMC10411457 DOI: 10.3389/fchem.2023.1185669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Drug design and delivery is primarily based on the hunt for new potent drug candidates and novel synthetic techniques. Recently, saturated heterocycles have gained enormous attention in medicinal chemistry as evidenced by the medicinal drugs listed in the FDA Orange Book. Therefore, the demand for novel saturated heterocyclic syntheses has increased tremendously. Transition metal (TM)-catalyzed reactions have remained the prime priority in heterocyclic syntheses for the last three decades. Nowadays, TM catalysis is well adorned by combining it with other techniques such as bio- and/or enzyme-catalyzed reactions, organocatalysis, or using two different metals in a single catalysis. This review highlights the recent developments of the transition metal-catalyzed synthesis of five-membered saturated heterocycles.
Collapse
Affiliation(s)
- Sunbal
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
8
|
Chakrabortty S, Zheng S, Kallmeier F, Baráth E, Tin S, de Vries JG. Ru-Catalyzed Direct Asymmetric Reductive Amination of Bio-Based Levulinic Acid and Ester for the Synthesis of Chiral Pyrrolidinone. CHEMSUSCHEM 2023; 16:e202202353. [PMID: 36752680 DOI: 10.1002/cssc.202202353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Direct asymmetric reductive amination of bio-based levulinic acid (LA) to the enantioenriched 5-methylpyrrolidinone is achieved by using a readily available chiral Ru/bisphosphine catalyst with excellent enantioselectivity (up to 96 % ee) and high isolated yield (up to 89 %). Methyl levulinate (ML), a byproduct from the industrial production of 2,5-furandicarboxylic acid (FDCA), can be used instead of LA with similar reactivity and selectivity. Mass spectrometry and isotope labelling studies indicate that the chiral lactam is formed via imine-enamine tautomerization/cyclization followed by asymmetric hydrogenation of the cyclic enamide.
Collapse
Affiliation(s)
| | - Shasha Zheng
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Fabian Kallmeier
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Eszter Baráth
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Johannes G de Vries
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
9
|
Lv T, Feng J, Chen X, Luo Y, Wu Q, Zhu D, Ma Y. Desymmetric Reductive Amination of 1,3-Cyclopentadiones to Single Stereoisomer of β-Amino Ketones with an All-Carbon Quaternary Stereocenter by Engineered Amine Dehydrogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Wagener T, Pierau M, Heusler A, Glorius F. Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade. Adv Synth Catal 2022; 364:3366-3371. [PMID: 36589139 PMCID: PMC9796080 DOI: 10.1002/adsc.202200601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Collapse
Affiliation(s)
- Tobias Wagener
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Marco Pierau
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Arne Heusler
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
11
|
Li W, Yang Y, Tang Z, Yu X, Lin J, Jin Y. Visible-Light-Promoted Carbene Insertion and Decarbonylation for the Synthesis of α-Substituted γ-Ketoesters. J Org Chem 2022; 87:13352-13362. [PMID: 36130043 DOI: 10.1021/acs.joc.2c01552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a blue visible-light-promoted approach for preparing a variety of α-substituted γ-ketoester derivatives through carbene insertion and the decarbonylation of enaminones and diazoesters. These reactions use readily available starting materials and transition-metal-free, eco-friendly procedures that are amenable to gram-scale synthesis and wide functional group tolerance. This methodology may be useful for constructing polysubstituted heterocycles with potential biological activity.
Collapse
Affiliation(s)
- Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xianglin Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
12
|
Liu Y, Wang L, Li Y, Ma B, Chen GQ, Zhang X. Highly efficient synthesis of chiral β-amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Pan Y, Luo ZL, Yang J, Han J, Yang J, yao Z, Xu L, Wang P, Shi Q. Cobalt‐Catalyzed Selective Transformation of Levulinic Acid and Amines into Pyrrolidines and Pyrrolidinones under H2. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | - zhen yao
- Renmin University of China CHINA
| | - Lijin Xu
- Renmin University of China CHINA
| | | | | |
Collapse
|
14
|
Fe-Catalyzed Ring-Opening Reactions of Siloxy Cyclopropanes with Alkenes and TBHP: Synthesis of 4-Ester Peroxides. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hu L, Wang Y, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022; 61:e202202552. [DOI: 10.1002/anie.202202552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuan‐Zheng Wang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lei Xu
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
16
|
Hu L, Wang YZ, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Le’an Hu
- Southern University of Science and Technology Chemistry CHINA
| | - Yuan-Zheng Wang
- Southern University of Science and Technology Chemistry CHINA
| | - Lei Xu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Qin Yin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
17
|
Wang X, Li Y, Wu X. Photoredox/Cobalt Dual Catalysis Enabled Regiospecific Synthesis of Distally Unsaturated Ketones with Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaochuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Liu M, Li W, Huang M, Yan Y, Li M, Cao L, Zhang X. Enantioselective intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones provided isoindolinone fused tetrahydro β-carbolines with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Dai Z, Zhang X, Yin Q. Advances on Asymmetric Reductive Amination with Ammonium Salts as Amine Sources. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Shi Y, Wang J, Yang F, Wang C, Zhang X, Chiu P, Yin Q. Direct asymmetric reductive amination of α-keto acetals: a platform for synthesizing diverse α-functionalized amines. Chem Commun (Camb) 2021; 58:513-516. [PMID: 34897338 DOI: 10.1039/d1cc06601c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report an efficient and straightforward method to synthesize enantio-enriched N-unprotected α-amino acetals via ruthenium-catalyzed direct asymmetric reductive amination. The α-amino acetal products are versatile and valuable platform molecules that can be converted to the corresponding α-amino acids, amino alcohols, and other derivatives by convenient transformations.
Collapse
Affiliation(s)
- Yongjie Shi
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jingxin Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feifan Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chenhan Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pauline Chiu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
21
|
Reshi NUD, Saptal VB, Beller M, Bera JK. Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Noor U Din Reshi
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B. Saptal
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Matthias Beller
- Leibniz-Institut fr Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Jitendra K. Bera
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
22
|
Dai Z, Pan YM, Wang SG, Zhang X, Yin Q. Direct reductive amination of ketones with ammonium salt catalysed by Cp*Ir(III) complexes bearing an amidato ligand. Org Biomol Chem 2021; 19:8934-8939. [PMID: 34636833 DOI: 10.1039/d1ob01710a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.
Collapse
Affiliation(s)
- Zengjin Dai
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Ying-Min Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
23
|
Lv X, Chen L, Pan J, Meng X, Bi S, Liu W, Zhou T, Lin K, Ye D, Zhou W. Efficient preparation of (R)-2-(2,5-difluorophenyl)pyrrolidine via a recycle process of resolution. Chirality 2021; 33:931-937. [PMID: 34651347 DOI: 10.1002/chir.23366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
An efficient preparation of (R)-2-(2,5-difluorophenyl)pyrrolidine ((R)-1) from the racemate based on a recycle process of resolution/racemization was described. In the process, the desired (R)-1 was obtained by resolution with D-malic acid in 95% EtOH. Meanwhile, the undesired (S)-1 could be racemized in the presence of potassium hydroxide in DMSO. After three times of recycle process, the desired freebase (R)-1 was obtained in a yield of 61.7% with excellent ee (98.4%).
Collapse
Affiliation(s)
- Xunlei Lv
- School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Liang Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jing Pan
- School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xue Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Siju Bi
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Weiyuan Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Ting Zhou
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Kuaile Lin
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| | - Deyong Ye
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weicheng Zhou
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Key Laboratory of Anti-infectives, State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
24
|
Guan YQ, Min XT, He GC, Ji DW, Guo SY, Hu YC, Chen QA. The serendipitous effect of KF in Ritter reaction: Photo-induced amino-alkylation of alkenes. iScience 2021; 24:102969. [PMID: 34466792 PMCID: PMC8383004 DOI: 10.1016/j.isci.2021.102969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Ritter reaction has been recognized as an elegant strategy to construct the C−N bond. Its key feature is forming the carbocation for nucleophilic attack by nitriles. Herein, we report a complementary visible-light-induced three-component Ritter reaction of alkenes, nitriles, and α-bromo nitriles/esters, thereby providing mild and rapid access to various γ-amino nitriles/acids. Mechanistic studies indicated that traceless fluoride relay, transforming KF into imidoyl fluoride intermediate, is critical for the efficient reaction switch from atom transfer radical addition (ATRA) to the Ritter reaction. This approach to amino-alkylation of alkenes is chemoselective and operationally simple. Using light irradiation to promote amino-alkylation of alkenes Using KF to facilitate three-component Ritter reaction Access functionalized amides under mild conditions
Collapse
Affiliation(s)
- Yu-Qing Guan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Yamada M, Azuma K, Yamano M. Highly Enantioselective Direct Asymmetric Reductive Amination of 2-Acetyl-6-Substituted Pyridines. Org Lett 2021; 23:3364-3367. [PMID: 33891422 DOI: 10.1021/acs.orglett.1c00848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly direct asymmetric reductive amination of a variety of ketone substrates, including 2-acetyl-6-substituted pyridines, β-keto esters, β-keto amides, and 1-(6-methylpyridin-2-yl)propan-2-one, has been disclosed for the first time (94.6% to >99.9% ee). With ammonium trifluoroacetate as the nitrogen source, various chiral corresponding primary amines were prepared in excellent enantioselectivity and conversion in the presence of a commercially available and inexpensive chiral catalyst, Ru(OAc)2{(S)-binap}, under 0.8 MPa of hydrogen gas pressure.
Collapse
Affiliation(s)
- Masatoshi Yamada
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Kazuki Azuma
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Mitsuhisa Yamano
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| |
Collapse
|
26
|
Tian Y, Hu L, Wang YZ, Zhang X, Yin Q. Recent advances on transition-metal-catalysed asymmetric reductive amination. Org Chem Front 2021. [DOI: 10.1039/d1qo00300c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the recent progress of homogeneous transition-metal-catalysed asymmetric reductive amination of ketones with diverse nitrogen sources.
Collapse
Affiliation(s)
- Yingying Tian
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
| | - Le'an Hu
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
| | - Yuan-Zheng Wang
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
| | - Xumu Zhang
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
- Shenzhen Key Laboratory of Small Molecule Drug Discovery
| | - Qin Yin
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
- Academy for Advanced Interdisciplinary Studies
| |
Collapse
|
27
|
Dong W, Yao P, Wang Y, Wu Q, Zhu D. Chemoenzymatic Stereoselective Synthesis of Substituted γ‐ or δ‐lactams with Two Chiral Centers via Transaminase‐catalysed Dynamic Kinetic Resolution. ChemCatChem 2020. [DOI: 10.1002/cctc.202001142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenyue Dong
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Yingang Wang
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
28
|
Zhang Y, Liu YQ, Hu L, Zhang X, Yin Q. Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Org Lett 2020; 22:6479-6483. [PMID: 32806148 DOI: 10.1021/acs.orglett.0c02282] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here a Ru-catalyzed enantioselective synthesis of biaryl-bridged NH lactams through asymmetric reductive amination and a spontaneous ring-closing cascade from keto esters and NH4OAc with H2 as reductant. The reaction features broad substrate generality and high enantioselectivities (up to >99% ee). To showcase the practical utility, a highly enantioselective synthesis of 5-ethylindolobenzazepinone C, a promising antimitotic agent, has been rapidly completed. Furthermore, the amide group in the products enables versatile elaborations through directed C-H functionalization.
Collapse
Affiliation(s)
- Yao Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun-Qi Liu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qin Yin
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|