1
|
Wu H, Pan Q, Grill J, Johansson MJ, Qiu Y, Bäckvall JE. Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling. J Am Chem Soc 2025; 147:4338-4348. [PMID: 39847037 PMCID: PMC11803718 DOI: 10.1021/jacs.4c14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner. Specifically, the selective allenic C-H activation of an allene with an allyl substituent as the assisting group gives rise to a vinylpalladium intermediate, which reacts with a less substituted allene in a carbopalladation, followed by a β-hydride elimination. The reaction sequence leads to a new C(sp2)-C(sp2) bond between two diene units. Remarkably, this protocol provides an unconventional strategy for the site-selective and stereoselective construction of C(vinyl)-C(vinyl) bonds without using any halogenated and organometallics olefin precursors. Furthermore, the practical transformations of the synthesized [4]dendralenes and late-stage modifications of biorelevant molecules demonstrate their potential in the total synthesis of natural products and drug discovery.
Collapse
Affiliation(s)
- Haibo Wu
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Qi Pan
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Judith Grill
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Magnus J. Johansson
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183 Mölndal, Sweden
| | - Youai Qiu
- State
Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center
for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
2
|
Zhang C, Mazet C. Access to Cyclic Borates by Cu-Catalyzed Borylation of Unactivated Vinylcyclopropanes. Org Lett 2024; 26:5386-5390. [PMID: 38870414 PMCID: PMC11217945 DOI: 10.1021/acs.orglett.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
We report the copper-catalyzed borylation of unactivated vinylcyclopropanes to form six-membered cyclic borate salts. A copper complex bearing an N-heterocyclic ligand in combination with bis(pinacolato)diboron and LiOtBu catalyzes the ring-opening of the substrate under mild reaction conditions. The protocol can be applied to aryl- and heteroaryl-substituted vinylcyclopropanes and can be conducted on a gram scale. The synthetic utility of the lithium salts of the cyclic borate has been demonstrated through regioselective ring-opening functionalizations.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Oeser P, Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024; 29:1593. [PMID: 38611872 PMCID: PMC11154425 DOI: 10.3390/molecules29071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Collapse
Affiliation(s)
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
4
|
Liu S, Liu Y, Flaget A, Zhang C, Mazet C. Cu-Catalyzed Enantioselective Protoboration of 2,3-Disubstituted 1,3-Dienes. Org Lett 2023; 25:6897-6901. [PMID: 37695719 PMCID: PMC10521025 DOI: 10.1021/acs.orglett.3c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 09/13/2023]
Abstract
A Cu-catalyzed regio- and enantioselective protoboration of 2,3-disubstituted 1,3-dienes is described. The protocol operates under mild conditions and is applicable to symmetrically and unsymmetrically substituted dienes, providing access to homoallylic boronates in consistently high yield, regioselectivity, and enantiomeric ratio. Preliminary investigations point to a complex mechanism.
Collapse
Affiliation(s)
- Sensheng Liu
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | | | - Arthur Flaget
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Cheng Zhang
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Fan YM, Sowden MJ, Magann NL, Lindeboom EJ, Gardiner MG, Sherburn MS. A General Stereoselective Synthesis of [4]Dendralenes. J Am Chem Soc 2022; 144:20090-20098. [PMID: 36260914 DOI: 10.1021/jacs.2c09360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first general synthesis of branched tetraenes ([4]dendralenes) involves two or three steps from inexpensive, commodity chemicals. It involves an unprecedented variation on Suzuki-Miyaura cross-coupling, generating two new C-C bonds in a one-flask operation with control of diastereoselectivity. The broad scope of the method is established through the synthesis of more than 60 diversely substituted [4]dendralene molecules, along with substituted buta-1,3-dienes and other [n]dendralenes. [4]Dendralenes are demonstrated to be significantly more kinetically stable than their well-known [3]dendralene counterparts. The first stereoselective synthesis of these compounds is also reported, through the catalyst-controlled generation of both E- and Z-diastereomeric products from the same precursor. Novel, through-conjugated/cross-conjugated hybrid molecules are introduced. The first selective dienophile cycloadditions to substituted [4]dendralenes are reported, thus paving the way for applications in target-oriented synthesis.
Collapse
Affiliation(s)
- Yi-Min Fan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Madison J Sowden
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas L Magann
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Erik J Lindeboom
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Fan Y, Yu L, Gardiner MG, Coote ML, Sherburn MS. Enantioselective oxa-Diels-Alder Sequences of Dendralenes. Angew Chem Int Ed Engl 2022; 61:e202204872. [PMID: 35900232 PMCID: PMC9804868 DOI: 10.1002/anie.202204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Diene-transmissive hetero-Diels-Alder sequences involving carbonyl dienophiles are reported for the first time. High enantioselectivities are achieved in the reaction of phenylglyoxal with a broad range of dendralene structures, through the optimization of a Pd2+ catalyst system. The initial catalyst-controlled enantioselective oxa-Diels-Alder (ODA) cycloaddition to a [3]dendralene generates a dihydropyran carrying a semicyclic diene. This participates in a subsequent catalyst or substrate-controlled Diels-Alder reaction to generate sp3 -rich fused polycyclic systems containing both heterocycles and carbocycles. Computational investigations reveal a concerted asynchronous mechanism. π-Complexation of a diene C=C bond to Pd2+ occurs in both the pre-transition state (TS) complex and in cycloaddition TSs, controlling stereoselectivity. A formal enantioselective [4+2]cycloaddition of a CO2 dienophile is demonstrated.
Collapse
Affiliation(s)
- Yi‐Min Fan
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Li‐Juan Yu
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Michael G. Gardiner
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Michelle L. Coote
- Institute for Nanoscale Science & TechnologyFlinders UniversitySturt Road, Bedford ParkSouth Australia5042Australia
| | - Michael S. Sherburn
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| |
Collapse
|
7
|
Fan YM, Yu LJ, Gardiner MG, Coote ML, Sherburn M. Enantioselective oxa‐Diels‐Alder Sequences of Dendralenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi-Min Fan
- Australian National University College of Science: Australian National University Research School of Chemistry AUSTRALIA
| | - Li-Juan Yu
- Australian National University College of Science: Australian National University Research School of Chemistry AUSTRALIA
| | - Michael G. Gardiner
- Australian National University College of Science: Australian National University Research School of Chemistry AUSTRALIA
| | - Michelle L. Coote
- Flinders University of South Australia: Flinders University Chemistry AUSTRALIA
| | - Michael Sherburn
- Australian National University Research School of Chemistry Building 137, Sullivan's Creek Road 0200 Canberra AUSTRALIA
| |
Collapse
|
8
|
Wu H, Su H, Schulze EJ, Peters BBC, Nolan MD, Yang J, Singh T, Ahlquist MSG, Andersson PG. Site- and Enantioselective Iridium-Catalyzed Desymmetric Mono-Hydrogenation of 1,4-Dienes. Angew Chem Int Ed Engl 2021; 60:19428-19434. [PMID: 34137493 PMCID: PMC8456900 DOI: 10.1002/anie.202107267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/22/2023]
Abstract
The control of site selectivity in asymmetric mono-hydrogenation of dienes or polyenes remains largely underdeveloped. Herein, we present a highly efficient desymmetrization of 1,4-dienes via iridium-catalyzed site- and enantioselective hydrogenation. This methodology demonstrates the first iridium-catalyzed hydrogenative desymmetriation of meso dienes and provides a concise approach to the installation of two vicinal stereogenic centers adjacent to an alkene. High isolated yields (up to 96 %) and excellent diastereo- and enantioselectivities (up to 99:1 d.r. and 99 % ee) were obtained for a series of divinyl carbinol and divinyl carbinamide substrates. DFT calculations reveal that an interaction between the hydroxy oxygen and the reacting hydride is responsible for the stereoselectivity of the desymmetrization of the divinyl carbinol. Based on the calculated energy profiles, a model that simulates product distribution over time was applied to show an intuitive kinetics of this process. The usefulness of the methodology was demonstrated by the synthesis of the key intermediates of natural products zaragozic acid A and (+)-invictolide.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Hao Su
- School of BiotechnologyKTH Royal Institute of Technology10691StockholmSweden
| | - Erik J. Schulze
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Bram B. C. Peters
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Mark D. Nolan
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Jianping Yang
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Thishana Singh
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalPrivate Bag X54001Durban4000South Africa
| | | | - Pher G. Andersson
- Department of Organic ChemistryStockholm University10691StockholmSweden
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalPrivate Bag X54001Durban4000South Africa
| |
Collapse
|
9
|
Wu H, Su H, Schulze EJ, Peters BBC, Nolan MD, Yang J, Singh T, Ahlquist MSG, Andersson PG. Site‐ and Enantioselective Iridium‐Catalyzed Desymmetric Mono‐Hydrogenation of 1,4‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haibo Wu
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hao Su
- School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Erik J. Schulze
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Bram B. C. Peters
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Mark D. Nolan
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jianping Yang
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Thishana Singh
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| | | | - Pher G. Andersson
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
10
|
Nassar Y, Rodier F, Ferey V, Cossy J. Cross-Coupling of Ketone Enolates with Grignard and Zinc Reagents with First-Row Transition Metal Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youssef Nassar
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | | | | | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| |
Collapse
|
11
|
Zou C, Niu C, Liu X, Zhang C. Recent Advances about Protoboration of Conjugated Dienes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|