1
|
Xu J, Tang M, Zhang W, Xie S, Gu Q, Zhang L. Controlled synthesis of superhydrophilic flower-like hierarchical porous diboronate affinity materials for capturing biomarkers. Anal Chim Acta 2025; 1357:344053. [PMID: 40316382 DOI: 10.1016/j.aca.2025.344053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Boronate affinity chromatography represents a powerful analytical technique for the selective separation and enrichment of biomolecules containing cis-diol moieties, including carbohydrates, glycoproteins, and other cis-dihydroxy compounds. While boronate affinity materials (BAMs) have shown promise in glycosylation-based separation and analysis, their practical application is hindered by non-biocompatible binding pH, low enrichment efficiency for low-abundance samples, non-specific adsorption, and limited loading capacity. To address these limitations, this work focuses on developing flower-like hierarchical porous diboronate affinity materials (FHP-DBAMs) with enhanced binding strength, selectivity, and capacity for cis-diol-containing biomolecules. RESULTS FHP-DBAM was synthesized via a facile sol-gel method, using tetrahydroxydiboron as a hydrophilic diboronic acid monomer. The electron-withdrawing nature and hydrophilicity of diboronate affinity mechanism enable FHP-DBAM to operate at lower pH values (pH ≥ 5), addressing the biocompatibility issue. DFT and experiment calculations confirm the enhanced cis-diol binding affinity of diboronate affinity mechanism compared with monoboronate affinity mechanism, resulting in a remarkably low dissociation constant (DFT Kd = 6.74 × 10-5 M, experiment Kd = 9.95 × 10-5 M) for FHP-DBAM. Furthermore, the unique flower-like hierarchical porous structure provides a high surface area and nanoconfinement effect, significantly boosting target molecule loading capacity and affinity reaction kinetics. Compared to traditional BAMs, FHP-DBAM exhibits over ten times higher loading capacity. As a proof-of-concept, FHP-DBAM successfully captures the biomarker GM1 in breast cancer cells MCF-7 with high efficiency. SIGNIFICANCE AND NOVELTY This work introduces diboronate affinity mechanism and flower-like hierarchical porous structure as new solution to overcome the limitations of conventional BAMs. FHP-DBAMs achieve lower binding pH, enhanced selectivity, and stronger binding stability through diboronate affinity mechanism. The unique flower-like porous structure maximizes surface area and active sites, addressing low enrichment efficiency and loading capacity. These advancements are critical for the efficient and biocompatible separation of cis-diol-containing biomolecules.
Collapse
Affiliation(s)
- Jinhua Xu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Minghui Tang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Shiye Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qianqian Gu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
2
|
Butler SM, Beagan DM, Lewis W, Szymczak NK, Jolliffe KA. Gem-Diboronic Acids: A Motif for Anion Recognition in Competitive Media. Angew Chem Int Ed Engl 2025; 64:e202502582. [PMID: 40051088 PMCID: PMC12051827 DOI: 10.1002/anie.202502582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Gem-diboronic acid derivatives have previously been demonstrated to facilitate substrate binding within a metal's secondary coordination sphere, but their use as an anion recognition motif has not been explored. Here, we introduce the gem-diboronic acid motif as a highly effective group for recognition of oxoanions in aqueous solution. Anion receptors based on this motif demonstrate higher binding affinities than other common neutral motifs such as amides and (thio)ureas, and display a unique selectivity profile. Studies with a receptor bearing two gem-diboronic acid groups, receptor 2, indicate that the interaction with anions is highly directional. Despite its simplicity, receptor 2 represents one of the most selective receptors for malonate reported to date.
Collapse
Affiliation(s)
- Stephen M. Butler
- School of ChemistryUniversity of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceUniversity of SydneyCamperdownNSW2006Australia
| | - Daniel M. Beagan
- Department of ChemistryUnited States Air Force AcademyAir Force AcademyColorado80840USA
| | - William Lewis
- School of ChemistryUniversity of SydneyCamperdownNSW2006Australia
- Sydney AnalyticalUniversity of SydneyCamperdownNSW2006Australia
| | | | - Katrina A. Jolliffe
- School of ChemistryUniversity of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceUniversity of SydneyCamperdownNSW2006Australia
- The University of Sydney Nano Institute (Sydney Nano)University of SydneyCamperdownNSW2006Australia
| |
Collapse
|
3
|
Iwasawa H, Takahashi N, Shimada N. Synthesis of N-methyl secondary amides via diboronic acid anhydride-catalyzed dehydrative condensation of carboxylic acids with aqueous methylamine. Org Biomol Chem 2025; 23:2400-2410. [PMID: 39912522 DOI: 10.1039/d4ob02022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
In this study, we present the first catalytic methodology for synthesizing N-methyl secondary amides via dehydrative condensation of hydroxycarboxylic acids with readily available and safe aqueous methylamine, employing diboronic acid anhydride (DBAA) as the catalyst. DBAA catalysis can also be applied to direct amidations using aqueous ethylamine or aqueous dimethylamine. Moreover, we demonstrate the applicability of this catalytic system for the concise synthesis of eight biologically active compounds containing β-amino alcohol motifs, including halostachine, synephrine, longimammine, phenylephrine, metanephrine, normacromerine, etilefrine, and macromerine.
Collapse
Affiliation(s)
- Hinata Iwasawa
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
4
|
Han J, Piane JJ, Gizenski H, Elacqua E, Nacsa ED. An Electrochemical Design for a General Catalytic Carboxylic Acid Substitution Platform via Anhydrides at Room Temperature: Amidation, Esterification, and Thioesterification. Org Lett 2025; 27:1923-1928. [PMID: 39950709 DOI: 10.1021/acs.orglett.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
An original concept for catalytic electrochemical dehydration has enabled a suite of acid substitutions, including amidation, esterification, and thioesterification, through a linchpin anhydride formed in situ. By avoiding stoichiometric dehydrating agents, this method addresses a leading challenge in organic synthesis and green chemistry. It also proceeds without acid additives at room temperature, accesses a diverse range of product structures, is easily scaled, and enabled the first example of catalytic peptide coupling at room temperature.
Collapse
Affiliation(s)
- Jian Han
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jacob J Piane
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hannah Gizenski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Elizabeth Elacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Eric D Nacsa
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Shinjo-Nagahara S, Okada Y, Hiratsuka G, Kitano Y, Chiba K. Improved Electrochemical Peptide Synthesis Enabled by Electron-Rich Triaryl Phosphines. Chemistry 2024; 30:e202402552. [PMID: 38981861 DOI: 10.1002/chem.202402552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
While remarkable progress has been made in the development of peptide medicines, many problems related to peptide synthesis remain unresolved. Previously, we reported electrochemical peptide synthesis using a phosphine as a potentially recyclable coupling reagent. However, there was room for improvement from the point of view of reaction efficiency, especially in the carboxylic acid activation step and the peptide bond formation step. To overcome these challenges, we searched for the optimal phosphine. Among phosphines with various electronic properties, we found that electron-rich triaryl phosphines improved the reaction efficiency. Consequently, we successfully performed electrochemical peptide synthesis on sterically hindered and valuable amino acids. We also synthesized oligopeptides that were challenging with our previous method. Finally, we examined the effect of substituents on the phosphine cations, and gained some insights into reactivity, which will aid researchers designing reactions involving phosphine cations.
Collapse
Affiliation(s)
- Shingo Shinjo-Nagahara
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Goki Hiratsuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| |
Collapse
|
6
|
Koshizuka M, Takahashi N, Shimada N. Organoboron catalysis for direct amide/peptide bond formation. Chem Commun (Camb) 2024; 60:11202-11222. [PMID: 39196535 DOI: 10.1039/d4cc02994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Amides and peptides are ubiquitous functional groups found in several natural and artificial materials, and they are essential for the advancement of life and material sciences. In particular, their relevance in clinical medicine and drug discovery has increased in recent years. Dehydrative condensation of readily available carboxylic acids with amines is the most "direct" method for amide synthesis; however, this methodology generally requires a stoichiometric amount of condensation agent (coupling reagent). Catalytic direct dehydrative amidation has become an "ideal" methodology for synthesizing amides from the perspective of green chemistry, with water as the only byproduct in principle, high atom efficiency, environmentally friendly, energy saving, and safety. Conversely, organoboron compounds, such as boronic acids, which are widely used in various industries as coupling reagents for Suzuki-Miyaura cross-coupling reactions or pharmaceutical structures, are environmentally friendly molecules that have low toxicity and are easy to handle. Based on the chemical properties of organoboron compounds, they have potential Lewis acidity and the ability to form reversible covalent bonds with dehydration, making them attractive as catalysts. This review explores studies on the development of direct dehydrative amide/peptide bond formation reactions from carboxylic acids using organoboron catalysis, classifying them based on chemical bonding and catalysis over approximately 25 years, from the early developmental days to 2023.
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
7
|
Ryoo JY, Han MS. Development of boronic acid catalysts for direct amidation of aromatic carboxylic acids using fluorescence-based screening. Org Biomol Chem 2024. [PMID: 39012343 DOI: 10.1039/d4ob00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Direct amidation of carboxylic acids with amines holds significant importance; therefore, catalytic processes involving boronic acids have undergone extensive investigation. However, studies focused on the amidation of aromatic carboxylic acids remain limited. In this study, we introduce a fluorescence-based screening methodology employing an anthracene derivative probe, facilitating the rapid evaluation of various amidation catalysts. Using this approach, boronic acids were evaluated for their catalytic potential. Our findings reveal that 2-hydroxyphenylboronic acid (C7), previously deemed inefficient for aliphatic acids, effectively catalyzes the amidation of aromatic acids. The catalysts identified through this method consistently achieved high yields, reaching up to 98% across a broad spectrum of substrates.
Collapse
Affiliation(s)
- Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Abstract
Organoboron acids are stable, organic-soluble Lewis acids with potential application as catalysts for a wide variety of chemical reactions. In this review, we summarize the utility of boronic and borinic acids, as well as boric acid, as catalysts for organic transformations. Typically, the catalytic processes exploit the Lewis acidity of trivalent boron, enabling the reversible formation of a covalent bond with oxygen. Our focus is on recent developments in the catalysis of dehydration, carbonyl condensation, acylation, alkylation, and cycloaddition reactions. We conclude that organoboron acids have a highly favorable prospectus as the source of new catalysts.
Collapse
Affiliation(s)
- Brian J Graham
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Uehara D, Adachi S, Tsubouchi A, Okada Y, Zhdankin VV, Yoshimura A, Saito A. Peptide coupling using recyclable bicyclic benziodazolone. Chem Commun (Camb) 2024; 60:956-959. [PMID: 38131348 DOI: 10.1039/d3cc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We report a greener peptide coupling using bicyclic benziodazolone and triarylphosphine as coupling reagents. Bicyclic benziodazolone also works as a base and can be recovered as the corresponding iodine(I) compound after use, which can be converted to the original iodine(III) reagent by electrolytic oxidation.
Collapse
Affiliation(s)
- Daigo Uehara
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Sota Adachi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Akira Tsubouchi
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN, 55812, USA
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Takahashi N, Takahashi A, Shimada N. Hydroxy-directed peptide bond formation from α-amino acid-derived inert esters enabled by boronic acid catalysis. Chem Commun (Camb) 2024; 60:448-451. [PMID: 38088060 DOI: 10.1039/d3cc04856j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A boronic acid-catalyzed peptide bond formation from α-amino acid methyl esters is described. The catalysis showed high chemoselectivity for β-hydroxy-α-amino esters, affording the peptides in high to excellent yields with high functional group tolerance. This hydroxy-directed peptide bond formation could be applicable to oligopeptide syntheses. This is the first successful example of organoboron-catalyzed peptide bond formation from α-amino acid-derived inert esters.
Collapse
Affiliation(s)
- Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Airi Takahashi
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
11
|
Duengo S, Muhajir MI, Hidayat AT, Musa WJA, Maharani R. Epimerisation in Peptide Synthesis. Molecules 2023; 28:8017. [PMID: 38138507 PMCID: PMC10745333 DOI: 10.3390/molecules28248017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/24/2023] Open
Abstract
Epimerisation is basically a chemical conversion that includes the transformation of an epimer into another epimer or its chiral partner. Epimerisation of amino acid is a side reaction that sometimes happens during peptide synthesis. It became the most avoided reaction because the process affects the overall conformation of the molecule, eventually even altering the bioactivity of the peptide. Epimerised products have a high similarity of physical characteristics, thus making it difficult for them to be purified. In regards to amino acids, epimerisation is very important in keeping the chirality of the assembled amino acids unchanged during the peptide synthesis and obtaining the desirable product without any problematic purification. In this review, we report several factors that induce epimerisation during peptide synthesis, including how to characterise and affect the bioactivities. To avoid undesirable epimerisation, we also describe several methods of suppressing the process.
Collapse
Affiliation(s)
- Suleman Duengo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, North Sulawesi, Indonesia;
| | - Muhamad Imam Muhajir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Weny J. A. Musa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, North Sulawesi, Indonesia;
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceutical, National Research and Innovation Agency (BRIN), Sumedang 45363, West Java, Indonesia
| |
Collapse
|
12
|
Koshizuka M, Shinoda K, Makino K, Shimada N. Concise Synthesis of 2,5-Diketopiperazines via Catalytic Hydroxy-Directed Peptide Bond Formations. J Org Chem 2023. [PMID: 37125993 DOI: 10.1021/acs.joc.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
2,5-Diketopiperazines (DKPs) with hydroxymethyl functional groups are essential structures found in many bioactive molecules and functional materials. We have established a simple protocol for the concise synthesis of this type of DKPs through diboronic acid anhydride-catalyzed hydroxy-directed peptide bond formations. The sequential reactions in this report, which consist of three steps, an intermolecular catalytic condensation reaction in which water is the only byproduct, a simple deprotection of the nitrogen-protecting group, and an intramolecular cyclization, enabled the synthesis of functionalized DKPs in high to excellent yields without any intermediate purification. The utility of this protocol has been demonstrated by synthesizing natural products, phomamide and Cyclo(Deala-l-Leu).
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kaito Shinoda
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
13
|
Tsutsumi R, Kashiwagi N, Kumagai N. Expeditious Access to the B 3NO 2 Heterocycle Enabling Modular Derivatization. J Org Chem 2023; 88:6247-6251. [PMID: 37126653 DOI: 10.1021/acs.joc.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
DATB (1,3-dioxa-5-aza-2,4,6-triborinane) is a unique six-membered heterocycle exhibiting proficient catalytic activity in direct dehydrative amidation. Reported herein is an improved synthetic protocol for DATB derivatives featuring a concise two-step chromatography-free process. Suzuki-Miyaura coupling assembled 2,6-dibromoaniline derivatives and 1,2-phenylenediboronic acid to afford dimeric B-spiroborate salts. Acidic untying of the spiroborates gave rise to the DATB ring system with various substituents.
Collapse
Affiliation(s)
- Ryosuke Tsutsumi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Nobuaki Kashiwagi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
14
|
Pan B, Huang DM, Sun HT, Song SN, Su XB. Heterocyclic Boron Acid Catalyzed Dehydrative Amidation of Aliphatic/Aromatic Carboxylic Acids with Amines. J Org Chem 2023. [PMID: 36791405 DOI: 10.1021/acs.joc.2c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A commercially available and versatile dehydrative amidation catalyst, featuring a thianthrene boron acid structure, has been developed. The catalyst shows high catalytic activity to both aliphatic and less reactive aromatic carboxylic acid substrates, including several bioactive or clinical molecules with a carboxylic acid group.
Collapse
Affiliation(s)
- Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Ding-Min Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hao-Tian Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Sheng-Nan Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xian-Bin Su
- State Key Laboratory of Material-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
15
|
Opie CR, Noda H, Shibasaki M, Kumagai N. Less Is More: N(BOH) 2 Configuration Exhibits Higher Reactivity than the B 3NO 2 Heterocycle in Catalytic Dehydrative Amide Formation. Org Lett 2023; 25:694-697. [PMID: 36662124 DOI: 10.1021/acs.orglett.2c04382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diboron substructures have emerged as a promising scaffold for the catalytic dehydrative amidation of carboxylic acids and amines. This Letter describes the design, synthesis, and evaluation of the first isolable N(BOH)2 compound as an amidation catalyst. The new catalyst outperforms the previously reported B3NO2 heterocycle catalyst, with respect to turnover frequency, albeit the former gradually decomposes upon exposure to amines. This work opens up an avenue for designing a better catalyst for direct amidation.
Collapse
Affiliation(s)
- Christopher R Opie
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.,Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
16
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
17
|
Zhou J, Paladino M, Hall DG. Direct Boronic Acid Promoted Amidation of Carboxylic Acids with Poorly Nucleophilic Amines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingning Zhou
- Department of Chemistry University of Alberta 4-010 Centennial Centre for Interdisciplinary Science T6G 2G2 Edmonton Alberta Canada
| | - Marco Paladino
- Department of Chemistry University of Alberta 4-010 Centennial Centre for Interdisciplinary Science T6G 2G2 Edmonton Alberta Canada
| | - Dennis G. Hall
- Department of Chemistry University of Alberta 4-010 Centennial Centre for Interdisciplinary Science T6G 2G2 Edmonton Alberta Canada
| |
Collapse
|
18
|
Muramatsu W, Yamamoto H. Organocatalytic Activation of Inert Hydrosilane for Peptide Bond Formation. Org Lett 2022; 24:7194-7199. [PMID: 36166483 DOI: 10.1021/acs.orglett.2c02947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the development of a reliable catalytic protocol for peptide bond formation that is generally applicable to natural and unnatural α-amino acids, β-amino acids, and peptides bearing various functional groups. A 10 mol % loading of HSi[OCH(CF3)2]3 as a catalyst was sufficient to guarantee a consistently high yield of the resulting peptide. This method facilitates the sustainable utilization of natural resources by using a catalyst and an auxiliary based on earth-abundant silicon.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
19
|
Taheri-Ledari R, Qazi FS, Saeidirad M, Maleki A. A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions. Sci Rep 2022; 12:14865. [PMID: 36050366 PMCID: PMC9436994 DOI: 10.1038/s41598-022-19030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a new heterogeneous magnetic catalytic system based on selenium-functionalized iron oxide nanoparticles is presented and suggested for facilitating amide/peptide bonds formation. The prepared nanocatalyst, entitled as "Fe3O4/SiO2-DSBA" (DSBA stands for 2,2'-diselanediylbis benzamide), has been precisely characterized for identifying its physicochemical properties. As the most brilliant point, the catalytic performance of the designed system can be mentioned, where only a small amount of Fe3O4/SiO2-DSBA (0.25 mol%) has resulted in 89% reaction yield, under a mild condition. Also, given high importance of green chemistry, convenient catalyst particles separation from the reaction medium through its paramagnetic property (ca. 30 emu·g-1) should be noticed. This particular property provided a substantial opportunity to recover the catalyst particles and successfully reuse them for at least three successive times. Moreover, due to showing other excellences, such as economic benefits and nontoxicity, the presented catalytic system is recommended to be scaled up and exploited in the industrial applications.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
20
|
Bolduc TG, Lee C, Chappell WP, Sammis GM. Thionyl Fluoride-Mediated One-Pot Substitutions and Reductions of Carboxylic Acids. J Org Chem 2022; 87:7308-7318. [PMID: 35549478 DOI: 10.1021/acs.joc.2c00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields).
Collapse
Affiliation(s)
- Trevor G Bolduc
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cayo Lee
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - William P Chappell
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
21
|
Gagnon A, Chan HC. On the Copper-Promoted Backbone Arylation of Histidine-Containing Peptides Using Triarylbismuthines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1786-6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractWe report herein our detailed investigation on the histidine-directed backbone arylation of histidine-containing peptides using triarylbismuth reagents. The reaction proceeds on the backbone NH of the amino acid that precedes the histidine, the so-called n–1 position. The protocol is applicable to dipeptides where the histidine is located at the C-terminus and to tripeptides where the histidine occupies the central position. The transformation is promoted by copper(II) acetate in the presence of phenanthroline (Phen) and diisopropylethylamine in dichloromethane at 50 °C under oxygen. An excellent scope was observed for the triarylbismuthines. In all cases, the imidazole ring of the histidine is protected with a trityl group to prevent the arylation of the side chain. An ATCUN-like model is proposed to explain the observed results.
Collapse
|
22
|
Braddock DC, Davies JJ, Lickiss PD. Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids. Org Lett 2022; 24:1175-1179. [PMID: 35084870 PMCID: PMC9007566 DOI: 10.1021/acs.orglett.1c04265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Methyltrimethoxysilane [MTM, CH3Si(OMe)3]
has been demonstrated to be an effective, inexpensive, and safe reagent
for the direct amidation of carboxylic acids with amines. Two simple
workup procedures that provide the pure amide product without the
need for further purification have been developed. The first employs
an aqueous base-mediated annihilation of MTM. The second involves
simple product crystallization from the reaction mixture providing
a low process mass intensity
direct amidation protocol.
Collapse
Affiliation(s)
- D Christopher Braddock
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Joshua J Davies
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Paul D Lickiss
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
23
|
Lee C, Thomson BJ, Sammis GM. Rapid and column-free syntheses of acyl fluorides and peptides using ex situ generated thionyl fluoride. Chem Sci 2021; 13:188-194. [PMID: 35059166 PMCID: PMC8694322 DOI: 10.1039/d1sc05316g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 01/28/2023] Open
Abstract
Thionyl fluoride (SOF2) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the ex situ generation of SOF2 and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.
Collapse
Affiliation(s)
- Cayo Lee
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J Thomson
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
24
|
Nowicki K, Pacholak P, Luliński S. Heteroelement Analogues of Benzoxaborole and Related Ring Expanded Systems. Molecules 2021; 26:5464. [PMID: 34576937 PMCID: PMC8468133 DOI: 10.3390/molecules26185464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The review covers the chemistry of organoboron heterocycles structurally related to benzoxaboroles where one of the carbon atoms in a boracycle or a fused benzene ring is replaced by a heteroelement such as boron, silicon, tin, nitrogen, phosphorus, or iodine. Related ring expanded systems including those based on naphthalene and biphenyl cores are also described. The information on synthetic methodology as well as the basic structural and physicochemical characteristics of these emerging heterocycles is complemented by a presentation of their potential applications in organic synthesis and medicinal chemistry, the latter aspect being mostly focused on the promising antimicrobial activity of selected compounds.
Collapse
Affiliation(s)
- Krzysztof Nowicki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw, Poland; (K.N.); (P.P.)
| | - Piotr Pacholak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw, Poland; (K.N.); (P.P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw, Poland; (K.N.); (P.P.)
| |
Collapse
|
25
|
Yamada T, Watanabe Y, Okamoto S. 6-Halo-2-pyridone as an efficient organocatalyst for ester aminolysis. RSC Adv 2021; 11:24588-24593. [PMID: 35481026 PMCID: PMC9036873 DOI: 10.1039/d1ra04651a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023] Open
Abstract
It was found that 6-halo-2-pyridones catalysed ester aminolysis in which not only reactive aryl esters but also relatively less reactive methyl and benzyl esters could be used as a substrate. The reaction could be performed without strictly dry and anaerobic conditions and the 6-chloro-2-pyridone catalyst could be recovered quantitatively after reaction. The method could be applied to dipeptide synthesis from methyl or benzyl esters of amino acids, where a high enantiomeric purity of the products was maintained. The mechanism involving dual activation of ester and amine substrates through hydrogen bonding between catalyst and substrates is proposed where 6-halo-2-pyridones act as a bifunctional Brønsted acid/base catalyst. 6-Halo-2-pyridones effectively catalyse ester aminolysis as bifunctional catalysts. This reaction did not require any special conditions and was operationally convenient.![]()
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Yusuke Watanabe
- Department of Materials and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| |
Collapse
|
26
|
Muramatsu W, Hattori T, Yamamoto H. Amide bond formation: beyond the dilemma between activation and racemisation. Chem Commun (Camb) 2021; 57:6346-6359. [PMID: 34121110 DOI: 10.1039/d1cc01795k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of methods for amide bond formation without recourse to typical condensation reagents has become an emerging research area and has been actively explored in the past quarter century. Inspired by the structure of vitamin B12, we have developed a metal-templated macrolactamisation that generates a new wave towards classical macrolactam synthesis. Further, distinct from the extensively used methods with condensation reagents or catalysts based on catalyst/reagent control our metal-catalysed methods based on substrate control can effectively address long-standing challenges such as racemisation in the field of peptide chemistry. In addition, the substrate-controlled strategy demonstrates the feasibility of "remote" peptide bond-forming reaction catalysed by a metal-ligand complex. Moreover, an originally designed hydrosilane/aminosilane system can avoid not only racemisation but also unnecessary waste production. This feature article documents our discovery and application of our original approaches in amide bond formation.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| | - Tomohiro Hattori
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
27
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene‐Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
28
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021; 60:9290-9295. [PMID: 33522053 PMCID: PMC8252115 DOI: 10.1002/anie.202100295] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.
Collapse
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|