1
|
Mohite SB, Mirza YK, Bera PS, Nadigar S, Yugendhar S, Karpoormath R, Bera M. Advances in Pyridine C-H Functionalizations: Beyond C2 Selectivity. Chemistry 2025; 31:e202403032. [PMID: 39604069 DOI: 10.1002/chem.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The pyridine core is a crucial component in numerous FDA-approved drugs and Environmental Protection Agency (EPA) regulated agrochemicals. It also plays a significant role in ligands for transition metals, alkaloids, catalysts, and various organic materials with diverse properties, making it one of the most important structural frameworks. However, despite its significance, direct and selective functionalization of pyridine is still relatively underdeveloped due to its electron-deficient nature and the strong coordinating ability of nitrogen. Among the variety of synthetic transformation, direct functionalization of C-H bond is straightforward and atom economical approach and it's advantageous for late-stage functionalization of pyridine containing drugs. In recent years, innovative strategies for regioselective C-H functionalization of pyridines and azines have emerged, offering numerous benefits such as high regioselectivity, mild conditions, and enabling transformations that were challenging with traditional methods. This review emphasizes the latest advancements in meta and para-C-H functionalization of pyridines through various approaches, including pyridine phosphonium salts, photocatalytic methods, temporary de-aromatization, Minisci-type reactions, and transition metal-catalyzed C-H activation techniques. We discuss the advantages and limitations of these current methods and aim to inspire further progress in this significant field.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Yafia Kousin Mirza
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Partha Sarathi Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Siddaram Nadigar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Soorni Yugendhar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Rajsekhar Karpoormath
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Milan Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| |
Collapse
|
2
|
Wang J, Zhou F, Xu Y, Zhang L. Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation. CHEM REC 2025; 25:e202400161. [PMID: 39727226 DOI: 10.1002/tcr.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry. Over the last few decades, Ir- and Ru-based organometallic photocatalysts have attracted significant interest because of their high stability, high-energy triplet state, strong visible-light absorption, long luminescence lifetime, and amenability to ligand modification. This review highlights the recent progress in the organometallic photocatalyst-promoted synthesis and modification of carbohydrates under photoirradiation, as well as the related benefits and drawbacks.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| |
Collapse
|
3
|
Mondal M, Ghosh S, Lai D, Hajra A. C-H Functionalization of Heteroarenes via Electron Donor-Acceptor Complex Photoactivation. CHEMSUSCHEM 2024; 17:e202401114. [PMID: 38975970 DOI: 10.1002/cssc.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
C-H Functionalization of heteroarenes stands as a potent instrument in organic synthesis, and with the incorporation of visible light, it emerged as a transformative game-changer. In this domain, electron donor-acceptor (EDA) complex, formed through the pairing of an electron-rich substrate with an electron-accepting molecule, has garnered substantial consideration in recent years due to the related avoidance of the requirement of photocatalyst as well as oxidant. EDA complexes can undergo photoactivation under mild conditions and exhibit high functional group tolerance, making them potentially suitable for the functionalization of biologically relevant heteroarenes. This review article provides an overview of recent advancements in the field of C-H functionalization of heteroarenes via EDA complex photoactivation with literature coverage up to April, 2024.
Collapse
Affiliation(s)
- Madhusudan Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
4
|
Wang J, Zhou F, Xu Y, Zhang L. Photocatalyst-free light-promoted carbohydrate synthesis and modification. Carbohydr Res 2024; 546:109304. [PMID: 39520807 DOI: 10.1016/j.carres.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Photoredox catalysis has recently emerged as a powerful approach for preparing oligosaccharides because it uses mild conditions, is compatible with partially or completely unprotected carbohydrate substrates, and exhibits impressive regio- and stereo-selectivity and high functional group tolerance. However, most catalytic photoredox reactions require an external photocatalyst (organic dye or expensive transition-metal complex) to deliver key glycosyl radicals. Several photocatalyst-free photocatalytic reactions that avoid the use of expensive metal salts or organic-dye additives have received significant attention. In this review, we highlight the most recent developments in photocatalyst-free light-promoted carbohydrate synthesis and modification, which is expected to inspire broad interest in further innovations in the green synthesis of saccharides.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China.
| |
Collapse
|
5
|
Mooney DT, McKee H, Batch TS, Drane S, Moore PR, Lee AL. Direct C-H amidation of 1,3-azoles: light-mediated, photosensitiser-free vs. thermal. Chem Commun (Camb) 2024; 60:10752-10755. [PMID: 39248036 DOI: 10.1039/d4cc02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed one thermal and one light-mediated method for direct Minisci-type C-H amidation of 1,3-azoles, which are applicable to thiazoles, benzothiazoles, benzimidazoles, and for the first time, imidazoles. The new visible light-mediated approach can be rendered photosensitiser/photocatalyst-free and likely proceeds via an electron donor-acceptor (EDA) complex, the first direct Minisci-type amidation to do so.
Collapse
Affiliation(s)
- David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tabea S Batch
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Samuel Drane
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Peter R Moore
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
6
|
Manoharan K, Bieszczad B. Acyl-1,4-Dihydropyridines: Universal Acylation Reagents for Organic Synthesis. Molecules 2024; 29:3844. [PMID: 39202923 PMCID: PMC11356872 DOI: 10.3390/molecules29163844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Acyl-1,4-dihydropyridines have recently emerged as universal acylation reagents. These easy-to-make and bench-stable NADH biomimetics play the dual role of single-electron reductants and sources of acyl radicals. This review article discusses applications of acyl-1,4-dihydropyridines in organic synthesis since their introduction in 2019. Acyl-1,4-dihydropyridines, activated by photochemical, thermal or electrochemical methods, have been successfully applied as radical sources in multiple diverse organic transformations such as acyl radical addition to olefins, alkynes, imines and other acceptors, as well as in the late-stage functionalisation of natural products and APIs. Release of acyl radicals and an electron can be performed under mild conditions-in green solvents, under air and sunlight, and without the use of photocatalysts, photosensitizers or external oxidants-which makes them ideal reagents for organic chemists.
Collapse
Affiliation(s)
- Karthikeyan Manoharan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Bartosz Bieszczad
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
7
|
Iqbal S, Farhanaz, Roohi, Zaheer MR, Shankar K, Hussain MK, Zia Q, Rehman MT, AlAjmi MF, Gupta A. Visible-light promoted catalyst-free (VLCF) multi-component synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids: evaluation of in vitro anticancer activity, molecular docking, MD simulation and DFT studies. J Biomol Struct Dyn 2024; 42:3145-3165. [PMID: 37227775 DOI: 10.1080/07391102.2023.2214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50 = 6.58-17.98 μM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Farhanaz
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, India
| | - Krapa Shankar
- Sun Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, India
| | | | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Md Tabish Rehman
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
8
|
Han G, You J, Choi J, Kang EJ. N-Iminopyridinium Compounds in Giese Reaction: Photoinduced Homolytic N-N and C-C Bond Cleavage for Cyanoalkyl Radical Generation. Org Lett 2024. [PMID: 38489286 DOI: 10.1021/acs.orglett.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
We present an innovative photoinduced cyanoalkyl radical addition methodology using N-iminopyridinium reagents derived from cyclic ketones. Mechanistic investigations reveal the association of the excited Hantzsch ester and iminopyridinium with pyridyl radical generation. The ensuing cascade involving homolytic N-N bond and C-C bond cleavage of the pyridyl radical ultimately leads to the formation of cyanoalkyl radical species, leading to diverse Giese-type products. The method showcases versatility and synthetic utility in late-stage functionalization.
Collapse
Affiliation(s)
- Gyuri Han
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihyun You
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
9
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
10
|
Jing Q, Qiao FC, Sun J, Wang JY, Zhou MD. Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides with 4-carbamoyl-Hantzsch esters. Org Biomol Chem 2023; 21:7530-7534. [PMID: 37674373 DOI: 10.1039/d3ob01240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Carbamoyl-Hantzsch esters were used as carbamoyl radical precursors for oxidative carbamoylation of N-arylacrylamides and N-arylcinnamamides in the presence of inexpensive persulfates. This protocol can be applied to a broad range of substrates with various functional groups, providing a variety of 3,3-disubstituted oxindoles and 3,4-disubstituted dihydroquinolin-2(1H)-ones in moderate to good yields via an intermolecular addition/cyclization process.
Collapse
Affiliation(s)
- Qi Jing
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Fu-Ci Qiao
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jing-Yun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ming-Dong Zhou
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
11
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
12
|
More DA, Shirsath SR, Muthukrishnan M. Metal- and Photocatalyst-Free, Visible-Light-Initiated C3 α-Aminomethylation of Quinoxalin-2(1 H)-ones via Electron Donor-Acceptor Complexes. J Org Chem 2023; 88:13339-13350. [PMID: 37651188 DOI: 10.1021/acs.joc.3c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We report a metal- and photocatalyst-free C3 α-aminomethylation of quinoxalin-2(1H)-ones with N-alkyl-N-methylanilines. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between quinoxalin-2(1H)-ones and N-alkyl-N-methylanilines. The present method provides a mild and environmentally friendly protocol that exhibits good atom economy and excellent functional group tolerance to obtain a library of biologically significant C3 α-aminomethylated quinoxalin-2(1H)-ones in good yields.
Collapse
Affiliation(s)
- Devidas A More
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Shirsath
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Muthukrishnan
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Upreti GC, Singh T, Chaudhary D, Singh A. Cascade Cyclizations Triggered by Photochemically Generated Carbamoyl Radicals Derived from Alkyl Amines. J Org Chem 2023; 88:11801-11808. [PMID: 37555769 DOI: 10.1021/acs.joc.3c01090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We report on a visible light-mediated cascade carbamoylation/cyclization of acrylamides using dihydropyridyl carbamoyl donors derived from alkyl amines. Diversely selected acrylamides including 2-cyano-N-arylacrylamides, indolyl- and benzimidazolyl acrylamides, and 2-alkynyl-N-aryl acrylamides participate in this reaction, providing products in good yields. The highlights of this photochemical method include the application of alkyl amine-derived carbamoyl donors, peroxide-free reaction conditions, and a broad scope.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Divakar Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
- Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
14
|
van Dalsen L, Brown RE, Rossi‐Ashton JA, Procter DJ. Sulfonium Salts as Acceptors in Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2023; 62:e202303104. [PMID: 36959098 PMCID: PMC10952135 DOI: 10.1002/anie.202303104] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023]
Abstract
The photoactivation of electron donor-acceptor complexes has emerged as a sustainable, selective and versatile strategy for the generation of radical species. Electron donor-acceptor (EDA) complexation, however, imposes electronic constraints on the donor and acceptor components and this can limit the range of radicals that can be generated using the approach. New EDA complexation strategies exploiting sulfonium salts allow radicals to be generated from native functionality. For example, aryl sulfonium salts, formed by the activation of arenes, can serve as the acceptor components in EDA complexes due to their electron-deficient nature. This "sulfonium tag" approach relaxes the electronic constraints on the parent substrate and dramatically expands the range of radicals that can be generated using EDA complexation. In this review, these new applications of sulfonium salts will be introduced and the areas of chemical space rendered accessible through this innovation will be highlighted.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Department of ChemistryThe University of ManchesterManchesterUK
| | | | | |
Collapse
|
15
|
Abstract
Azines, such as pyridines, quinolines, pyrimidines, and pyridazines, are widespread components of pharmaceuticals. Their occurrence derives from a suite of physiochemical properties that match key criteria in drug design and is tunable by varying their substituents. Developments in synthetic chemistry, therefore, directly impact these efforts, and methods that can install various groups from azine C-H bonds are particularly valuable. Furthermore, there is a growing interest in late-stage functionalization (LSF) reactions that focus on advanced candidate compounds that are often complex structures with multiple heterocycles, functional groups, and reactive sites. Because of factors such as their electron-deficient nature and the effects of the Lewis basic N atom, azine C-H functionalization reactions are often distinct from their arene counterparts, and the application of these reactions in LSF contexts is difficult. However, there have been many significant advances in azine LSF reactions, and this review will describe this progress, much of which has occurred over the past decade. It is possible to categorize these reactions as radical addition processes, metal-catalyzed C-H activation reactions, and transformations occurring via dearomatized intermediates. Substantial variation in reaction design within each category indicates both the rich reactivity of these heterocycles and the creativity of the approaches involved.
Collapse
Affiliation(s)
- Celena M Josephitis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
16
|
Roychowdhury P, Samanta S, Tan H, Powers DC. N-Amino Pyridinium Salts in Organic Synthesis. Org Chem Front 2023; 10:2563-2580. [PMID: 37840843 PMCID: PMC10569450 DOI: 10.1039/d3qo00190c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
C-N bond forming reactions hold immense significance to synthetic organic chemistry. In pursuit of efficient methods for the introduction of nitrogen in organic small molecules, myriad synthetic methods have been developed, and methods based on both nucleophilic and electrophilic aminating reagents have received sustained research effort. In response to continued challenges - the need for substrate prefunctionalization, the requirement for vestigial N-activating groups, and the need to incorporate nitrogen in ever more complex molecular settings - the development of novel aminating reagents remains a central challenge in method development. N-aminopyridinums and their derivatives have recently emerged as a class of bifunctional aminating reagents, which combine N-centered nucleophilicity with latent electrophilic or radical reactivity by virtue of the reducible N-N bond, with broad synthetic potential. Here, we summarize the synthesis and reactivity of N-aminopyridinium salts relevant to organic synthesis. The preparation and application of these reagents in photocatalyzed and metal-catalyzed transformations is discussed, showcasing the reactivity in the context of bifunctional platform and its potential for innovation in the field.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
17
|
Montgomery AP, Joyce JM, Danon JJ, Kassiou M. An update on late-stage functionalization in today's drug discovery. Expert Opin Drug Discov 2023; 18:597-613. [PMID: 37114995 DOI: 10.1080/17460441.2023.2205635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Late-stage functionalization (LSF) allows for the introduction of new chemical groups toward the end of a synthetic sequence, which means new molecules can be rapidly accessed without laborious de novo chemical synthesis. Over the last decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, affording benefits such as efficient access to diverse libraries to explore structure-activity relationships and the improvement of physicochemical and pharmacokinetic properties. AREAS COVERED An overview of the key advancements in LSF methodology development from 2019 to 2022 and their applicability to drug discovery is provided. In addition, several examples from both academia and industry where LSF methodologies have been applied by medicinal chemists to their drug discovery programs are presented. EXPERT OPINION Utilization of LSF by medicinal chemists is on the rise, both in academia and in industry. The maturation of the LSF field to produce methodologies bearing increased regioselectivity, scope, and functional group tolerance is envisaged to narrow the gap between methodology development and medicinal chemistry research. The authors predict that the sheer versatility of these techniques in facilitating challenging chemical transformations of bioactive molecules will continue to increase the efficiency of the drug discovery process.
Collapse
Affiliation(s)
| | - Jack M Joyce
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Singh T, Upreti GC, Arora S, Chauhan H, Singh A. Visible Light-Mediated Carbamoylation of para-Quinone Methides. J Org Chem 2023. [PMID: 36792547 DOI: 10.1021/acs.joc.2c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report a photocatalytic approach for the installation of the amide moiety onto para-quinone methides. This transformation features a net reductive approach for the generation of carbamoyl radicals from amide-substituted Hantzsch ester derivatives under transition metal-free conditions. This protocol exhibits wide scope and allows access to diarylacetamides employing a C-C bond formation approach.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India
| | | | - Shivani Arora
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India
| | | | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
19
|
Jiang Q, Liu X, Wang W, Chen Y, Yu M. Metal-free direct C-6-H alkylation of purines and purine nucleosides enabled by oxidative homolysis of 4-alkyl-1,4-dihydropyridines at room temperature. Org Biomol Chem 2023; 21:1744-1754. [PMID: 36723234 DOI: 10.1039/d2ob02070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein we report the application of 4-alkyl-1,4-dihydropyridines (DHPs), which are easily prepared from inexpensive aldehydes in one step, for the direct site-specific C-H alkylation of purines and purine nucleosides. Despite there being three active C(sp2)-H bonds (C-2-H, C-6-H, and C-8-H) in the structure, the reactions still show high regioselectivity at the purinyl C-6-H position. Importantly, the reactions successfully avoid the use of transition metal catalysts and additional acids. Meanwhile, the protocols are not sensitive to moisture and require only persulfate as an oxidant. Besides, this method displays broad functional group compatibility and is easy to scale up. Notably, pharmaceutical purines, e.g. the natural product 6-hydroxymethyl nebularine isolated from basidiomycetes, can be smoothly prepared using this protocol.
Collapse
Affiliation(s)
- Qingsong Jiang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Weili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Yiwen Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Mingwu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| |
Collapse
|
20
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Shan X, Wang X, Chen E, Liu J, Lu K, Zhao X. Visible-Light-Promoted Trifluoromethylthiolation and Trifluoromethylselenolation of 1,4-Dihydropyridines. J Org Chem 2023; 88:319-328. [PMID: 36573495 DOI: 10.1021/acs.joc.2c02348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a metal-free trifluoromethylthiolation and trifluoromethylselenolation of 1,4-dihydropyridines with S-(trifluoromethyl) 4-methylbenzenesulfonothioate and Se-(trifluoromethyl) 4-methylbenzenesulfonoselenoate under visible light irradiation. This transformation was tolerated with a wide range of functional groups and provided an alternative and green strategy for the synthesis of trifluoromethylthioesters and trifluoromethylselenoesters.
Collapse
Affiliation(s)
- Xiwen Shan
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Xiaoxing Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Enxue Chen
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Juyan Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
22
|
Sarkar A, Saha M, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Hypervalent iodine mediated Pd(II)‐catalyzed
ortho
‐C(
sp
2
−H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Moumita Saha
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Asish R. Das
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Adrita Banerjee
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | - Romit Majumder
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | | |
Collapse
|
23
|
Tan CY, Kim M, Park I, Kim Y, Hong S. Site-Selective Pyridine C-H Alkylation with Alcohols and Thiols via Single-Electron Transfer of Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2022; 61:e202213857. [PMID: 36314414 DOI: 10.1002/anie.202213857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
A unified strategy for the deoxygenative or desulfurative pyridylation of various alcohols and thiols has been developed through a single-electron transfer (SET) process of frustrated Lewis pairs (FLPs) derived from pyridinium salts and PtBu3 . Mechanistic studies revealed that N-amidopyridinium salts serve as effective Lewis acids for the formation of FLPs with PtBu3 , and the generated phosphine radical cation ionically couples with the in situ generated xanthate, eventually affording the alkyl radical through facile β-scission under photocatalyst-free conditions. The reaction efficiency was further accelerated by visible-light irradiation. This method is conceptually appealing by using encounter complexes in FLP chemistry to promote SET, which provides a previously unrecognized opportunity for the selective heteroarylation of a diverse range of alcohols and thiols with various functional groups, even in complex settings under mild reaction conditions.
Collapse
Affiliation(s)
- Chang-Yin Tan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Inyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yuhyun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Sanjosé-Orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chem Sci 2022; 13:12527-12532. [PMID: 36382292 PMCID: PMC9629060 DOI: 10.1039/d2sc04990b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
The efficient C-4 selective modification of pyridines is a major challenge for the synthetic community. Current strategies are plagued with at least one drawback regarding functional group-tolerant electronic activation of the heteroarene, mild generation of the required alkyl radicals, regioselectivity, safety and/or scalability. Herein, we describe a fast, safe and scalable flow process which allows preparation of said C-4 alkylated pyridines. The process involves a photochemical hydrogen atom transfer (HAT) event to generate the carbon-centered radicals needed to alkylate the C-2 blocked pyridine. In a two-step streamlined flow process, this light-mediated alkylation step is combined with a nearly instantaneous inline removal of the blocking group. Notably, cheap benzophenone plays a dual role in the pyridine alkylation mechanism by activating the hydrocarbon feedstock reagents via a HAT mechanism, and by acting as a benign, terminal oxidant. The key role of benzophenone in the operative reaction mechanism has also been revealed through a combination of experimental and computational studies.
Collapse
Affiliation(s)
- Jesús Sanjosé-Orduna
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Rodrigo C Silva
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
- Departamento de Química, Universidade Federal de São Carlos SP 13565-905 Brazil
| | - Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Bente Reus
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Jannik Thaens
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| |
Collapse
|
25
|
Kim M, Koo Y, Hong S. N-Functionalized Pyridinium Salts: A New Chapter for Site-Selective Pyridine C-H Functionalization via Radical-Based Processes under Visible Light Irradiation. Acc Chem Res 2022; 55:3043-3056. [PMID: 36166489 DOI: 10.1021/acs.accounts.2c00530] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The radical-mediated C-H functionalization of pyridines has attracted considerable attention as a powerful tool in synthetic chemistry for the direct functionalization of the C-H bonds of the pyridine scaffold. Classically, the synthetic methods for functionalized pyridines often involve radical-mediated Minisci-type reactions under strongly acidic conditions. However, the site-selective functionalization of pyridines in unbiased systems has been a long-standing challenge because the pyridine scaffold contains multiple competing reaction sites (C2 vs C4) to intercept free radicals. Therefore, prefunctionalization of the pyridine is required to avoid issues observed with the formation of a mixture of regioisomers and overalkylated side products.Recently, N-functionalized pyridinium salts have been attracting considerable attention in organic chemistry as promising radical precursors and pyridine surrogates. The notable advantage of N-functionalized pyridinium salts lies in their ability to enhance the reactivity and selectivity for synthetically useful reactions under acid-free conditions. This approach enables exquisite regiocontrol for nonclassical Minisci-type reactions at the C2 and C4 positions under mild reaction conditions, which are suitable for the late-stage functionalization of bioactive molecules with greater complexity and diversity. Over the past five years, a variety of fascinating synthetic applications have been developed using various types of pyridinium salts under visible light conditions. In addition, a new platform for alkene difunctionalization using appropriately designed N-substituted pyridinium salts as bifunctional reagents has been reported, offering an innovative assembly process for complex organic architectures. Intriguingly, strategies involving light-absorbing electron donor-acceptor (EDA) complexes between pyridinium salts and suitable electron-rich donors further open up new reactivity under photocatalyst-free conditions. Furthermore, we developed enantioselective reactions using pyridinium salts to afford enantioenriched molecules bearing pyridines through single-electron N-heterocyclic carbene (NHC) catalysis.Herein, we provide a broad overview of our recent contributions to the development of N-functionalized pyridinium salts and summarize the cornerstones of organic reactions that successfully employ these pyridinium salts under visible light conditions. The major advances in the field are systematically categorized on the basis of the pyridines' N-substituent, N-X (X = O, N, C, and SO2CF3), and its reactivity patterns. Furthermore, the identification of new activation modes and their mechanistic aspects are discussed by providing representative contributions to each paradigm. We hope that this Account will inspire broad interest in the continued innovation of N-functionalized pyridinium salts in the exploration of new transformations.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
26
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
27
|
Yedase GS, Venugopal S, Arya P, Yatham VR. Catalyst‐free Hantzsch ester‐mediated Organic Transformations Driven by Visible light. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Girish Suresh Yedase
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - Sreelakshmi Venugopal
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - P Arya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - Veera Reddy Yatham
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry Thiruvananthapuram 695551 Thiruvananthapuram INDIA
| |
Collapse
|
28
|
Gou X, Li Y, Shi W, Luan Y, Ding Y, An Y, Huang Y, Zhang B, Liu X, Liang Y. Ruthenium‐Catalyzed Stereo‐ and Site‐Selective
ortho‐
and
meta
‐C−H Glycosylation and Mechanistic Studies. Angew Chem Int Ed Engl 2022; 61:e202205656. [DOI: 10.1002/anie.202205656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xue‐Ya Gou
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong Shatin Hong Kong China
| | - Wei‐Yu Shi
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yu‐Yong Luan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ya‐Nan Ding
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yan‐Chong Huang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Bo‐Sheng Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
29
|
Matsuo BT, Oliveira PHR, Pissinati EF, Vega KB, de Jesus IS, Correia JTM, Paixao M. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chem Commun (Camb) 2022; 58:8322-8339. [PMID: 35843219 DOI: 10.1039/d2cc02585j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of amide-containing compounds is among the most interesting and challenging topics for the synthetic community. Such relevance is given by their reactive aspects explored in the context of organic synthesis and by the direct application of these compounds as pharmaceuticals and useful materials, and their key roles in biological structures. A simple and straightforward strategy for the amide moiety installation is the use of carbamoyl radicals - this nucleophilic one-electron intermediate is prone to undergo a series of transformations, providing a range of structurally relevant derivatives. In this review, we summarize the latest advances in the field from the perspective of photoinduced protocols. To this end, their synthetic applications are organized accordingly to the nature of the radical precursor (formamides through HAT, 4-substituted-1,4-dihydropyridines, oxamic acids, and N-hydroxyphthalimido esters), the mechanistic aspects also being highlighted. The discussion also includes a recent approach proceeding via photolytic C-S cleavage of dithiocarbamate-carbamoyl intermediates. By exploring fundamental concepts, this material aims to offer an understanding of the topic, which will encourage and facilitate the design of new synthetic strategies applying the carbamoyl radical.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil. .,Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Pedro H R Oliveira
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Kimberly B Vega
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Iva S de Jesus
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Jose Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Márcio Paixao
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
30
|
Gou X, Li Y, Shi W, Luan Y, Ding Y, An Y, Huang Y, Zhang B, Liu X, Liang Y. Ruthenium‐Catalyzed Stereo‐ and Site‐Selective
ortho‐
and
meta
‐C−H Glycosylation and Mechanistic Studies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue‐Ya Gou
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong Shatin Hong Kong China
| | - Wei‐Yu Shi
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yu‐Yong Luan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ya‐Nan Ding
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yan‐Chong Huang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Bo‐Sheng Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
31
|
Zhang Y, Tanabe Y, Kuriyama S, Nishibayashi Y. Photoredox‐ and Nickel‐Catalyzed Hydroalkylation of Alkynes with 4‐Alkyl‐1,4‐dihydropyridines: Ligand‐Controlled Regioselectivity. Chemistry 2022; 28:e202200727. [DOI: 10.1002/chem.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yulin Zhang
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| |
Collapse
|
32
|
Ma Q, Buchon L, Magné V, Graff B, Morlet‐Savary F, Xu Y, Benltifa M, Lakhdar S, Lalevée J. Charge Transfer Complexes (CTCs) with Pyridinium Salts: Towards Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromol Rapid Commun 2022; 43:e2200314. [DOI: 10.1002/marc.202200314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Ma
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Loïc Buchon
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | - Valentin Magné
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Bernadette Graff
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | | | - Yangyang Xu
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu 241002 P. R. China
| | - Mahmoud Benltifa
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies CERTE BP 273 Soliman 8020 Tunisia
| | - Sami Lakhdar
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Jacques Lalevée
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| |
Collapse
|
33
|
Choi H, Mathi GR, Hong S, Hong S. Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis. Nat Commun 2022; 13:1776. [PMID: 35365667 PMCID: PMC8975994 DOI: 10.1038/s41467-022-29462-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
A catalytic method for the enantioselective and C4-selective functionalization of pyridine derivatives is yet to be developed. Herein, we report an efficient method for the asymmetric β-pyridylations of enals that involve N-heterocyclic carbene (NHC) catalysis with excellent control over enantioselectivity and pyridyl C4-selectivity. The key strategy for precise stereocontrol involves enhancing interactions between the chiral NHC-bound homoenolate and pyridinium salt in the presence of hexafluorobenzene, which effectively differentiates the two faces of the homoenolate radical. Room temperature is sufficient for this transformation, and reaction efficiency is further accelerated by photo-mediation. This methodology exhibits broad functional group tolerance and enables facile access to a diverse range of enantioenriched β-pyridyl carbonyl compounds under mild and metal-free conditions.
Collapse
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Gangadhar Rao Mathi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seonghyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
34
|
Chen Y, Zhang G, Guo C, Lan P, Banwell MG, He Y. Silver‐Promoted Radical Ring‐Opening
/
Pyridylation of Cyclobutanols with
N
‐Methoxypyridinium Salts. Chemistry 2022; 28:e202104627. [DOI: 10.1002/chem.202104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Chen
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Guang‐Yi Zhang
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Chan Guo
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Yu‐Tao He
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| |
Collapse
|
35
|
Long T, Pan S, Zhu S, Chu L. Catalyst‐Free Intermolecular Sulfonyl/Fluoromethyl Heteroarylation of Vinyl Ethers via Visible‐Light‐Induced Charge Transfer. Chemistry 2022; 28:e202104080. [DOI: 10.1002/chem.202104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Tianyu Long
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
36
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
37
|
Wang S, Zhou Q, Zhang X, Wang P. Site‐Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
38
|
Wang S, Zhou Q, Zhang X, Wang P. Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202111388. [PMID: 34845804 DOI: 10.1002/anie.202111388] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| |
Collapse
|
39
|
Cardinale L, Schmotz MOWS, Konev MO, Jacobi von Wangelin A. Photoredox-Catalyzed Synthesis of α-Amino Acid Amides by Imine Carbamoylation. Org Lett 2022; 24:506-510. [PMID: 34967213 DOI: 10.1021/acs.orglett.1c03908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An operationally simple protocol for the photocatalytic carbamoylation of imines is reported. Easily available, bench-stable 4-amido Hantzsch ester derivatives serve as precursors to carbamoyl radicals that undergo rapid addition to N-aryl imines. The reaction proceeds under blue light irradiation in the presence of the photocatalyst 3DPAFIPN and Brønsted/Lewis acid additives. Mechanistic studies indicated a photoredox mechanism that involves carbamoyl radicals.
Collapse
Affiliation(s)
- Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Place 6, 20146 Hamburg, Germany
| | - Mattis-Ole W S Schmotz
- Department of Chemistry, University of Hamburg, Martin Luther King Place 6, 20146 Hamburg, Germany
| | - Mikhail O Konev
- Department of Chemistry, University of Hamburg, Martin Luther King Place 6, 20146 Hamburg, Germany
| | - Axel Jacobi von Wangelin
- Department of Chemistry, University of Hamburg, Martin Luther King Place 6, 20146 Hamburg, Germany
| |
Collapse
|
40
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
41
|
Feng Q, Wang P, Luo X. Radical Addition of 4-Hydroxyquinazolines and Alkylation of Quinones by the Electro-Induced Homolysis of 4-Alkyl-1,4-dihydropyridines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1737-2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe formation of C(sp3)-centered radicals via the electro-induced homolysis of 4-alkyl-1,4-dihydropyridines (alkyl-DHPs) is reported. The resulting alkyl radicals reacted with 4-hydroxyquinazolines or quinones to afford 2-alkyldihydroquinazolinones or alkylated quinones. A broad range of alkyl DHPs could be used as versatile radical precursors under electrolysis conditions. This alterative strategy provided a simple and effective pathway for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds under mild conditions.
Collapse
Affiliation(s)
- Qiping Feng
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University
| |
Collapse
|
42
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
43
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
44
|
Zhang Z, He Q, Zhang X, Yang C. Photoredox-Catalysed Regioselective Synthesis of C-4-Alkylated Pyridines with N -(Acyloxy)phthalimides. Org Biomol Chem 2022; 20:1969-1973. [DOI: 10.1039/d2ob00123c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method of direct C-4 selective alkylation of pyridine under visible light irradiation at room temperature was reported, using simple maleate-derived pyridinium salts as pyridine precursors, and the readily available...
Collapse
|
45
|
Kim M, Shin S, Koo Y, Jung S, Hong S. Regiodivergent Conversion of Alkenes to Branched or Linear Alkylpyridines. Org Lett 2021; 24:708-713. [PMID: 34965147 DOI: 10.1021/acs.orglett.1c04156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report a practical protocol for the visible-light-induced regiodivergent radical hydropyridylation of unactivated alkenes using pyridinium salts. This approach provides a unified synthetic platform to control the regioselectivity of the synthesis of linear or branched C4-alkylated pyridines. A remarkable selectivity switch from the anti-Markovnikov to the Markovnikov product can be achieved by the addition of tetrabutylammonium bromide. The versatility of this protocol is further demonstrated based on the late-stage functionalization in pharmaceuticals.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
46
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
47
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
48
|
Yang Z, Cao K, Peng X, Lin L, Fan D, Li J, Wang J, Zhang X, Jiang H, Li J. Micellar Catalysis: Visible‐Light Mediated Imidazo[1,2‐
a
]pyridine C—H Amination with
N
‐Aminopyridinium Salt Accelerated by Surfactant in Water. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhonglie Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Kun Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Xiaoyan Peng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Li Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Danchen Fan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jun‐Long Li
- Antibiotics Research and Re‐evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu Sichuan 610106 China
| | - Jingxia Wang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Xiaobin Zhang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Hezhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jiahong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| |
Collapse
|
49
|
Zhang Y, Tanabe Y, Kuriyama S, Nishibayashi Y. Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines. J Org Chem 2021; 86:12577-12590. [PMID: 34319104 DOI: 10.1021/acs.joc.1c01018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cooperative photoredox- and nickel-catalyzed alkylative cyclization reactions of iodoalkynes with 4-alkyl-1,4-dihydropyridines as alkylation reagents under visible light irradiation have been achieved to afford the corresponding alkylated cyclopentylidenes in good to high yields. Introduction of substituents at the propargylic position of iodoalkynes has led to the stereoselective formation of E-isomers. The present reaction system provides a novel synthetic method for alkylative cyclization reactions of both terminal and internal alkynes with cooperative photoredox and nickel catalysis.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
50
|
McConnell DL, Blades AM, Rodrigues DG, Keyes PV, Sonberg JC, Anthony CE, Rachad S, Simone OM, Sullivan CF, Shapiro JD, Williams CC, Schafer BC, Glanzer AM, Hutchinson HL, Thayaparan AB, Krevlin ZA, Bote IC, Haffary YA, Bhandari S, Goodman JA, Majireck MM. Synthesis of Bench-Stable N-Quaternized Ketene N, O-Acetals and Preliminary Evaluation as Reagents in Organic Synthesis. J Org Chem 2021; 86:13025-13040. [PMID: 34498466 DOI: 10.1021/acs.joc.1c01764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N-Quaternized ketene N,O-acetals are typically an unstable, transient class of compounds most commonly observed as reactive intermediates. In this report, we describe a general synthetic approach to a variety of bench-stable N-quaternized ketene N,O-acetals via treatment of pyridine or aniline bases with acetylenic ethers and an appropriate Brønsted or Lewis acid (triflic acid, triflimide, or scandium(III) triflate). The resulting pyridinium and anilinium salts can be used as reagents or synthetic intermediates in multiple reaction types. For example, N-(1-ethoxyvinyl)pyridinium or anilinium salts can thermally release highly reactive O-ethyl ketenium ions for use in acid catalyst-free electrophilic aromatic substitutions. N-(1-Ethoxyvinyl)-2-halopyridinium salts can be employed in peptide couplings as a derivative of Mukaiyama reagents or react with amines in nucleophilic aromatic substitutions under mild conditions. These preliminary reactions illustrate the broad potential of these currently understudied compounds in organic synthesis.
Collapse
Affiliation(s)
- Danielle L McConnell
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Alisha M Blades
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Danielle Gomes Rodrigues
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Phoebe V Keyes
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Justin C Sonberg
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caitlin E Anthony
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sofia Rachad
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Olivia M Simone
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caroline F Sullivan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jonathan D Shapiro
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Christopher C Williams
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Benjamin C Schafer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Amy M Glanzer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Holly L Hutchinson
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Ashley B Thayaparan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Zoe A Krevlin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Isabella C Bote
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Yasin A Haffary
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sambat Bhandari
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jack A Goodman
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Max M Majireck
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| |
Collapse
|