1
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
2
|
Song T, Wu Y, Ren J, Wang Z. Concise syntheses of (-)-quinocarcinol methyl ester and (-)-oxa-quinocarcinol methyl ester. Org Biomol Chem 2024; 22:8724-8729. [PMID: 39387511 DOI: 10.1039/d4ob01363h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A concise synthesis of (-)-quinocarcinol methyl ester was accomplished with an overall yield of 39% through a 9-step longest linear sequence (LLS). Our synthesis features a two-step ester reduction/reductive amination sequence, a stereoselective [3 + 2] intramolecular cross-cycloaddition for the construction of bicyclo[3.2.1]octane skeletons, four simultaneous hydrogenolysis reactions in a one-pot process, and a stereoselective Krapcho decarboxylation. By following this protocol, (-)-oxa-quinocarcinol methyl ester was also achieved.
Collapse
Affiliation(s)
- Tianhang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Yifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Shorokhov VV, Lebedev DS, Boichenko MA, Zhokhov SS, Trushkov IV, Ivanova OA. A simple method for the synthesis of isoindoline derivatives. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Lv Y, Feng Y, Dai J, Zhang Y, Zhang H, Liu Z, Zheng H. Synthesis of the [6.6.7.5] Tetracyclic Core of Calyciphylline N via a Boc-Mediated Oxidative Dearomatization/Diels-Alder Approach. Org Lett 2022; 24:2694-2698. [PMID: 35362979 DOI: 10.1021/acs.orglett.2c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sequential process involving Boc-mediated oxidative dearomatization and inter/intramolecular Diels-Alder reaction was investigated. Based on an intermolecular Diels-Alder reaction and subsequently a radical 7-endo-trig type cyclization, the [6.6.7.5] tetracyclic core of Calyciphylline N was assembled.
Collapse
Affiliation(s)
- Yumeng Lv
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yueshen Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Jiatong Dai
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuying Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaxuan Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhigang Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
5
|
Cui Y, Lv J, Song T, Ren J, Wang Z. Highly efficient construction of an oxa-[3.2.1]octane-embedded 5-7-6 tricyclic carbon skeleton and ring-opening of the bridged ring via C-O bond cleavage. RSC Adv 2022; 12:9519-9523. [PMID: 35424922 PMCID: PMC8985103 DOI: 10.1039/d2ra01315k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein a highly efficient strategy for construction of a bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton through [3 + 2] IMCC (intramolecular [3 + 2] cross-cycloaddition), and the substituents and/or stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the rhamnofolane, tigliane and daphnane diterpenoids. Furthermore, ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage was also successfully achieved. We reported a highly efficient construction of an oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton with a full match of the substituents and stereochemistries on C-4/-6/-7/-10 with those in the rhamnofolane/tigliane/daphnane diterpenoids.![]()
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Tianhang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| |
Collapse
|