1
|
Ghosh M, Mandal T, Lepori M, Barham JP, Rehbein J, Reiser O. Electrochemical Homo- and Crossannulation of Alkynes and Nitriles for the Regio- and Chemoselective Synthesis of 3,6-Diarylpyridines. Angew Chem Int Ed Engl 2024; 63:e202411930. [PMID: 39185589 DOI: 10.1002/anie.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
We disclose a mediated electrochemical [2+2+2] annulation of alkynes with nitriles, forming substituted pyridines in a single step from low-cost, readily available starting materials. The combination of electrochemistry and a triarylamine redox mediator obviates the requirements of transition metals and additional oxidants. Besides the formation of diarylpyridine moieties via the homocoupling of two identical alkynes, the heterocoupling of two different alkynes depending on their electronic nature is possible, highlighting the unprecedented control of chemoselectivity in this catalytic [2+2+2] process. Mechanistic investigations like cyclic voltammetry and crossover experiments combined with DFT calculations indicate the initial oxidation of an alkyne as the key step leading to the formation of a vinyl radical cation intermediate. The utilization of continuous flow technology proved instrumental for an efficient process scale-up. The utility of the products is exemplified by the synthesis of π-extended molecules, being relevant for material or drug synthesis.
Collapse
Affiliation(s)
- Mangish Ghosh
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Tirtha Mandal
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Mattia Lepori
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Joshua P Barham
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
2
|
Li W, Zhang R, Zhou N, Lu J, Fu N. Dual transition metal electrocatalysis enables selective C(sp 3)-C(sp 3) bond cleavage and arylation of cyclic alcohols. Chem Commun (Camb) 2024; 60:11714-11717. [PMID: 39318170 DOI: 10.1039/d4cc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a dual transition metal electrocatalytic approach for C(sp3)-C(sp3) bond cleavage and arylation of cyclic alcohols, providing an efficient and sustainable method for site-specific arylation of ketones. The reaction involves electrophotochemical cerium-catalysed generation of alkoxyl radicals from readily accessible alcohols. Subsequently, homolytic cleavage of the β-C-C bond leads to the generation of carbon-centered radicals that could be effectively utilized by nickel catalysis powered by cathode reduction to deliver the remote arylated ketone products.
Collapse
Affiliation(s)
- Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ruipu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Naifu Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ju M, Lee S, Marvich HM, Lin S. Accessing Alkoxy Radicals via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J Am Chem Soc 2024; 146:19696-19703. [PMID: 39012345 PMCID: PMC11366976 DOI: 10.1021/jacs.4c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Alkoxy radicals are versatile reactive intermediates in organic synthesis. Here, we leverage the principle of frustrated radical pair to provide convenient access to these highly reactive species directly from tertiary alcohols via oxoammonium-mediated oxidation of the corresponding alkoxides. This approach enabled various synthetically useful transformations including β-scission, radical cyclization, and remote C-H functionalization, giving rise to versatile alkoxyamines that can be further elaborated to various functionalities.
Collapse
Affiliation(s)
- Minsoo Ju
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sukwoo Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Halle M Marvich
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
5
|
Wu H, Chen S, Liu C, Zhao Q, Wang Z, Jin Q, Sun S, Guo J, He X, Walsh PJ, Shang Y. Construction of C-S and C-Se Bonds from Unstrained Ketone Precursors under Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314790. [PMID: 38185472 DOI: 10.1002/anie.202314790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
A mild photoredox catalyzed construction of sulfides, disulfides, selenides, sulfoxides and sulfones from unstrained ketone precursors is introduced. Combination of this deacylative process with SN 2 or coupling reactions provides novel and convenient modular strategies toward unsymmetrical or symmetric disulfides. Reactivity studies favor a bromine radical that initiates a HAT (Hydrogen Atom Transfer) from the aminal intermediate resulting in expulsion of a C-centered radical that is intercepted to make C-S and C-Se bonds. Gram scale reactions, broad substrate scope and tolerance towards various functional groups render this method appealing for future applications in the synthesis of organosulfur and selenium complexes.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Chunni Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Zhen Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Qiren Jin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shijie Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Jing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
6
|
Keum H, Ryoo H, Kim D, Chang S. Amidative β-Scission of Alcohols Enabled by Dual Catalysis of Photoredox Proton-Coupled Electron Transfer and Inner-Sphere Ni-Nitrenoid Transfer. J Am Chem Soc 2024; 146:1001-1008. [PMID: 38109265 DOI: 10.1021/jacs.3c11813] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The photoredox/Ni dual catalysis is an appealing strategy to enable unconventional C-heteroatom bond formation. While significant advances have been achieved using this system, intermolecular C(sp3)-N bond formation has been relatively underdeveloped due to the difficulty in C(sp3)-N reductive elimination. Herein, we present a new mechanistic approach that utilizes dioxazolones as the Ni(II)-nitrenoid precursor to capture carbon-centered radicals by merging proton-coupled electron transfer (PCET) with nickel catalysis, thus forming synthetically versatile N-alkyl amides using alcohols. Based on mechanistic investigations, the involvement of (κ2-N,O)Ni(II)-nitrenoid species was proposed to capture photoredox PCET-induced alkyl radicals, thereby playing a pivotal role to enable the C(sp3)-N bond formation.
Collapse
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Harin Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
7
|
Wang H, Liu R, Sun Q, Xu K. Direct alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. Chem Commun (Camb) 2023; 59:12763-12766. [PMID: 37812023 DOI: 10.1039/d3cc04356h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The metal-free alkylation of N-heterocycles with alkenes has remained a synthetic challenge. We report here the successful implementation of metal-free alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. This protocol provides a mechanistically distinct approach to prepare a variety of C-3 alkylated quinoxalinones that are otherwise quite difficult to synthesize by other means.
Collapse
Affiliation(s)
- Huiqiao Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ruoyu Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
9
|
El Gehani AAMA, Maashi HA, Harnedy J, Morrill LC. Electrochemical generation and utilization of alkoxy radicals. Chem Commun (Camb) 2023; 59:3655-3664. [PMID: 36877137 DOI: 10.1039/d3cc00302g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
This highlight summarises electrochemical approaches for the generation and utilization of alkoxy radicals, predominantly focusing on recent advances (2012-present). The application of electrochemically generated alkoxy radicals in a diverse range of transformations is described, including discussion on reaction mechanisms, scope and limitations, in addition to highlighting future challenges in this burgeoning area of sustainable synthesis.
Collapse
Affiliation(s)
- Albara A M A El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Harnedy J, Maashi HA, El Gehani AAMA, Burns M, Morrill LC. Deconstructive Functionalization of Unstrained Cycloalkanols via Electrochemically Generated Aromatic Radical Cations. Org Lett 2023; 25:1486-1490. [PMID: 36847269 PMCID: PMC10012273 DOI: 10.1021/acs.orglett.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein we report an electrochemical approach for the deconstructive functionalization of cycloalkanols, where various alcohols, carboxylic acids, and N-heterocycles are employed as nucleophiles. The method has been demonstrated across a broad range of cycloalkanol substrates, including various ring sizes and substituents, to access useful remotely functionalized ketone products (36 examples). The method was demonstrated on a gram scale via single-pass continuous flow, which exhibited increased productivity in relation to the batch process.
Collapse
Affiliation(s)
- James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Albara A M A El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Matthew Burns
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
11
|
Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A. Electrophotochemical Ce-Catalyzed Ring-Opening Functionalization of Cycloalkanols under Redox-Neutral Conditions: Scope and Mechanism. J Am Chem Soc 2022; 144:13895-13902. [PMID: 35861667 DOI: 10.1021/jacs.2c05520] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selective cleavage and functionalization of C-C bonds in alcohols is gaining increasing interest in organic synthesis and biomass conversion. In particular, the development of redox-neutral catalytic methods with cheap catalysts and clean energy is of utmost interest. In this work, we report a versatile redox-neutral method for the ring-opening functionalization of cycloalkanols by electrophotochemical (EPC) cerium (Ce) catalysis. The EPC-Ce-enabled catalysis allows for cycloalkanols with different ring sizes to be cleaved while tolerating a broad range of functional groups. Notably, in the presence of chloride as a counteranion and electrolyte, this protocol selectively leads to the formation of C-CN, C-C, C-S, or C-oxime bonds instead of a C-halide bond after β-scission. A preliminary mechanistic investigation indicates that the redox-active Ce catalyst can be tuned by electro-oxidation and photo-reduction, thus avoiding the use of an external oxidant. Spectroscopic characterizations (cyclic voltammetry, UV-vis, electron paramagnetic resonance, and X-ray absorption fine structure) suggest a Ce(III)/Ce(IV) catalytic pathway for this transformation, in which a Ce(IV)-alkoxide is involved.
Collapse
Affiliation(s)
- Zhaoliang Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Jianye Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Chenyu Tan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Jiajun Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
12
|
Tan Z, Xiang F, Xu K, Zeng C. Electrochemical Organoselenium-Catalyzed Intermolecular Hydroazolylation of Alkenes with Low Catalyst Loadings. Org Lett 2022; 24:5345-5350. [PMID: 35852836 DOI: 10.1021/acs.orglett.2c01983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The organoselenium-catalyzed amination of alkenes is a promising way to construct functionalized amines. However, the use of chemical oxidants and the unavoidable formation of allylic amine or enamine are the two main limitations of these methodologies. Against this background, we herein report an electro-selenocatalytic regime for the hydroazolylation of alkenes with azoles under external oxidant-free conditions with low catalyst loadings. Moreover, this protocol enables the generation of amines without vinyl substituents.
Collapse
Affiliation(s)
- Zhoumei Tan
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Fang Xiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|