1
|
Yuan J, Liu Q, Liu X, Wang D, Yan M, Meng X, Ma J, Qu L. Visible-Light-Driven Tandem Cyclization of o-Hydroxyaryl Enaminones: Access to 3-(α-Arylsulfonamido)trifluoroethyl Chromones. J Org Chem 2025; 90:6031-6043. [PMID: 40261683 DOI: 10.1021/acs.joc.5c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A visible-light-driven intermolecular tandem α-amidotrifluoroethylation/cyclization of enaminones using a previously unreported N-trifluoroethylaminopyridinium salt was achieved in the absence of transition metal catalysts or bases. Notable features of this synthetic method include mild conditions, high selectivity, excellent functional group compatibility, and satisfactory yields. Preliminary mechanistic studies indicate that the reaction proceeds via a radical pathway, involving an in situ generated N-trifluoroethyl radical, followed by a 1,2-H shift.
Collapse
Affiliation(s)
- Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Qiyang Liu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xuanlin Liu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Da Wang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Meng Yan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xianghui Meng
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, P. R. China
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Zhongyuan Institute of Science and Technology, Zhengzhou 454100, P. R. China
| |
Collapse
|
2
|
Hu C, Cai CY, Barta ES, Merchant RR, Matsuura BS, Chen SJ, Chen S, Qin T. Ligand-Controlled Regioselective Dearomative Vicinal and Conjugate Hydroboration of Quinolines. J Am Chem Soc 2025; 147:11906-11914. [PMID: 40146905 PMCID: PMC12022962 DOI: 10.1021/jacs.4c17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A dearomative strategy to regioselectively modify arenes using a "diene" synthon within aromatic rings provides access to highly functionalized heterocycles from abundant aromatic feedstocks and represents an alternative synthetic approach besides traditional cross-coupling and C-H functionalization methodologies. In this study, we present an efficient method for selectively introducing boron onto quinolines through dearomative hydroboration using easily accessible and stable phosphine-ligated borane complexes. The vicinal 5,6- and conjugate 5,8-hydroborated products could be obtained regioselectively by modifying the phosphine ligand. Drawing inspiration from diverse organoboron transformations, these borane building blocks were diversified by a range of downstream functionalizations, providing modular pathways for the skeletal modifications of quinolines to access a variety of challenging functionalized heterocycles.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Chen-Yan Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Elizabeth S Barta
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Bryan S Matsuura
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
3
|
Mohite SB, Mirza YK, Bera PS, Nadigar S, Yugendhar S, Karpoormath R, Bera M. Advances in Pyridine C-H Functionalizations: Beyond C2 Selectivity. Chemistry 2025; 31:e202403032. [PMID: 39604069 DOI: 10.1002/chem.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The pyridine core is a crucial component in numerous FDA-approved drugs and Environmental Protection Agency (EPA) regulated agrochemicals. It also plays a significant role in ligands for transition metals, alkaloids, catalysts, and various organic materials with diverse properties, making it one of the most important structural frameworks. However, despite its significance, direct and selective functionalization of pyridine is still relatively underdeveloped due to its electron-deficient nature and the strong coordinating ability of nitrogen. Among the variety of synthetic transformation, direct functionalization of C-H bond is straightforward and atom economical approach and it's advantageous for late-stage functionalization of pyridine containing drugs. In recent years, innovative strategies for regioselective C-H functionalization of pyridines and azines have emerged, offering numerous benefits such as high regioselectivity, mild conditions, and enabling transformations that were challenging with traditional methods. This review emphasizes the latest advancements in meta and para-C-H functionalization of pyridines through various approaches, including pyridine phosphonium salts, photocatalytic methods, temporary de-aromatization, Minisci-type reactions, and transition metal-catalyzed C-H activation techniques. We discuss the advantages and limitations of these current methods and aim to inspire further progress in this significant field.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Yafia Kousin Mirza
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Partha Sarathi Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Siddaram Nadigar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Soorni Yugendhar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Rajsekhar Karpoormath
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Milan Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| |
Collapse
|
4
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
5
|
Liu J, Jiang HW, Hu XQ, Xu PF. Visible-Light-Induced Alkoxypyridylation of Alkenes Using N-Alkoxypyridinium Salts as Bifunctional Reagents. Org Lett 2024; 26:3661-3666. [PMID: 38656155 DOI: 10.1021/acs.orglett.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Considering the ubiquitous presence of pyridine moieties in pharmaceutical compounds, it holds immense value to develop practical and straightforward methodologies for accessing heterocyclic aromatic hydrocarbons. In recent years, N-alkoxypyridinium salts have emerged as convenient radical precursors, enabling the generation of the corresponding alkoxy radicals and pyridine through single-electron transfer. Herein, we present the first report on visible-light-mediated intermolecular alkoxypyridylation of alkenes employing N-alkoxylpyridinium salts as bifunctional reagents with an exceptionally low catalyst loading (0.5 mol %).
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hao-Wen Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
6
|
Hu W, Diao X, Yuan J, Liang W, Yang W, Yang L, Ma J, Zhang S. Photoredox-Catalyzed Tandem Cyclization of Enaminones with N-Sulfonylaminopyridinium Salts toward the Synthesis of 3-Sulfonaminated Chromones. J Org Chem 2024; 89:644-655. [PMID: 38088130 DOI: 10.1021/acs.joc.3c02399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Wenyu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
7
|
Yue F, Ma H, Ding P, Song H, Liu Y, Wang Q. Formation of C-B, C-C, and C-X Bonds from Nonstabilized Aryl Radicals Generated from Diaryl Boryl Radicals. ACS CENTRAL SCIENCE 2023; 9:2268-2276. [PMID: 38161365 PMCID: PMC10755731 DOI: 10.1021/acscentsci.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
With the development of organoboron chemistry, boron-centered radicals have become increasingly attractive. However, their synthetic applications remain limited in that they have been used only as substrates for addition reactions or as initiators for catalytic reactions. We have achieved a new reaction pathway in which tetraarylborate salts are used as precursors for aryl radicals via boron radicals, by introducing a simple activation reagent. In addition, we carried out a diverse array of transformations involving these aryl radical precursors, which allowed the construction of new C-B, C-C, and C-X bonds in the presence of visible light.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Pengxuan Ding
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
8
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
9
|
Kim K, You E, Hong S. Nucleophilic C4-selective (hetero) arylation of pyridines for facile synthesis of heterobiaryls. Front Chem 2023; 11:1254632. [PMID: 37720719 PMCID: PMC10502421 DOI: 10.3389/fchem.2023.1254632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
The synthesis of heterobiaryl compounds holds significant value in organic chemistry due to their extensive range of applications. Herein, we report a highly efficient strategy for conducting C4-selective (hetero) arylation of pyridines using N-aminopyridinium salts. The reaction proceeds readily at room temperature in the presence of a base, thus eliminating the requirement for catalysts or oxidants. This method allows for the installation of various electron-rich (hetero) aryl groups on pyridines, resulting in the streamlined synthesis of highly valuable C4-(hetero) aryl pyridine derivatives, which are otherwise challenging to acquire via conventional methods. This simple and straightforward method will facilitate access to a range of heterobiaryl compounds thereby promoting their application in various scientific disciplines.
Collapse
Affiliation(s)
- Kewon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Kim J, Kim M, Jeong J, Hong S. Unlocking the Potential of β-Fragmentation of Aminophosphoranyl Radicals for Sulfonyl Radical Reactions. J Am Chem Soc 2023. [PMID: 37339337 DOI: 10.1021/jacs.3c04112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Exploiting β-scission in aminophosphoranyl radicals for radical-mediated transformations has been a longstanding challenge. In this study, we investigated the untapped potential of β-fragmentation in aminophosphoranyl radicals by leveraging the unique properties of the P-N bond and the substituents of P(III) reagents. Our approach carefully considers factors such as cone angle and electronic properties of phosphine and employs density functional theory (DFT) calculations to probe structural and molecular orbital influence. We successfully induced β-fragmentation through N-S bond cleavage of aminophosphoranyl radicals under visible light and mild conditions, generating a range of sulfonyl radicals derived from pyridinium salts via the photochemical activity of electron donor-acceptor (EDA) complexes. This innovative synthetic strategy exhibits broad applicability, including late-stage functionalization, and paves the way for valuable sulfonyl radical-mediated reactions, such as alkene hydrosulfonylation, difunctionalization, and pyridylic C-H sulfonylation.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
11
|
Li FX, Wang X, Lin J, Lou X, Ouyang J, Hu G, Quan Y. Selective multifunctionalization of N-heterocyclic carbene boranes via the intermediacy of boron-centered radicals. Chem Sci 2023; 14:6341-6347. [PMID: 37325159 PMCID: PMC10266453 DOI: 10.1039/d3sc01132a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The selective difunctionalization of N-heterocyclic carbene (NHC) boranes with alkenes has been achieved via decatungstate and thiol synergistic catalysis. The catalytic system also allows stepwise trifunctionalization, leading to complex NHC boranes with three different functional groups which are challenging to prepare by other methods. The strong hydrogen-abstracting ability of the excited decatungstate enables the generation of boryl radicals from mono- and di-substituted boranes for realizing borane multifunctionalization. This proof-of-principle research provides a new chance for fabricating unsymmetrical boranes and developing boron-atom-economic synthesis.
Collapse
Affiliation(s)
- Feng-Xing Li
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Xinmou Wang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Jiaxin Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Xiangyu Lou
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Jing Ouyang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Guanwen Hu
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
12
|
Luo L, Tang S, Wu J, Jin S, Zhang H. Transition Metal-Free Aromatic C-H, C-N, C-S and C-O Borylation. CHEM REC 2023; 23:e202300023. [PMID: 36850026 DOI: 10.1002/tcr.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C-H and C-Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C-H and C-Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C-H, C-N, C-S, and C-O borylation transformations and provides insights to where further developments are required.
Collapse
Affiliation(s)
- Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiangyue Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|