1
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
2
|
Schäfer F, Mix A, Cati N, Lamm JH, Neumann B, Stammler G, Mitzel NW. Host guest chemistry of a bidentate silyl-triflate bis-Lewis-acid – complex complexation behaviour unravelled by diffusion NMR spectroscopy. Dalton Trans 2022; 51:7164-7173. [DOI: 10.1039/d2dt00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bidentate silicon-based Lewis acid, bis(dimethyl-(trifluoromethylsulfonyl)silylethyl)dimethylsilane, Me2Si[(CH2)2SiMe2-OTf]2, was prepared by a two-step synthesis starting from dimethyldivinylsilane by hydrosilylation with dimethylchlorosilane and subsequent Lewis acidity enhancement of the terminal silicon atoms...
Collapse
|
3
|
Nikolova Y, Dobrikov GM, Petkova Z, Shestakova P. Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments. Molecules 2021; 26:6865. [PMID: 34833957 PMCID: PMC8624562 DOI: 10.3390/molecules26226865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
A series of squaric acid amides (synthesized in 66-99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3•SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by 1H DOSY and multinuclear 1D and 2D (1H, 10/11B, 13C, 15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone.
Collapse
Affiliation(s)
- Yana Nikolova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (G.M.D.); (Z.P.)
| | | | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (G.M.D.); (Z.P.)
| |
Collapse
|
4
|
Wedi P, Farizyan M, Bergander K, Mück-Lichtenfeld C, van Gemmeren M. Mechanism of the Arene-Limited Nondirected C-H Activation of Arenes with Palladium*. Angew Chem Int Ed Engl 2021; 60:15641-15649. [PMID: 33998116 PMCID: PMC8361776 DOI: 10.1002/anie.202105092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Recently palladium catalysts have been discovered that enable the directing-group-free C-H activation of arenes without requiring an excess of the arene substrate, thereby enabling methods for the late-stage modification of complex organic molecules. The key to success has been the use of two complementary ligands, an N-acyl amino acid and an N-heterocycle. Detailed experimental and computational mechanistic studies on the dual-ligand-enabled C-H activation of arenes have led us to identify the catalytically active species and a transition state model that explains the exceptional activity and selectivity of these catalysts. These findings are expected to be highly useful for further method development using this powerful class of catalysts.
Collapse
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Mirxan Farizyan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Wedi P, Farizyan M, Bergander K, Mück‐Lichtenfeld C, Gemmeren M. Mechanismus der Aren‐limitierten, nicht‐dirigierten C‐H‐Aktivierung von Arenen mit Palladium**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Mirxan Farizyan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| |
Collapse
|
6
|
Nakatsuji Y, Kobayashi Y, Masuda S, Takemoto Y. Azolium/Hydroquinone Organo-Radical Co-Catalysis: Aerobic C-C-Bond Cleavage in Ketones. Chemistry 2021; 27:2633-2637. [PMID: 33258523 DOI: 10.1002/chem.202004943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Organo-radical catalysts have recently attracted great interest, and the development of this field can be expected to broaden the applications of organocatalysis. Herein, the first example of a radical-generating system is reported that does not require any photoirradiation, radical initiators, or preactivated substrates. The oxidative C-C-bond cleavage of 2-substituted cyclohexanones was achieved using an azolium salt and a hydroquinone as co-catalysts. A catalytic mechanism was proposed based on the results of diffusion-ordered spectroscopy and cyclic voltammetry measurements, as well as computational studies.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Sakyo Masuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Evans R. The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:33-69. [PMID: 32471534 DOI: 10.1016/j.pnmrs.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance (NMR) techniques has become routine as hardware, software and experimental methodologies have all improved. However, the quantitative interpretation of such data remains difficult, particularly for small molecules. This review article first provides a description of, and explanation for, the failure of the Stokes-Einstein equation to accurately predict small molecule diffusion coefficients, before moving on to three broadly complementary methods for their quantitative interpretation. Two are based on power laws, but differ in the nature of the reference molecules used. The third addresses the uncertainties in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are used to show the range of chemistry to which diffusion NMR can be applied, and how best to implement the different methods to obtain quantitative information from the chemical systems studied.
Collapse
Affiliation(s)
- Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
8
|
Yousefi R, Struble TJ, Payne JL, Vishe M, Schley ND, Johnston JN. Catalytic, Enantioselective Synthesis of Cyclic Carbamates from Dialkyl Amines by CO 2-Capture: Discovery, Development, and Mechanism. J Am Chem Soc 2018; 141:618-625. [PMID: 30582326 DOI: 10.1021/jacs.8b11793] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic carbamates are a common feature of small-molecule therapeutics, offering a constrained hydrogen bond acceptor that is both polar and sterically small. Methods for their preparation most often focus first on amino alcohol synthesis and then reaction with phosgene or its equivalent. This report describes an enantioselective synthesis of cyclic carbamates in which carbon dioxide engages an unsaturated basic amine, facilitated by a bifunctional organocatalyst designed to stabilize a carbamic acid intermediate while activating it toward subsequent enantioselective carbon-oxygen bond formation. Six-membered cyclic carbamates are prepared in good yield with high levels of enantioselection, as constrained 1,3-amino alcohols featuring a chiral tertiary alcohol carbon. Spectroscopic analysis (NMR, DOSY) of various substrate-reagent combinations provides insight into the dominant species under the reaction conditions. Two peculiar requirements were identified to achieve highest consistency: a "Goldilocks" amount of water and the use of a noncrystalline form of the ligand. These atypical features of the final protocol notwithstanding, a diverse range of products could be prepared. Their functionalizations illustrate the versatility of the carbamates as precursors to enantioenriched small molecules.
Collapse
Affiliation(s)
- Roozbeh Yousefi
- Department of Chemistry and Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Thomas J Struble
- Department of Chemistry and Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Jenna L Payne
- Department of Chemistry and Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Mahesh Vishe
- Department of Chemistry and Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Nathan D Schley
- Department of Chemistry and Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
9
|
Abstract
Functionalized per- and polyfluoroarenes are important building blocks, with many industrially and medicinally important molecules containing them. Nucleophilic aromatic substitution can be employed as a quick and straightforward way to synthesize these building blocks. While many methods to derivatize fluoroarenes exist that use heteroatom centered nucleophiles, there are fewer methods that use carbon centered nucleophiles, and of those many are poorly defined. This work presents the SNAr reaction of nucleophiles generated from nitroalkanes with a variety of fluorinated arenes. Given that the products are versatile, accessing polyfluorinated arene building blocks in substantial scale is important. This method is highly regioselective, and produces good to moderate yields on a large scale, sans chromatography, and thus fulfills this need. In addition, the regioselectivity of the addition was probed using both DFT calculations and experimentally via halogen exchange.
Collapse
Affiliation(s)
- Jon I Day
- Department of Chemistry, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Jimmie D Weaver
- Department of Chemistry, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| |
Collapse
|
10
|
Dal Poggetto G, Antunes VU, Nilsson M, Morris GA, Tormena CF. 19 F NMR matrix-assisted DOSY: a versatile tool for differentiating fluorinated species in mixtures. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:323-328. [PMID: 27682133 DOI: 10.1002/mrc.4534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
NMR is the most versatile tool for the analysis of organic compounds and, in combination with Diffusion-Ordered Spectroscopy ('DOSY'), can give information on compounds in complex mixtures without the need for physical separation. In mixtures where the components' diffusion coefficients are nearly identical, for example because of similar sizes, Matrix-Assisted DOSY ('MAD') can help separate the signals of different constituents, resolving their spectra. Unfortunately, DOSY (including MAD) typically fails where signals overlap, as is common in 1 H NMR. Using 19 F NMR avoids such problems, because the great sensitivity of the 19 F chemical shift to local environment leads to very well-dispersed spectra. Another advantage is the absence of any 19 F background signals from the matrices typically used, avoiding interference with the analyte signals. In this study, differentiation among fluorophenol and fluoroaniline isomers was evaluated using normal and reverse micelles-of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and dioctyl sodium sulfosuccinate (AOT)-as matrices. These surfactants provide useful diffusion separation in these difficult mixtures, with all the solutes interacting with the matrices to different extents, in some cases leading to differences in diffusion coefficient of more than 30%. The best matrices for separating the signals of both acid and basic species were shown to be AOT and CTAB, which are useful over a wide range of surfactant concentration. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Guilherme Dal Poggetto
- Institute of Chemistry, University of Campinas, São Paulo, Brazil
- School of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Victor U Antunes
- Institute of Chemistry, University of Campinas, São Paulo, Brazil
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Gareth A Morris
- School of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| | | |
Collapse
|
11
|
Qiao Y, Ge W, Jia L, Hou X, Wang Y, Pedersen CM. Glycosylation intermediates studied using low temperature1H- and19F-DOSY NMR: new insight into the activation of trichloroacetimidates. Chem Commun (Camb) 2016; 52:11418-11421. [DOI: 10.1039/c6cc05272j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low temperature1H- and19F-DOSY have been used for analyzing reactive intermediates in glycosylation reactions, where a glycosyl trichloroacetimidate donor has been activated using different catalysts.
Collapse
Affiliation(s)
- Yan Qiao
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Wenzhi Ge
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Lingyu Jia
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Xianglin Hou
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Yingxiong Wang
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | | |
Collapse
|
12
|
Guang J, Hopson R, Williard PG. Diffusion Coefficient-Formula Weight (D-FW) Analysis of 2H Diffusion-Ordered NMR Spectroscopy (DOSY). J Org Chem 2015; 80:9102-7. [DOI: 10.1021/acs.joc.5b01457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Guang
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Russell Hopson
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Paul G. Williard
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
13
|
Weisheim E, Reuter CG, Heinrichs P, Vishnevskiy YV, Mix A, Neumann B, Stammler HG, Mitzel NW. Tridentate Lewis Acids Based on 1,3,5-Trisilacyclohexane Backbones and an Example of Their Host-Guest Chemistry. Chemistry 2015. [DOI: 10.1002/chem.201501683] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|