1
|
Pashko MO, Pashkov KV, Granat DS, Yagupolskii YL, Ryabukhin SV, Volochnyuk DM. Methyl chlorothioformate as a convenient reagent for thionoester synthesis. RSC Adv 2025; 15:15116-15120. [PMID: 40343322 PMCID: PMC12060010 DOI: 10.1039/d5ra01538c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
A promising reagent for introducing the methyl thionoester function into organic molecules through a straightforward synthetic sequence based on common magnesium organics is proposed. A scalable procedure for its production is elaborated. The potential of the reaction, along with its advantages/simplicity, convenience, and effectiveness, is demonstrated and discussed.
Collapse
Affiliation(s)
- Mykhailo O Pashko
- Enamine Ltd 78 Winston Churchill str. 02094 Kyiv Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine 5 Akademik Kuhar str. 02660 Kyiv Ukraine
| | - Kiril V Pashkov
- Enamine Ltd 78 Winston Churchill str. 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. 01601 Kyiv Ukraine
| | - Dmitriy S Granat
- Enamine Ltd 78 Winston Churchill str. 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. 01601 Kyiv Ukraine
| | - Yurii L Yagupolskii
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. 01601 Kyiv Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd 78 Winston Churchill str. 02094 Kyiv Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine 5 Akademik Kuhar str. 02660 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. 01601 Kyiv Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd 78 Winston Churchill str. 02094 Kyiv Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine 5 Akademik Kuhar str. 02660 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. 01601 Kyiv Ukraine
| |
Collapse
|
2
|
Reddy PM, Anbarasan P. Carbonyl vs Hydroxy: Rhodium catalyzed carbonyl ylide triggered diastereoselective synthesis of 2,5-methano-1,3-benzoxazepines. Org Lett 2025; 27:3385-3389. [PMID: 40125697 DOI: 10.1021/acs.orglett.5c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A general and efficient rhodium catalyzed chemoselective reaction of N-sulfonyl-1,2,3-triazoles with 2-hydroxyphenyl substituted enone has been successfully accomplished. The reaction occurs through the initial chemoselective reaction of azavinyl carbenes to the carbonyl group of enone followed by rearrangement and cyclization. The reaction tolerated various functional groups and allowed the synthesis of various 2,5-methano-1,3-benzoxazepines in high yield as single diastereomer. Control experiments revealed the formation of potential dihydropyrrole as an intermediate and aided in proposing the plausible mechanism.
Collapse
Affiliation(s)
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India
| |
Collapse
|
3
|
Patel M, Bambharoliya T, Shah D, Patel K, Patel M, Shah U, Patel S, Mahavar A, Patel A. Emerging green synthetic routes for thiazole and its derivatives: Current perspectives. Arch Pharm (Weinheim) 2024; 357:e2300420. [PMID: 38013395 DOI: 10.1002/ardp.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
This review article provides an overview of the green synthesis of thiazole derivatives, emphasizing sustainable and environmentally friendly methodologies. Thiazole derivatives possess significant value and find diverse applications across various fields. However, conventional synthesis methods often involve hazardous reagents and generate substantial waste, posing environmental concerns. The green synthesis of thiazole derivatives employs renewable starting materials, nontoxic catalysts, and mild reaction conditions to minimize environmental impact. Innovative techniques such as microwave irradiation, ultrasound synthesis, green solvents, a green catalyst-based approach, and mechanochemistry-mediated synthesis are employed, offering advantages in terms of scalability, cost-effectiveness, and purification simplicity. The resulting thiazole derivatives exhibit comparable or enhanced biological activities, showcasing the feasibility and practicality of green synthesis in drug discovery. This review paper underscores the importance of sustainable approaches in functional molecular synthesis and encourages further research in this domain.
Collapse
Affiliation(s)
- Maitri Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Tushar Bambharoliya
- Department of Fiber and Polymer Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Drashti Shah
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Krina Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Mehul Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Umang Shah
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Swayamprakash Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Anjali Mahavar
- Faculty of Computer Application, Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Ashish Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
4
|
Pandey S, Parveen S, Volla CMR. Rh(II)-Catalyzed Denitrogenative Reaction of N-Sulfonyl-1,2,3-triazoles with Quinolones and Isoquinolones. Chem Asian J 2023; 18:e202300614. [PMID: 37665690 DOI: 10.1002/asia.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Herein, we developed an efficient approach to access biologically relevant 2-aminoquinolines and 1-aminoisoquinolines from readily available N-sulfonyl-1,2,3-triazoles and 2-quinolones or 1-isoquinolones. This transformation involves the selective O-H insertion of these derivatives onto the in situ generated Rh-azavinyl carbenes (Rh-AVC) followed by rearrangement. The reaction proceeds smoothly under operationally simple conditions and the protocol was found to be scalable.
Collapse
Affiliation(s)
- Shivam Pandey
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Sabiha Parveen
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
5
|
Nutt MJ, Annear JW, Jones KD, Flematti GR, Moggach SA, Stewart SG. Dirhodium-Catalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles to 2,3-Dehydropiperazines. J Org Chem 2023; 88:11968-11979. [PMID: 37523269 DOI: 10.1021/acs.joc.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The dirhodium(II)-catalyzed synthesis of a range of C2-substituted 2,3-dehydropiperazines using 1-mesyl-1,2,3-triazoles and β-haloalkylcarbamates is reported. The reaction is proposed to proceed through an α-imino rhodium carbene 1,3-insertion into N-H followed by a base-mediated cyclization. C-Substituted dehydropiperazines can also be conducted directly from terminal alkynes in a three-step, one-pot operation, forming the triazole in situ. This methodology has also been expanded to afford several 2,5-disubstituted 2,3-dehydropiperazines as well as a larger 4,5,6,7-tetrahydro-1H-1,4-diazepine derivative.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jack W Annear
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kieran D Jones
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Li X, Sheng H, Song Q. Rhodium-Catalyzed Intramolecular Cyclization to Synthesize 2-Aminobenzofurans via Carbene Metathesis Reactions. Org Lett 2023; 25:2113-2117. [PMID: 36940428 DOI: 10.1021/acs.orglett.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Herein, we report a new method of synthesizing of 2-aminobenzofuran 3-enes via the formal C-S insertion reaction of alkyne-tethered diazo compounds. Metal carbene, as a kind of active synthetic intermediate, plays a very important role in organic synthesis. Through the carbene/alkyne metathesis strategy, a new donor carbene is produced in situ as a key intermediate, which has different reactions from the donor receptor carbene.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, China
| | - Heyun Sheng
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fijian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Li S, Yin J, Zhang H, Zhang KAI. Dual Molecular Oxygen Activation Sites on Conjugated Microporous Polymers for Enhanced Photocatalytic Formation of Benzothiazoles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2825-2831. [PMID: 36598932 DOI: 10.1021/acsami.2c16581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative formation of high value compounds involving active oxygen species using heterogeneous polymeric photocatalysts has become a useful tool in catalysis. Controlling the interaction between the active sites on polymer photocatalysts and oxygen molecules is still challenging due to the rather large polymer backbone structure. Here, we design a triazine-containing donor acceptor-type conjugated microporous polymer (CMP) containing dual major active sites at F and N atoms for molecular oxygen activation. Introducing fluorine atoms on the CMP backbone led to a combined effect of enhanced adsorption and electron transfer of oxygen. Time-resolved photoluminescence, electronic paramagnetic resonance spectra, and DFT calculation revealed favorable absorption energy and electron transfer kinetics between the CMP and oxygen molecules, thus efficiently generating superoxide radicals (O2•-) and singlet oxygen (1O2) as main active oxygen species. The photocatalytic activity, selectivity, and reusability of the CMP was demonstrated by the photocatalytic formation of a variety of benzothiazoles.
Collapse
Affiliation(s)
- Sizhe Li
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Jie Yin
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Hao Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
8
|
Sontakke GS, Pal K, Volla CMR. Substrate-Dependent Denitrogenative Rearrangements of Rhodium Azavinyl Carbenes Involving 1,2-Aryl Migration. Org Lett 2022; 24:8796-8801. [PMID: 36445048 DOI: 10.1021/acs.orglett.2c03538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we disclose substrate-dependent rearrangements of 4-substituted N-sulfonyl-1,2,3-triazoles under Rh(II)-catalysis via denitrogenation. The reaction pathways included key 1,2-aryl migration via the formation of intermediatory phenonium ion, which is elusive so far with Rh-azavinyl carbenes. Intriguingly, the transformations were completely dependent on the substituent present leading to different scaffolds like enaminones, pyrrol-3-ones, and azadienes. Hammett studies provided essential insights into the carbocationic intermediate formation. The developed methodology featured simple reaction conditions, excellent functional group compatibility, and broad substrate scope.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Bhaumick P, Kumar R, Acharya SS, Parvin T, Choudhury LH. Multicomponent Synthesis of Fluorescent Thiazole-Indole Hybrids and Thiazole-Based Novel Polymers. J Org Chem 2022; 87:11399-11413. [PMID: 35998330 DOI: 10.1021/acs.joc.2c00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report an efficient multicomponent reaction for the synthesis of trisubstituted thiazoles involving a one-pot C-C, C-N, and C-S bond-forming process from the readily available starting materials. The reaction of arylglyoxal, indole, and aryl thioamides in the acetic acid medium under sealed heating conditions provided 3-(2,4-diarylthiazol-5-yl)-1H-indoles (4) in good to excellent yields. Using a similar reaction strategy, the reaction of arylglyoxal, aryl thioamide, and 2,5-dihydroxy-1,4-benzoquinone provided structurally interesting bis-thiazoles having dihydroxy-1,4-benzoquinone linker (9). All of the products were fully characterized by spectroscopic techniques. We also recorded single-crystal X-ray diffraction (XRD) of compounds 4b and 9a for unambiguous structure determination. Indole-linked trisubstituted thiazoles (4) exhibit prominent fluorescence properties. The relative fluorescence quantum yields of all of the thiazole-linked indoles were measured in the dimethyl sulfoxide (DMSO) medium with respect to quinine sulfate in 0.1 M H2SO4 as reference. The scope of this reaction was further explored by preparing novel polymers 11a and 11b using naphthalene/benzene-1,4-bis(carbothioamide) in multicomponent polymerization.
Collapse
Affiliation(s)
- Prabhas Bhaumick
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| | - Rohit Kumar
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| | - Swadhin S Acharya
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| | - Tasneem Parvin
- Department of Chemistry, National Institute of Technology─Patna, Ashok Rajpath, Patna 800005, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| |
Collapse
|
10
|
Kaieda Y, Yamamoto K, Kuriyama M, Onomura O. Rhodium‐Catalyzed Transannulation of <i>N</i>‐Sulfonyl‐1,2,3‐triazoles with Carboxylic Esters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Akter M, Rupa K, Anbarasan P. 1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chem Rev 2022; 122:13108-13205. [DOI: 10.1021/acs.chemrev.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
12
|
Belmonte-Vázquez JL, Hernández-Morales EA, Hernández FJ, García-González MC, Miranda LD, Crespo-Otero R, Rodríguez-Molina B. Asymmetric Dual‐State Emitters Featuring Thiazole Acceptors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Luis D Miranda
- UNAM: Universidad Nacional Autonoma de Mexico Instituto de Química MEXICO
| | | | - Braulio Rodríguez-Molina
- Universidad Nacional Autonoma de Mexico Institute of Chemistry Circuito Exterior, Ciudad Universitaria 04510 Coyoacan MEXICO
| |
Collapse
|
13
|
Jangir N, Poonam, Dhadda S, Jangid DK. Recent advances in the synthesis of five‐ and six‐membered heterocycles as bioactive skeleton: A concise overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nidhi Jangir
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| | - Poonam
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| | - Surbhi Dhadda
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| | - Dinesh K. Jangid
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| |
Collapse
|
14
|
Monteith JJ, Scotchburn K, Mills LR, Rousseaux SAL. Ni-Catalyzed Synthesis of Thiocarboxylic Acid Derivatives. Org Lett 2022; 24:619-624. [PMID: 34978834 DOI: 10.1021/acs.orglett.1c04074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Ni-catalyzed cross-coupling of readily accessible O-alkyl xanthate esters or thiocarbonyl imidazolides and organozinc reagents for the synthesis of thiocarboxylic acid derivatives has been developed. This method benefits from a fast reaction time, mild reaction conditions, and ease of starting material synthesis. The use of transition-metal catalysis to access a diverse range of thiocarbonyl-containing compounds provides a useful complementary approach when compared with previously established methodologies.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Katerina Scotchburn
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - L Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Gao Z, Jiang D, Li B, Wang B. Rhodium-catalyzed denitrogenative gem-difunctionalization of pyridotriazoles with thioesters: formal carbene insertion into C(O)-S bonds. Chem Commun (Camb) 2022; 58:1017-1020. [PMID: 34950938 DOI: 10.1039/d1cc06041d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A formal carbene insertion into C(O)-S bonds to access α-quaternary pyridines was achieved via a rhodium(II)-catalyzed in situ formation of sulfonium ylides from pyridotriazoles with thioesters followed by acyl group migration. This protocol has enabled an efficient denitrogenative gem-acylthiolation of pyridotriazoles to incorporate an acyl, pyridyl, and sulfur-substituted quaternary carbon center with high selectivity, broad substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Zhe Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Di Jiang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
RAVI SINGH K, Santhosh C, Swaroop TR, Sadashiva MP. Regioselective synthesis of 2,5- and 4,5-disubstituted thiazoles via cyclization of 2-oxo-2-(amino)ethanedithioates with isocyanides. Org Biomol Chem 2022; 20:5771-5778. [DOI: 10.1039/d2ob00837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective synthesis of 2-(methylthio)-N-aryl/alkylthiazole-5-carboxamides and ethyl-5-(aryl/alkyl carbamoyl)thiazole-4-carboxylates by base induced cyclization of methyl-2-oxo-2-(amino)ethanedithioates with TosMIC and ethylisocyanoacetate respectively in high yield. The regioisomeric product was confirmed by X-ray diffraction...
Collapse
|
17
|
Chen L, Xuchen X, Wang F, Yang Y, Deng G, Liu Y, Liang Y. Double C-S bond formation via multiple Csp 3-H bond cleavage: synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org Biomol Chem 2021; 19:10068-10072. [PMID: 34762083 DOI: 10.1039/d1ob01989a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel and efficient approach for the synthesis of 4-hydroxythiazoles from amides and elemental sulfur has been developed. In the presence of P2O5, DMSO and HMPA, this metal-free protocol proceeds smoothly and tolerates a spectrum of functional groups. Furthermore, this strategy involves the process of double Csp3-S bond formation through the cleavage of multiple Csp3-H bonds for the first time.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Huaihua Normal College, Huaihua 418008, China
| | - Xinyu Xuchen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Ministry of Education Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
18
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
19
|
Yadagiri D, Anbarasan P. Catalytic Functionalization of Metallocarbenes Derived from α-Diazocarbonyl Compounds and Their Precursors. CHEM REC 2021; 21:3872-3883. [PMID: 34448345 DOI: 10.1002/tcr.202100167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Indexed: 11/12/2022]
Abstract
Short and efficient synthesis of heterocyclic compounds are highly desirable in synthetic organic chemistry. It is a dream approach to accomplish these syntheses from readily available starting materials in a single step. In this personal account, we discuss our contribution in the synthesis of heterocyclic compounds and beyond from N-sulfonyl-1,2,3-triazoles and α-diazocarbonyl compounds, which are the precursors for α-imino (carbonyl) metal carbenes in the presence of transition metal catalysts. Functionalization of α-imino(carbonyl) metal carbenes has been achieved through in-situ generated metal-stabilized ylides followed by either intramolecular trapping by non-polar bonds, rearrangement, cycloaddition, or 1,3-insertion fashion, which led to the efficient synthesis of various synthetically important intermediates and heterocyclic compounds.
Collapse
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
20
|
Nguyen TB, Retailleau P. Base-Catalyzed Three-Component Reaction between Chalcones, Isothiocyanates, and Sulfur: Access to Thiazole-2-thiones. Org Lett 2021; 23:5344-5348. [PMID: 34227811 DOI: 10.1021/acs.orglett.1c01653] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A convenient synthesis of thiazole-2-thiones was developed based on base-catalyzed three-component reactions between chalcones, isothiocyanates, and elemental sulfur.
Collapse
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Synthesis of benzothiazoles using fluorescein as an efficient photocatalyst under visible light. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
23
|
Pal K, Volla CMR. Rh(II)-catalyzed Denitrogenative Cascade of 1,2,3-Triazolyl Propiolates and Indoles: Access to Butenolide Tethered Homotryptamines. Org Lett 2021; 23:4294-4299. [PMID: 34019428 DOI: 10.1021/acs.orglett.1c01215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient Rh(II)-catalyzed denitrogenative reaction of indoles with 1,2,3-triazolyl propiolates has been developed. This methodology provides facile access to butenolide tethered homotryptamines in good to excellent yields under operationally simple conditions and features a broad substrate scope. Overall, the reaction sequence involves the formation of three new bonds (two C-C and one C-O) in a nucleophilic cascade manner. Additionally, an intramolecular rearrangement of these derivatives to thermodynamically more stable butenolides is also demonstrated.
Collapse
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
24
|
Gevondian AG, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Domino Construction of Benzoxazole-Derived Sulfonamides via Metal-Free Denitrogenation of 5-Iodo-1,2,3-triazoles in the Presence of SO 2 and Amines. J Org Chem 2021; 86:5639-5650. [PMID: 33822625 DOI: 10.1021/acs.joc.1c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward domino approach to assemble benzoxazole-derived sulfonamides has been developed. The method is based on annulation-induced in situ generation of diazo compounds from readily available 2-(5-iodo-1,2,3-triazolyl)phenols, followed by metal-free denitrogenative transformation upon the action of 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) and amines. The protocol is operationally simple and features a broad substrate scope, furnishing a library of target compounds in generally good yields.
Collapse
Affiliation(s)
- Avetik G Gevondian
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
25
|
Huang YQ, Huang XZ, Huang PQ. Synthesis of 5-(1-Alkoxyalkylidene)tetronates by Direct Condensation Reactions of Tetronates with Thionolactones and Thionoesters. J Org Chem 2021; 86:2359-2368. [PMID: 33491453 DOI: 10.1021/acs.joc.0c02502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a two-step approach to bicyclic and monocyclic 5-(1-alkoxyalkylidene)tetronates starting from lactones/esters. The method features the use of thionolactones and thionoesters as activated forms of lactones/esters that allows the direct condensation with tetronates via one-pot enolate formation, nucleophilic addition, S-methylation, and DBU-promoted elimination. The value of the method was demonstrated by the stereoselective syntheses of two natural products: 5,6-Z-fadyenolide (Z/E ratio = 6:1) and 9,10-methylenedioxy-5,6-Z-fadyenolide (Z/E ratio = 9:1).
Collapse
Affiliation(s)
- Ya-Qing Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xiong-Zhi Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
26
|
Ziyaei Halimehjani A, Khalesi M, Breit B. Amino Acid‐Based Dithiocarbamates as Efficient Intermediates for Diversity‐Oriented Synthesis of Thiazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Azim Ziyaei Halimehjani
- Faculty of Chemistry Kharazmi University P. O. Box 15719‐14911, 49 Mofateh Street Tehran Iran
- Department Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Germany
| | - Maryam Khalesi
- Faculty of Chemistry Kharazmi University P. O. Box 15719‐14911, 49 Mofateh Street Tehran Iran
| | - Bernhard Breit
- Department Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
27
|
Abstract
An efficient synthetic method of tetracyclic 3,4-fused indoles and dihydroindoles via rhodium-catalyzed (3+2) cycloaddition of N-tosyl-4-(2-phenoxyphenyl)-1,2,3-triazole was described. The aromatized xanthene derivatives can be achieved in a one-pot synthesis starting from 1-ethynyl-2-phenoxybenzene. The xanthene-based fused heterocycles were considered as the valuable fluorophore.
Collapse
|
28
|
Pal K, Sontakke GS, Volla CMR. Rh(II)‐Catalyzed Denitrogenative Reaction of 1,2,3‐Triazolyl Esters with Indoles or Arenes: Efficient Synthesis of Homotryptamines or Allylamines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kuntal Pal
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Geetanjali S. Sontakke
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| |
Collapse
|
29
|
Kotovshchikov YN, Latyshev GV, Kirillova EA, Moskalenko UD, Lukashev NV, Beletskaya IP. Assembly of Thiosubstituted Benzoxazoles via Copper-Catalyzed Coupling of Thiols with 5-Iodotriazoles Serving as Diazo Surrogates. J Org Chem 2020; 85:9015-9028. [PMID: 32508100 DOI: 10.1021/acs.joc.0c00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade approach to thiosubstituted benzoxazoles has been developed. The transformation starts with in situ generation of a diazo compound via annulation-triggered electrocyclic opening of the 1,2,3-triazole ring. The subsequent Cu-catalyzed trapping of diazo intermediates by various thiols affords the desired heterocycles in generally good yields of up to 91%. The protocol features very good functional group tolerance and is applicable to substrates with different electronic properties.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Elena A Kirillova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Uliana D Moskalenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nikolay V Lukashev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
30
|
He X, Wu Y, Zhou T, Zuo Y, Xie M, Li R, Duan J, Shang Y. Rh-catalyzed C–N coupling of N-sulfonyl-1,2,3-trizales with secondary amines for regioselective synthesis of phenylvinyl-1,2-diamines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1781185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| |
Collapse
|
31
|
Anstis DG, Lindsay AC, Söhnel T, Sperry J. Synthesis of the 1,2,4-Thiadiazole Alkaloid Polyaurine B. JOURNAL OF NATURAL PRODUCTS 2020; 83:1721-1724. [PMID: 32297745 DOI: 10.1021/acs.jnatprod.0c00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A short synthesis of the natural product polyaurine B is described. The 1,2,4-thiadiazole heterocycle was assembled using a Cu(II)-mediated heterocyclization reaction that forges the N-S bond. The final acylation step to install the methylcarbamate must be conducted under anhydrous, nonbasic conditions to prevent thiadiazole ring opening initiated by attack of hydroxide at C-5.
Collapse
Affiliation(s)
- Daniel G Anstis
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Ashley C Lindsay
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
32
|
Narasimhamurthy KH, Sajith AM, Joy MN, Rangappa KS. An Overview of Recent Developments in the Synthesis of Substituted Thiazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202001133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ayyiliath M. Sajith
- Postgraduate and Research Department of ChemistryGovernment College KasaragodKannur University Kasaragod Kerala 671123 India
| | - Muthipeedika N. Joy
- Innovation Center for Chemical and Pharmaceutical TechnologiesInstitute of Chemical TechnologyUral Federal University 19 Mira Street Yekaterinburg 620002 Russia
| | | |
Collapse
|
33
|
|
34
|
Jones KD, Nutt MJ, Comninos E, Sobolev AN, Moggach SA, Miura T, Murakami M, Stewart SG. A One-Pot Reaction of α-Imino Rhodium Carbenoids and Halohydrins: Access to 2,6-Substituted Dihydro-2H-1,4-oxazines. Org Lett 2020; 22:3490-3494. [DOI: 10.1021/acs.orglett.0c00947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kieran D. Jones
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Michael J. Nutt
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Elena Comninos
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Stephen A. Moggach
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Scott G. Stewart
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
35
|
Lalithamba HS, Uma K, Gowthami TS, Nagendra G. Synthesis of Terminal Thiazoles from N-Protected Amino Acids and a Study of Their Antibacterial Activities. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1721959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- H. S. Lalithamba
- Department of Chemistry, Siddaganga Institute of Technology, Tumakuru, India
| | - K. Uma
- Department of Chemistry, Siddaganga Institute of Technology, Tumakuru, India
| | - T. S. Gowthami
- Department of Chemistry, Siddaganga Institute of Technology, Tumakuru, India
| | - G. Nagendra
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru, India
| |
Collapse
|
36
|
Wang H, Xu Z, Deng G, Huang H. Selective Formation of 2‐(2‐Aminophenyl)benzothiazoles via Copper‐Catalyzed Aerobic C−C Bond Cleavage of Isatins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongfen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
- Beijing National Laboratory for Molecular SciencesChinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
37
|
Mahata A, Bhaumick P, Panday AK, Yadav R, Parvin T, Choudhury LH. Multicomponent synthesis of diphenyl-1,3-thiazole-barbituric acid hybrids and their fluorescence property studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00406e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel diphenyl-1,3-thiazole linked barbituric acid hybrids (4) were prepared by two catalyst-free methods from readily available starting materials.
Collapse
Affiliation(s)
- Alok Mahata
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| | - Prabhas Bhaumick
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| | - Anoop Kumar Panday
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| | - Rahul Yadav
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800 005
- India
| | - Tasneem Parvin
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800 005
- India
| | - Lokman H. Choudhury
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| |
Collapse
|
38
|
Sontakke GS, Pal K, Volla CMR. Rh(II)-Catalyzed Denitrogenative Transannulation of N-Sulfonyl-1,2,3-triazolyl Cyclohexadienones for the Synthesis of Benzofurans and Cyclopropa[cd]indole-carbaldehydes. J Org Chem 2019; 84:12198-12208. [DOI: 10.1021/acs.joc.9b01924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Geetanjali S. Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
39
|
Pal K, Sontakke GS, Volla CMR. Rh(II)-Catalyzed Highly Diastereoselective Cascade Transannulation of N-Sulfonyl-1,2,3-triazoles and Vinyl Benzoxazinanones. Org Lett 2019; 21:3716-3720. [DOI: 10.1021/acs.orglett.9b01174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S. Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
40
|
Alizadeh-Bami F, Mehrabi H, Ranjbar-Karimi R. One-pot three-component reaction of arylglyoxals with acetylthiourea and Meldrum’s acid or barbituric acid for synthesis of new 2-acetamido-4-arylthiazol-5-yl derivatives. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1602127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Hossein Mehrabi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Reza Ranjbar-Karimi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
41
|
Matsumoto Y, Tsuji T, Nakatake D, Yazaki R, Ohshima T. Thionoesters as 1,2‐Dipolarophiles for [4+2] Cycloaddition with Cyclobutanones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Matsumoto
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi Higashi-ku, Fukuoka 812-8582 Japan
| | - Taro Tsuji
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi Higashi-ku, Fukuoka 812-8582 Japan
| | - Daiki Nakatake
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi Higashi-ku, Fukuoka 812-8582 Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi Higashi-ku, Fukuoka 812-8582 Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi Higashi-ku, Fukuoka 812-8582 Japan
| |
Collapse
|
42
|
2-Amino-4-arylthiazoles through One-Pot Transformation of Alkylarenes with NBS and Thioureas. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Nayak S, Gaonkar SL. A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives. Mini Rev Med Chem 2019; 19:215-238. [PMID: 30112994 DOI: 10.2174/1389557518666180816112151] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
Thiazole is the most common heterocyclic compound in heterocyclic chemistry and in drug design. Presence of several reaction sites in the thiazole moiety extends their range of applications and leads to new solutions for challenges in synthetic and medicinal chemistry. Thiazole derivatives are widely used as bioactive agents, liquid crystals, sensors, catalysts, etc. The motivating molecular architecture of 1,3-thiazoles makes them suitable moieties for drug development. In this review, our aim is to corroborate the recent data available on various synthetic strategies and biological properties of 1,3- thiazole derivatives.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santhosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
44
|
Liu L, Tan C, Fan R, Wang Z, Du H, Xu K, Tan J. I2/TBHP-Mediated tandem cyclization and oxidation reaction: Facile access to 2-substituted thiazoles and benzothiazoles. Org Biomol Chem 2019; 17:252-256. [DOI: 10.1039/c8ob02826e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The efficient synthesis of 2-substituted thiazoles and benzothiazoles has been accomplished employing readily available cysteine esters and 2-aminobenzenethiols as N and S sources.
Collapse
Affiliation(s)
- Li Liu
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Chen Tan
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Rong Fan
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zihan Wang
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hongguang Du
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Kun Xu
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
45
|
Huang H, Qu Z, Ji X, Deng GJ. Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles. Org Chem Front 2019. [DOI: 10.1039/c8qo01365a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cooperative base system has been developed for the novel three-component synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles via bis-heterocyclization of methylketoxime acetates.
Collapse
Affiliation(s)
- Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Zhonghua Qu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaochen Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
46
|
Ma X, Liu L, Wang J, Xi X, Xie X, Wang H. Rhodium-Catalyzed Annulation of α-Imino Carbenes with α,β-Unsaturated Ketones: Construction of Multisubstituted 2,3-Dihydropyrrole/pyrrole Rings. J Org Chem 2018; 83:14518-14526. [DOI: 10.1021/acs.joc.8b01835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xueji Ma
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China
| | - Li Liu
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China
| | - Jiaying Wang
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China
| | - Xianglin Xi
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China
| | - Xuemei Xie
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China
| | - Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
47
|
An unusual synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones from ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate via benzopyran ring opening. Mol Divers 2018; 23:443-452. [PMID: 30276511 DOI: 10.1007/s11030-018-9880-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
An unusual and unexpected synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones has been observed by the reaction of ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate with various arylthioureas in ethanol under mild reaction conditions with excellent yields. The ambiguity in the structure of the obtained products has been solved by recording its single-crystal X-ray analysis. This protocol has been found to be a novel approach for the preparation of title compounds via benzopyran ring opening. A systematic plausible mechanism has been proposed for the formation of the product. Also, an efficient one-pot three-component method has been demonstrated for the formation of title compounds starting from salicylaldehyde.
Collapse
|
48
|
Guo W, Zhao M, Tan W, Zheng L, Tao K, Chen L, Wang M, Chen D, Fan X. Base-Promoted Metal-/Oxidant-Free Three-Component Tandem Annulation: A Strategy for the Construction of 2,4,5-Trisubstituted Thiazoles via C−N Bond Cleavage of Amidines. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Luyan Chen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Mingfeng Wang
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Deliang Chen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province; Gannan Normal University; Ganzhou 341000 P. R. China
| |
Collapse
|
49
|
Yamamoto T, Togo H. One-Pot Preparation of Aromatic Amides, 4-Arylthiazoles, and 4-Arylimidazoles from Arenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Takahiro Yamamoto
- Graduate School of Science; Chiba University; Yayoi-cho 1-33 263-8522 Inage-ku Chiba Japan
| | - Hideo Togo
- Graduate School of Science; Chiba University; Yayoi-cho 1-33 263-8522 Inage-ku Chiba Japan
| |
Collapse
|
50
|
Yadagiri D, Chaitanya M, Reddy ACS, Anbarasan P. Rhodium Catalyzed Synthesis of Benzopyrans via Transannulation of N-Sulfonyl-1,2,3-triazoles with 2-Hydroxybenzyl Alcohols. Org Lett 2018; 20:3762-3765. [DOI: 10.1021/acs.orglett.8b01338] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manthena Chaitanya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|