1
|
Mamale AG, Ghodake BM, Gonnade RG, Bhattacharya AK. Catalyst and transition-metal free 1,6-conjugate addition of azobisisobutyronitrile: access to isobutyronitrile containing diarylmethanes. Org Biomol Chem 2025; 23:3956-3966. [PMID: 40162561 DOI: 10.1039/d5ob00012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A catalyst and transition-metal free 1,6-conjugate addition of azobisisobutyronitrile to para-quinone methides for the synthesis of isobutyronitrile containing diarylmethanes has been achieved. This protocol enables the synthesis of isobutyronitrile containing diarylmethanes in good yields and with a broad substrate scope. This is the first example wherein azobisisobutyronitrile has been used as a cyanide source for 1,6-conjugate addition under catalyst and metal-free conditions.
Collapse
Affiliation(s)
- Ajay G Mamale
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad-201 002, India
| | - Balaji M Ghodake
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad-201 002, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad-201 002, India
- Central Analytical Facility, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411 008, India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad-201 002, India
| |
Collapse
|
2
|
Wang Z, Li Y, Ding X, Sun Y, Chen C, Sun W, Hu X. DNDMH enabled C(sp 3)-H nitration of aryl alkenes. Chem Commun (Camb) 2025; 61:3147-3150. [PMID: 39868957 DOI: 10.1039/d4cc06671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
C(sp3)-H bond nitration provides facile access to nitro compounds that are inaccessible through traditional nitration pathways. This work describes a C(sp3)-H bond nitration of aryl alkenes using DNDMH, a nitration reagent developed previously in our lab. Notably, this novel nitration process presents excellent regioselectivity and chemoselectivity between C(sp3)-H nitration and C(sp2)-H nitration.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Yali Li
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Xuena Ding
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Yuancheng Sun
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Chongchong Chen
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Wei Sun
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Xiangdong Hu
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
3
|
Graham JM, Rousseaux SAL. Ni-catalyzed reductive cyanation of alkenyl tosylates and triflates. Chem Commun (Camb) 2025; 61:893-896. [PMID: 39670850 DOI: 10.1039/d4cc04972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Herein, we disclose the nickel-catalyzed reductive cyanation of alkenyl tosylates and triflates. Both cyclic and acyclic alkenyl nitriles are produced in moderate to good yield using 2-(4-methoxyphenyl)-2-methylmalononitrile (MeO-MPMN), a novel transnitrilation, or nitrile transfer, reagent. A robustness screen was undertaken to demonstrate the functional group tolerance of this method.
Collapse
Affiliation(s)
- Joshua M Graham
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
4
|
Wang Z, He Y, Wang F, Wang Y, Luo H, Wu J, Yang J. Green and efficient synthesis of dibenzyl cyanamides and ureas with cyanamide as a block. RSC Adv 2024; 14:23693-23698. [PMID: 39077314 PMCID: PMC11284761 DOI: 10.1039/d4ra04286g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
A method for the two-step synthesis of dibenzyl cyanamide and dibenzyl urea via cyanamide is presented. This approach is both efficient and environmentally friendly. Various N,N-dibenzyl ureas could be obtained by reactions of N,N-dibenzyl cyanamides and N,N-dibenzyl cyanamides as intermediates formed from cyanamide. In the absence of metal, ligand and hydrogen peroxide as the oxidant, products with moderate yields have been obtained under mild conditions. Key features include the use of widely available and easily handled cyanamide sources as starting materials.
Collapse
Affiliation(s)
- Zhongjie Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yu He
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Hui Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jianglong Wu
- School of Chemistry and Chemical Engineering, Ningxia Normal University Guyuan 756000 China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
5
|
Bhuyan M, Sharma S, Dutta NB, Baishya G. tert-Butylhydroperoxide mediated radical cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2023; 21:9255-9269. [PMID: 37969100 DOI: 10.1039/d3ob01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A novel sustainable methodology based on one-pot cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s involving a three-component radical cascade pathway has been achieved. Here, tert-butylhydroperoxide (TBHP) acts as an efficient oxidant, and it smoothly drives the reaction, producing the three-component products in very good to excellent yields. This cascade reaction eliminates the use of any base, additive, metal and hazardous cyanating agent. Additionally, this protocol exclusively delivers a stereospecific product in the case of arylalkynes. The involvement of radicals is evidenced through various radical trapping experiments.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | | | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
6
|
Chen Y, Wang K, Li M, Bao X, Zhao Y, Yi W. One-Step Protocol for the Synthesis of Cyanoacrylates Promoted by Elemental Sulfur from p-Quinone Methides and Cyanoacetates under Basic Conditions. J Org Chem 2023; 88:15696-15707. [PMID: 37906125 DOI: 10.1021/acs.joc.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cyanoacrylates have a wide range of biological activities and are extensively applied in production and daily life. Classic synthetic routes to cyanoacrylates have many limitations. Herein, we demonstrate an elemental sulfur-promoted method for the synthesis of β,β-diaryl cyanoacrylates by a tandem 1,6-Michael addition/oxidation/elimination process from p-QMs and cyanoacetates under optimal conditions. The effective protocol has good substrate scopes and yields, and the ratio of inseparable E/Z isomers of cyanoacrylates is also determined by 1HNMR.
Collapse
Affiliation(s)
- Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Xiaoli Bao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
7
|
Zhu Y, Liao Y, Jin S, Ding L, Zhong G, Zhang J. Functionality-Directed Regio- and Enantio-Selective Olefinic C-H Functionalization of Aryl Alkenes. CHEM REC 2023; 23:e202300012. [PMID: 36892157 DOI: 10.1002/tcr.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Aryl alkenes represents one of the most widely occurring structural motif in countless drugs and natural products, and direct C-H functionalization of aryl alkenes provides atom- step efficient access toward valuable analogues. Among them, group-directed selective olefinic α- and β-C-H functionalization, bearing a directing group on the aromatic ring, has attracted remarkable attentions, including alkynylation, alkenylation, amino-carbonylation, cyanation, domino cyclization and so on. These transformations proceed by endo- and exo-C-H cyclometallation and provide aryl alkene derivatives in excellent site- stereo-selectivity. Enantio-selective α- and β- olefinic C-H functionalization were also covered to synthesis axially chiral styrenes.
Collapse
Affiliation(s)
- Yuhang Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, No.2318, Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Yilei Liao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, No.2318, Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Shuqi Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, No.2318, Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Liyuan Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, No.2318, Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Guofu Zhong
- Department of chemistry, Eastern Institute for Advanced Study, Ningbo, 315200, Zhejiang, China
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, No.2318, Yuhangtang Road, Hangzhou, Zhejiang, 311121, China.,Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| |
Collapse
|
8
|
Bjørnstad F, Sundby E, Hoff BH. Directed Lithiation of Protected 4-Chloropyrrolopyrimidine: Addition to Aldehydes and Ketones Aided by Bis(2-dimethylaminoethyl)ether. Molecules 2023; 28:molecules28030932. [PMID: 36770597 PMCID: PMC9919650 DOI: 10.3390/molecules28030932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Pyrrolopyrimidines are important scaffolds for the preparation of bioactive molecules. Therefore, developing efficient and flexible ways for selective functionalization of the pyrrolopyrimidine skeleton is of interest. We have investigated lithiation-addition at C-6 of protected 4-chloro-7H-pyrrolo [2,3-d]pyrimidine as a route to new building blocks for medicinal chemistry. It was found that bis(2-dimethylaminoethyl) ether as an additive increased the yield in the additional reaction with benzaldehyde. Deuterium oxide quench experiments showed that this additive offered both a higher degree of lithiation and increased stability of the lithiated intermediate. The substrate scope of the protocol was investigated with 16 aldehydes and ketones, revealing the method to be excellently suited for reaction with aldehydes, cyclohexanone derivatives and 2,2,2-trifluoroacetophenone, while being less efficient for acetophenones. Yields in the range of 46-93% were obtained.
Collapse
Affiliation(s)
- Frithjof Bjørnstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Correspondence: ; Tel.: +47-735-93973
| |
Collapse
|
9
|
Wang C, Ma Z, Hou X, Yang L, Chen Y. Research and Application of N-Ts Cyanamides in Organic Synthesis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Jiang Y, Wang B, Liu D, Xia D, Liu Z, Li L, Deng G, Yang X. Aryl acrylonitriles synthesis enabled by palladium-catalyzed α-alkenylation of arylacetonitriles with vinyl halides/triflates. Front Chem 2022; 10:1091566. [PMID: 36590282 PMCID: PMC9798101 DOI: 10.3389/fchem.2022.1091566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Aryl acrylonitriles are an important subclass of acrylonitriles in the medicinal chemistry and pharmaceutical industry. Herein, an efficient synthesis of aryl acrylonitrile derivatives using a Palladium/NIXANTPHOS-based catalyst system was developed. This approach furnishes a variety of substituted and functionalized aryl acrylonitriles (up to 95% yield). The scalability of the transformation and the synthetic versatility of aryl acrylonitrile were demonstrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Peng S, Yang L. Copper‐Catalyzed Cyanation of Aryl Iodides with Formamide as the Cyano Source. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sha Peng
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Hunan 411105 PR China
| | - Luo Yang
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Hunan 411105 PR China
| |
Collapse
|
13
|
Ramachandran K, Anbarasan P. Rhodium-Catalyzed C2-Alkylation of Indoles with Cyclopropanols Using N, N-Dialkylcarbamoyl as a Traceless Directing Group. Org Lett 2022; 24:6745-6749. [DOI: 10.1021/acs.orglett.2c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Singh AK, Kumar J, Bhadra S. Catalytic Direct Cyanomethylenation of C(sp 3)-H Bonds via a One-Step Double C-C Bond Formation. J Org Chem 2022; 87:1512-1517. [PMID: 35012315 DOI: 10.1021/acs.joc.1c02297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An elegant and catalytic procedure for the one-step cyanomethylenation of C(sp3)-H bonds adjacent to benzazoles and ketones is described herein using DMF as a C-1 unit and TMSCN as the cyanide source. The copper-mediated reaction between DMF and TMSCN gives a cyanomethylene radical intermediate that reacts with 2-alkylbenzazoles or alkylketones to furnish desired cyanomethylenated compounds under palladium catalysis. Subsequent interconversion of cyanomethylenated products makes the protocol synthetically attractive.
Collapse
Affiliation(s)
- Anupam Kumar Singh
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jogendra Kumar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Lu C, Ye M, Long L, Zheng Y, Liu J, Zhang Y, Chen Z. Synthesis of Unsymmetrical Diarylfumaronitriles via Tandem Michael Addition and Oxidation under K 3Fe(CN) 6/O 2 System. J Org Chem 2022; 87:1545-1553. [PMID: 35014849 DOI: 10.1021/acs.joc.1c02498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An efficient formal alkenyl C-H cyanation reaction has been developed for the general synthesis of unsymmetrical diarylfumaronitriles in good to excellent yields. The reaction was achieved through tandem Michael addition and an oxidative process. The merits of this transformation include the use of K3Fe(CN)6 as a safe and nontoxic cyanide source, without an external noble metal catalyst, oxygen-involved reactions, easily available raw materials, good functional group tolerance, high stereoselectivity, and potential further application of the products.
Collapse
Affiliation(s)
- Chongjiu Lu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Min Ye
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Lipeng Long
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Yue Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Jiameng Liu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Yue Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Zhengwang Chen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
16
|
Guo B, Vries JG, Otten E. Selective α‐Deuteration of Cinnamonitriles using D
2
O as Deuterium Source. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Beibei Guo
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Johannes G. Vries
- Leibniz Institute für Katalyse e. V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
17
|
Bhuyan M, Sharma S, Baishya G. Metal-free three-component cyanoalkylation of quinoxalin-2(1H)-ones with vinylarenes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2022; 20:1462-1474. [DOI: 10.1039/d1ob02143e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A K2S2O8-mediated C3 cyanoalkylation of quinoxalin-2(1H)-ones via a three-component radical cascade reaction with vinylarenes and azobis(alkylcarbonitrile)s has been achieved.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
18
|
Kim DP, Sharma BM, Nikam AV, Lahore S, Ahn GN. Cyanide-Free Cyanation of sp2 and sp-Carbons by Oxazole based Masked CN Source Using Flow Microreactors. Chemistry 2021; 28:e202103777. [PMID: 34963029 DOI: 10.1002/chem.202103777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/10/2022]
Abstract
We herein report a cyanide-free continuous-flow process for cyanation of sp 2 and sp carbons to synthesize aryl, vinyl and acetylenic nitriles from (5-methyl-2-phenyloxazol-4-yl) boronic acid [OxBA] reagent as a sole source of carbon-bound masked -CN source. Non-toxic and stable OxBA reagent is generated by lithiation-borylation of bromo-oxazole, and the consecutive Suzuki-Miyaura cross-coupling with aryl, vinyl, or acetylenic halides and demasking [4 + 2]/retro-[4 + 2] sequence were successfully accomplished to give the desired cyano compounds with reasonably good yields in a four-step flow manner. A unique feature of this cyanation protocol in flow enables to cyanate a variety of sp 2 and sp carbons to produce a broad spectrum of aryl acetonitrile. It is envisaged that the OxBA based cyanation would replace existing unstable and toxic approaches as well as non-toxic cyanation using two different sources of "C" and "N" to incorporate the -CN group.
Collapse
Affiliation(s)
- Dong-Pyo Kim
- Pohang University of Science and Technology, chemical engineering, san 31, Hyoja-dong, Nam-gu, 790-784, Pohang, KOREA, REPUBLIC OF
| | - Brijesh M Sharma
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| | - Arun V Nikam
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| | - Santosh Lahore
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| | - Gwang-Noh Ahn
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| |
Collapse
|
19
|
Unsal Tan O, Zengin M. Insights into the chemistry and therapeutic potential of acrylonitrile derivatives. Arch Pharm (Weinheim) 2021; 355:e2100383. [PMID: 34763365 DOI: 10.1002/ardp.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Acrylonitrile is a fascinating scaffold widely found in many natural products, drugs, and drug candidates with various biological activities. Several drug molecules such as entacapone, rilpivirine, teriflunomide, and so forth, bearing an acrylonitrile moiety have been marketed. In this review, diverse synthetic strategies for constructing desired acrylonitriles are discussed, and the different biological activities and medicinal significance of various acrylonitrile derivatives are critically evaluated. The information gathered is expected to provide rational guidance for the development of clinically useful agents from acrylonitriles.
Collapse
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Ghorai J, Ramachandran K, Anbarasan P. Rhodium-Catalyzed Annulation of N-Acetoxyacetanilide with Substituted Alkynes: Conversion of Nitroarenes to Substituted Indoles. J Org Chem 2021; 86:14812-14825. [PMID: 34623800 DOI: 10.1021/acs.joc.1c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general and efficient rhodium-catalyzed redox-neutral annulation of N-acetoxyacetanilides, readily accessible from nitroarenes, with alkynes has been accomplished for the synthesis of substituted indole derivatives. A wide range of substituted 2,3-diarylindoles were achieved from various substituted N-acetoxyacetanilides and symmetrical/unsymmetrical alkynes in good to excellent yields. The developed method was successfully integrated with the synthesis of N-acetoxyacetanilides for the efficient one-pot synthesis of indoles from nitroarenes. The important features are the introduction of N-acetoxyacetamide as a new directing group, redox-neutral annulation, an additive-free approach, wide functional group tolerance, an intramolecular version, and a one-pot reaction of nitroarenes. The method was further extended to the synthesis of potent higher analogues of indole, viz., pyrrolo[3,2-f]indoles and dibenzo[a,c]carbazoles. In addition, a plausible mechanism was proposed based on the isolation and stoichiometric study of a potential aryl-Rh intermediate.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
Soumya PK, Vaishak TB, Saranya S, Anilkumar G. Recent advances in the rhodium‐catalyzed cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
22
|
Chen L, Peng RJ, Zhang XJ, Yan M, Chan ASC. Aromatic C-H Methylation and Other Functionalizations via the Rh(III)-Catalyzed Migratory Insertion of Bis(phenylsulfonyl)carbene and Subsequent Transformations. J Org Chem 2021; 86:10177-10189. [PMID: 34242504 DOI: 10.1021/acs.joc.1c00899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Rh(III)-catalyzed migratory insertion of bis(phenylsulfonyl)carbene into aromatic C-H bonds has been developed. A variety of bis(phenylsulfonyl)methyl derivatives were prepared with good yields under mild conditions. The methylated products were readily obtained after reductive desulfonylation. Furthermore, the diverse transformations of bis(phenylsulfonyl)methyl to trideuteriomethyl, aldehyde, and other functional groups were demonstrated.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui-Jun Peng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S C Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
23
|
Zhang Y, Liu X, Wang Y, Zhang Y, Wang J, Hu L. KSeCN as an efficient cyanide source for the one-step synthesis of imino-1-oxoisoindolines via copper-promoted C–H activation. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Pimparkar S, Koodan A, Maiti S, Ahmed NS, Mostafa MMM, Maiti D. C–CN bond formation: an overview of diverse strategies. Chem Commun (Camb) 2021; 57:2210-2232. [DOI: 10.1039/d0cc07783f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aim for cyanation: a comprehensive overview on various approaches on C–CN bond formation in arenes/heteroarenes by activated halides/pseudohalide, directed, non-directed, electro-catalyzed, photoredox-catalyzed, and radical approaches.
Collapse
Affiliation(s)
| | | | | | - Nesreen S. Ahmed
- Department of Therapeutic Chemistry
- National Research Centre
- Cairo-12622
- Egypt
| | | | | |
Collapse
|
25
|
Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem Soc Rev 2021; 50:3263-3314. [DOI: 10.1039/d0cs00447b] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent advances in vicinal- and geminal-group-directed alkenyl C–H functionalizations which proceeded by endo- and exo-cyclometallation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Cong Shen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liangyao Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liyuan Ding
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
26
|
Lu X, Huang Y. Stereospecific cyanation of the olefinic C–H bond enabled by 1,4-rhodium migration. Org Chem Front 2021. [DOI: 10.1039/d1qo00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rhodium-catalyzed stereospecific cyanation of the olefinic C–H bond for the synthesis of β,β-disubstituted acrylonitriles has been developed.
Collapse
Affiliation(s)
- Xiaosa Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yinhua Huang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
27
|
Cheng HC, Guo PH, Ma JL, Hu XQ. Directing group strategies in catalytic sp2 C–H cyanations: scope, mechanism and limitations. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00241d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Directing group strategy in transition metal catalyzed sp2 C–H bond cyanation has contributed to the direct conversion of hydrocarbons to cyano-containing compounds. Recent developments in transition metal-mediated sp2 C–H bond cyanation using this strategy are reviewed.
Collapse
Affiliation(s)
- Hui-cheng Cheng
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Peng-hu Guo
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Jiao-li Ma
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
28
|
Muhammad Siddique A, Neel Pulidindi I, Shen Z. RETRACTED: Metal-catalyzed cyanation of aromatic hydrocarbon with less toxic nitriles as a cyano source. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Transition-metal-free direct C-3 cyanation of quinoxalin-2(1H)-ones with ammonium thiocyanate as the “CN” source. Org Chem Front 2020. [DOI: 10.1039/c9qo01055f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical protocol for TBHP-mediated oxidative C–H cyanation of quinoxalin-2(1H)-ones utilizing ammonium thiocyanate as the cyanide source has been developed under metal free conditions.
Collapse
Affiliation(s)
- Jiayang Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liang Zhang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Tengwei Xu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
30
|
Niu G, Zheng X, Zhao Z, Zhang H, Wang J, He X, Chen Y, Shi X, Ma C, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Wong KS, Wang P, Tang BZ. Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. J Am Chem Soc 2019; 141:15111-15120. [PMID: 31436971 DOI: 10.1021/jacs.9b06196] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acrylonitriles with aggregation-induced emission (AIE) characteristics have been found to show promising applications in two-photon biomedical imaging. Generally, elaborate synthetic efforts are required to achieve different acrylonitriles with distinct functionalities. In this work, we first reported the synthesis of two different group-functionalized AIE-active acrylonitriles (TPAT-AN-XF and 2TPAT-AN) obtained simply by mixing the same reactants at different temperatures using a facile and transition metal-free synthetic method. These two AIE luminogens (AIEgens) exhibit unique properties such as bright red emission in the solid state, large Stokes shift, and large two-photon absorption cross section. Water-soluble nanoparticles (NPs) of 2TPAT-AN were prepared by a nanoprecipitation method. In vitro imaging data show that 2TPAT-AN NPs can selectively stain lysosome in live cells. Besides one-photon imaging, remarkable two-photon imaging of live tumor tissues can be achieved with high resolution and deep tissue penetration. 2TPAT-AN NPs show high biocompatibility and are successfully utilized in in vivo long-term imaging of mouse tumors with a high signal-to-noise ratio. Thus, the present work is anticipated to shed light on the preparation of a library of AIE-active functionalized acrylonitriles with intriguing properties for biomedical applications.
Collapse
Affiliation(s)
- Guangle Niu
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road, South Area, Hi-tech Park , Nanshan , Shenzhen 518057 , China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Jianguo Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Yuncong Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road, South Area, Hi-tech Park , Nanshan , Shenzhen 518057 , China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Xiujuan Shi
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road, South Area, Hi-tech Park , Nanshan , Shenzhen 518057 , China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Chao Ma
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Ryan T K Kwok
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road, South Area, Hi-tech Park , Nanshan , Shenzhen 518057 , China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road, South Area, Hi-tech Park , Nanshan , Shenzhen 518057 , China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Kam Sing Wong
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road, South Area, Hi-tech Park , Nanshan , Shenzhen 518057 , China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China.,Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
31
|
Liu M, You E, Cao W, Shi J. Rh(III)‐Catalyzed Direct C−H Cyanation of Arenes with
p
‐Toluenesulfonyl Cyanide. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mingliang Liu
- School of Environmental and Chemical EngineeringShanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Shanghai Institute of MateriaMedicaChinese Academy of Sciences nstitution 501 Haike Road Shanghai 201203 P. R. China
| | - Erli You
- Shanghai Institute of MateriaMedicaChinese Academy of Sciences nstitution 501 Haike Road Shanghai 201203 P. R. China
| | - Weiguo Cao
- School of Environmental and Chemical EngineeringShanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Department of Chemistry Innovative Drug Research CenterShanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Jingjing Shi
- Shanghai Institute of MateriaMedicaChinese Academy of Sciences nstitution 501 Haike Road Shanghai 201203 P. R. China
| |
Collapse
|
32
|
Yang L, Liu YT, Park Y, Park SW, Chang S. Ni-Mediated Generation of “CN” Unit from Formamide and Its Catalysis in the Cyanation Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05111] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, People’s Republic of China
| | - Yu-Ting Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, People’s Republic of China
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Liu LY, Yeung KS, Yu JQ. Ligand-Promoted Non-Directed C-H Cyanation of Arenes. Chemistry 2019; 25:2199-2202. [PMID: 30478935 DOI: 10.1002/chem.201805772] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 11/06/2022]
Abstract
This article reports the first example of a 2-pyridone accelerated non-directed C-H cyanation with an arene as the limiting reagent. This protocol is compatible with a broad scope of arenes, including advanced intermediates, drug molecules, and natural products. A kinetic isotope experiment (kH /kD =4.40) indicates that the C-H bond cleavage is the rate-limiting step. Also, the reaction is readily scalable, further showcasing the synthetic utility of this method.
Collapse
Affiliation(s)
- Luo-Yan Liu
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kap-Sun Yeung
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
34
|
Li H, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. Rhodium(iii)-catalyzed aromatic C–H cyanation with dimethylmalononitrile as a cyanating agent. Chem Commun (Camb) 2019; 55:1209-1212. [DOI: 10.1039/c8cc08930b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Safe, bench-stable, and commercially available DMMN was used as a cyanating reagent in Rh(iii)-catalyzed aromatic C–H bond direct cyanation in the presence of copper oxide as a promotor.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116023
- China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116023
- China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116023
- China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116023
- China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116023
- China
- WPI-Advanced Institute for Materials Research, Tohoku University
- Sendai 980-8577
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116023
- China
- School of Petroleum and Chemical Engineering, Dalian University of Technology
- Panjin 124221
| |
Collapse
|
35
|
Zhang T, Qiao J, Song H, Xu F, Liu X, Xu C, Ma J, Liu H, Sun Z, Chu W. Cu(OAc)2-Mediated benzimidazole-directed C–H cyanation using 2-(4-methylpiperazin-1-yl)acetonitrile as the cyano source. NEW J CHEM 2019. [DOI: 10.1039/c9nj00776h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C–H activation catalytic system was originally applied to the C(sp2)–H cyanation of aryls/heteroaryls to synthesize 2-(1H-benzo[d]imidazol-2-yl)aryl nitriles.
Collapse
|
36
|
Ligand-accelerated, branch-selective oxidative cyanation of alkenes. Sci Bull (Beijing) 2018; 63:1479-1484. [PMID: 36658829 DOI: 10.1016/j.scib.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023]
Abstract
A ligand-accelerated, branch-selective oxidative cyanation of alkenes has been developed in the presence of catalytic Cu2O. Both styrenes and aliphatic alkenes with directing groups are well tolerated in this inexpensive protocol. The mild condition allows for a good tolerance of functional groups, enabling facile access to a diverse array of simple and complex branched vinyl nitriles. The wide synthetic utility of this methodology has been further demonstrated via the efficient scaleup in both batch and continuous flow processes.
Collapse
|
37
|
Ghorai J, Reddy ACS, Anbarasan P. Divergent Functionalization of N-Alkyl-2-alkenylanilines: Efficient Synthesis of Substituted Indoles and Quinolines. Chem Asian J 2018; 13:2499-2504. [PMID: 29697205 DOI: 10.1002/asia.201800441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Indexed: 11/10/2022]
Abstract
An efficient divergent functionalization of N-alkylated ortho-alkenylanilines to substituted indoles and quinolines has been accomplished by employing rhodium-catalyzed cross-dehydrogenative coupling and silver-mediated oxidative cyclization, respectively. The developed methods tolerate various functional groups and allow the synthesis of substituted indoles and quinolines in good to excellent yield. Synthetic utility is demonstrated through conversion to an indole with antimicrobial activity and C-H bond functionalization of 2-arylquinolines. Furthermore, a plausible mechanism was proposed based on preliminary mechanistic investigations.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | | | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
38
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1151] [Impact Index Per Article: 164.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
39
|
Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y. Rhodium-Catalyzed Direct C-H Bond Cyanation in Ionic Liquids. Org Lett 2018; 20:4994-4997. [PMID: 30074395 DOI: 10.1021/acs.orglett.8b01952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Cp*Rh(III)/IL-based direct C-H bond cyanation system was developed for the first time. The system is a mild, efficient, and recyclable method for the synthesis of aryl nitriles. Many different directing groups can be used in this cyanation, and the reaction tolerates a variety of functional groups.
Collapse
Affiliation(s)
- Songyang Lv
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| | - Yaling Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| | - Tian Yao
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| | - Xinling Yu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| | - Chen Zhang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| | - Li Hai
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
40
|
Abstract
A metal‐free and direct alkene C−H cyanation is described. Directing groups are not required and the mechanism involves electrophilic activation of the alkene by a cyano iodine(III) species generated in situ from a [bis(trifluoroacetoxy)iodo]arene and trimethylsilyl cyanide as the cyanide source. This C−H functionalization can be conducted on gram scale, and for noncyclic 1,1‐ and 1,2‐disubstuted alkenes high stereoselectivity is achieved, thus rendering the method highly valuable.
Collapse
Affiliation(s)
- Xi Wang
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
41
|
Affiliation(s)
- Xi Wang
- Westfälische Wilhelms-Universität; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Westfälische Wilhelms-Universität; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
42
|
|
43
|
Yu L, Chen X, Song ZN, Liu D, Hu L, Yu Y, Tan Z, Gui Q. Selective Synthesis of Aryl Nitriles and 3-Imino-1-oxoisoindolines via Nickel-Promoted C(sp 2)-H Cyanations. Org Lett 2018; 20:3206-3210. [PMID: 29787284 DOI: 10.1021/acs.orglett.8b01056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient nickel-promoted selective monocyanation of benzamides with TMSCN via 8-aminoquinoline directed ortho C-H activation has been developed. Varieties of functionalized ortho-cyanated (hetero)aryl nitriles can be selectively synthesized in moderate to good yields. These cyanation products can be easily transformed into various 3-imino-1-oxoisoindolines in a one-pot procedure. The mild reaction conditions, use of cheap and commercially available reagents, wide functional group tolerance, and operational convenience make this protocol practical to the synthetic community.
Collapse
Affiliation(s)
- Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Xiang Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Ze-Nan Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Qingwen Gui
- College of Science , Hunan Agricultural University , Changsha 410128 , P. R. China
| |
Collapse
|
44
|
Cui J, Song J, Liu Q, Liu H, Dong Y. Transition-Metal-Catalyzed Cyanation by Using an Electrophilic Cyanating Agent, N
-Cyano-N
-phenyl-p
-toluenesulfonamide (NCTS). Chem Asian J 2018; 13:482-495. [PMID: 29446549 DOI: 10.1002/asia.201701611] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Cui
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road Zibo 255049 P. R. China
| | - Jian Song
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road Zibo 255049 P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road Zibo 255049 P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road Zibo 255049 P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road Zibo 255049 P. R. China
| |
Collapse
|
45
|
An overview on the progress and development on metals/non-metal catalyzed cyanation reactions. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Ghorai J, Chaitanya M, Anbarasan P. Cp*Co(iii)-catalysed selective alkylation of C–H bonds of arenes and heteroarenes with α-diazocarbonyl compounds. Org Biomol Chem 2018; 16:7346-7350. [DOI: 10.1039/c8ob02111b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cp*Co(iii)-catalysed selective alkylation of directed C–H bonds of arenes and heteroarenes has been accomplished employing donor–acceptor carbenes, derived from α-diazocarbonyl compounds.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| | - Manthena Chaitanya
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| | - Pazhamalai Anbarasan
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| |
Collapse
|
47
|
Maity P, Kundu D, Ghosh T, Ranu BC. Copper catalyzed cyanation through CC bond cleavage of gem-aryl dibromide followed by second cyanation of iodoarene by a released CN unit. Org Chem Front 2018. [DOI: 10.1039/c8qo00108a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach for the synthesis of aryl cyanides through CC cleavage of styrenyl gem-dibromide has been achieved.
Collapse
Affiliation(s)
- Pintu Maity
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Debasish Kundu
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tubai Ghosh
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Brindaban C. Ranu
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
48
|
Chaitanya M, Anbarasan P. Recent developments and applications of cyanamides in electrophilic cyanation. Org Biomol Chem 2018; 16:7084-7103. [DOI: 10.1039/c8ob01770k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes the recent developments and applications of readily accessible cyanamides in the electrophilic cyanation of various nucleophiles.
Collapse
Affiliation(s)
- Manthena Chaitanya
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|
49
|
Song H, Liu X, Wang C, Qiao J, Chu W, Sun Z. Cu(TFA)2
-Catalyzed Picolinamido-Directed C(sp2
)−H Cyanation of Naphthalenes by Using Benzoyl Cyanide as a Cyano Source. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- He Song
- School of Chemistry and Materials Science; Heilongjiang University; Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion; College of Heilongjiang Province; Harbin 150080 P. R. China
| | - Xiaochong Liu
- School of Chemistry and Materials Science; Heilongjiang University; Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion; College of Heilongjiang Province; Harbin 150080 P. R. China
| | - Chenglong Wang
- School of Chemistry and Materials Science; Heilongjiang University; Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion; College of Heilongjiang Province; Harbin 150080 P. R. China
| | - Jingyi Qiao
- School of Chemistry and Materials Science; Heilongjiang University; Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion; College of Heilongjiang Province; Harbin 150080 P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science; Heilongjiang University; Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion; College of Heilongjiang Province; Harbin 150080 P. R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science; Heilongjiang University; Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion; College of Heilongjiang Province; Harbin 150080 P. R. China
| |
Collapse
|
50
|
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Pazhamalai Anbarasan
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| |
Collapse
|